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ABSTRACT

In this paper a new detection method for sonar imagery is developed
for K-distributed background clutter using a finite mixture model
(FMM) of K-distributions. The method for estimation of the pa-
rameters of the FMM and a generalized log-likelihood ratio test is
derived. The detector is compared to the corresponding counterparts
derived for the standard K-, Gaussian, and Rayleigh distributions.
Test results of the proposed method on a data set of synthetic aper-
ture sonar (SAS) images is also presented. This database contains
images with synthetically generated targets of different shapes in-
serted into real SAS background imagery. Results illustrating the ef-
fectiveness of the FMMK-distributed detector are presented in terms
of probability of detection, false alarm rates, and receiver operating
characteristic (ROC) curves for various bottom clutter conditions.

Index Terms— Binary hypothesis testing,K-distributed clutter,
non-Gaussian signal detection, sonar imagery, underwater target de-
tection

1. INTRODUCTION

The problem of underwater object detection in sonar imagery has
recently attracted a substantial amount of attention [1–6]. This prob-
lem is complicated due to various factors such as variations in op-
erating and environmental conditions, presence of spatially varying
clutter, and variations in target shapes, compositions, and orienta-
tions. Moreover, bottom features such as coral reefs, sand forma-
tions, and vegetation may totally obscure a target or confuse the de-
tection process. Consequently, a robust detection system should be
able to quantify changes between the returns from the sea bottom and
targets and mitigate false alarms in various clutter density scenarios.

Considerable research has been devoted to the development of
different detection and classification methodologies for underwater
sonar imagery. Dobeck [2, 3] utilized a nonlinear matched filter to
detect target-size regions that match the target template in a side-
scan sonar image. For each detected region, several features were
extracted based on the size, shape, and strength of the target tem-
plate. A stepwise feature selection process was then used to deter-
mine the subset of features that maximizes the probability of detec-
tion and classification. A k-nearest neighbor and an optimal discrim-
ination filter classifier were used to classify each feature vector and
the decisions of the two classifiers were fused to generate the final
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decision. In [7], a method was proposed that first median filters the
sonar image to reduce the speckle noise. The image was then split
into overlapping range segments where the pixels in each segment
were adaptively thresholded. The threshold was determined from
cumulative distribution function (CDF) formed from a training set.
Geometric features were then extracted from contiguous target struc-
ture regions within the segment followed by classification of each
region as target or non-target using a multi-level weighted scoring-
based classification system. In [8], the adaptive clutter filter detector
in [9] was individually applied to three different sonar images vary-
ing in frequency and bandwidth. Final classification is done using an
optimal set of features using the log-likelihood ratio test where the
decisions of the individual detector and classifier are fused. Vera re-
cently presented [10] a detection and classification method based on
the Hilbert transform, where he used the transformed image to de-
tect highlight and shadow combinations. Geometrical features were
then extracted and subsequently classified using a classification tree.
Recently in [6] we developed a formulation of the log-likelihood ra-
tio for the K-distribution which produced good detection results on
synthetically generated sonar imagery.

Most statistical-based detection methods rely on the Gaussian
assumption of both signal and background noise. Due to this as-
sumption, one is not able to accurately represent sonar bottom clut-
ter and hence the performance gain is sacrificed in the detection pro-
cess. This is due to the fact that recent studies on bottom clutter
statistics reveal [11–13] that the distribution of the envelope of the
matched filtered output is dependent on the frequency, grazing angle,
range and roughness properties of the bottom. Rough surface mea-
surements made using a high resolution sonar have indicated that
the envelope amplitude distributions can be modeled by Rayleigh,
log-normal, Weibull or other more complex distributions such as the
K-distribution [12]. This suggests that the underlying complex data
is not Gaussian and that second-order moments will not be sufficient
for detection purposes, thus impairing the overall performance. This
motivates our interest in using a non-Gaussian background model.
In [13], the authors used a texture model based on the correlated
K-distribution to model seabed textures in sonar imagery. Model
parameters are estimated from a set of textured sonar images using
a method based on Expectation Maximization (EM) for truncated
data [14]. The model was then validated against textures extracted
from high-frequency SAS imagery.

In this paper, a new detection method for high-resolution sonar
imagery is developed using optimal Neyman-Pearson detection [15]
and finite mixture models (FMM) for target plusK-distributed back-
ground clutter. A new formulation for the estimation of the pa-
rameters of a FMM of K-distributions based on stochastic expec-



tation maximization (SEM) [14] is developed. A generalized log-
likelihood ratio test (GLRT) is then developed for the FMM model
and the detection results are then compared to scenarios where the
standardK, Gaussian, and Rayleigh distribution is assumed to model
the background and target plus background. Our detection hypoth-
esis in this non-Gaussian detection framework is that presence of
objects in the sonar data leads to a change in the parameters of a
FMM comparing to that of the background clutter only. The data set
used in this study was provided by the Naval Surface Warfare Cen-
ter Panama City Division (NSWC PCD) in Panama City, FL. The
data set consists of real SAS image backgrounds with synthetically
generated targets varying in target shape, type, aspect angle, range,
inserted into the background.

This paper is organized as follows: Section 2 reviews the de-
velopment of the K-distribution. Section 3 develops the FMM for a
mixture of K-distributions with the associated parameter estimation
method. Section 4 develops the generalized log-likelihood ratio test
for the FMM K-distributed detector. Section 5, presents the results
using the detectors developed in Section 4 on SAS imagery with
synthetic targets. Finally, conclusions and observations are offered
in Section 6.

2. K-DISTRIBUTION FOR MODELING BACKGROUND
CLUTTER

TheK-distribution has been developed and motivated from the work
in modeling the distribution of sea surface radar echoes. Ward [16]
proposed a compound representation for modeling high resolution
synthetic aperture radar (SAR) clutter based on a product of the
Rayleigh and Gamma densities. The intuition behind this formu-
lation was that high-resolution echoes created by SAR appear to be
the modulation of uncorrelated noise by another background noise
process with longer correlation lengths. This model was shown to
fit the single-point statistics of SAR sea surface clutter. For our pur-
poses here, this statistical model can also be applied to the envelope
of sonar returns [12]. A step-by-step derivation of theK-distribution
beginning with the above assumptions of the compound distribution
is provided here based on the notation in [17].

We assign pX|Y (x|y) to be the Rayleigh PDF with random pa-
rameter Y

pX|Y (x|y) =
x

y2
e

−x2
2y2 u(x) (1)

where u(x) is the unit step function. Also, we assume pZ(z) to be
the Gamma PDF with parameters ν and b

pZ(z) =
bν

Γ(ν)
zν−1e−bzu(z). (2)

where Γ(·) is the standard Gamma function. The square-root
Gamma PDF pY (y) is formed by the function relationship, Y =√
Z so that pY (y) = 2ypZ(y2).

Thus, the functional form of the square-root Gamma PDF in
terms of y is

pY (y) =
2ybν

Γ(ν)
y2ν−2e−by

2

u(y) (3)

Let pX(x) be the PDF of the signal envelope. The compound
representation follows from the use of marginalization over variable
y:

pX(x) =

∫ ∞
−∞

pX|Y (x|y)pY (y) dy. (4)

Using (1) and (3) in (4), yields

pX(x) =
xbν

Γ(ν)

∫ ∞
0

y−2y2ν−2e
− x2

2y2
−by2

2y dy. (5)

Now, using integration by parts and simplifying the result we get,

pX(x) =
2α

Γ(ν)

(αx
2

)ν
Kν−1(αx)u(x). (6)

where Kν−1(·) is the modified Bessel function of the second
kind [18]. This is the familiar PDF of the K-distribution presented
in [12, 16, 19] with shape parameter ν and scale parameter α.

3. FINITE MIXTURE MODEL

In our previous work [6], we used the assumption that when a tar-
get is present in a region of interest (ROI) within the sonar image
it changes the shape and scale of the K-distribution. Although this
assumption resulted in good overall detection results, it does not ac-
curately capture what is actually occurring statistically when a target
is present in aK-distributed background. If we simply model a target
in a sonar image as a region containing all white pixels, representing
the highlight, and all black pixels, representing the shadow, the dis-
tribution of the target will be a bimodal distribution consisting of two
delta functions; one for the highlight pixels and one for the shadow
pixels. Now, if the target is inserted into aK-distributed background,
the distribution of the target plus background is found by convolving
theK-distribution and that of the target distribution hence producing
a mixture of two K-distributions1.

A finite mixture model (FMM) [20] is a probability distribution
which is a convex combination of probability distributions. Assume
that the random variable R is a mixture distribution, i.e.,

pR(r|Θ) =

M∑
i=1

βipi(r|θi) (7)

where, β = {βi, · · ·βM} is the set of mixing coefficients with
0 ≤ βi ≤ 1 and

∑M
i=1 βi = 1. Moreover, θi is the vector of

unknown parameters for the ith distribution pi(r;θi). If we define
Θ = [θ1, · · · ,θM , β1, · · · , βM ]> as the vector containing all the
parameters of the FMM one just needs to estimate Θ to estimate
the PDF of R. The computation of maximum likelihood (ML) es-
timates of these parameters involves the maximization of the like-
lihood function, which may not be feasible analytically and suffers
from numerical difficulties [14]. In order to get around this problem,
the use of EM algorithm has been proposed [14, 20].

If we assume that we have N samples that are independent and
identically distributed (i.i.d.), which is valid since we are using sin-
gle point statistics, we can then write the following expression for
the log-likelihood function for the FMM,

L(θ) =

N∑
k=1

ln pR(rk|Θ) =

N∑
k=1

ln

[
M∑
i=1

βipi(rk|θi)

]
. (8)

The EM algorithm [14,20,21] provides a method to estimate the
parameters of a FMM as an incomplete data problem and introduces
a sequence {Θt}∞t=0 of parameter estimates by iteratively maximiz-
ing a pseudo-Likelihood function, i.e.,

Θt+1 = arg max
Θ∈O

Q(Θ|Θt) (9)

1This model can be generalized to a more complex model for a target,
e.g., a target with a dead-zone as well as a highlight and shadow



where O is the set of all possible parameter estimates and where

Q(Θ|Θt) =

N∑
k=1

M∑
i=1

τ tik[lnβti + ln pi(rk|θti)], (10)

τ tik =
βtipi(rk|θti)
pR(rk|Θt)

, Θ ∈ O. (11)

and the superscript t denotes the iteration index. In the context of
FMM, the EM algorithm has been proven to converge to a stationary
point of the log-likelihood function L(·) [14]. However, it may not
converge to a global maximum and may exhibit long convergence
time.

3.1. Stochastic Expectation Maximization

The Stochastic EM (SEM) [14] has been proposed to avoid the
computation of the pseudo-Likelihood function Q(·|·) and any re-
lated analytical maximization issues. This is done by integrating
a stochastic sampling procedure in the estimation process which
makes the sequence of parameter estimates a discrete time random
process. This random process has been proven to be an ergodic
and homogeneous Markov chain, converging to a unique stationary
distribution which is expected to be concentrated around the global
maxima of the log-likelihood function [14].

If we denote Σ = {σ1, · · · , σM} as the set of M different mix-
ture components and assume the population label sk ∈ Σ of the kth

sample is unknown, we can then have the following definition of the
complete and incomplete data vectors, respectively

w = (r1, s1, r2, s2, · · · , rN , sN ),

v = (r1, r2, · · · , rN ). (12)

Assuming the pairs {(rk, sk) : k = 1, 2, · · · , N} of random
variables to be i.i.d. we can denote the parametric PDF of rk condi-
tioned on sk (pR|S), the parametric probability mass function (PMF)
of sk, (PS), the parametric PMF of sk conditioned on rk (PS|R),
and the parametric joint density of (rk, sk) (pRS), we can then de-
fine

PS(sk|Θ) = βi, (13)
pR|S(rk|sk,Θ) = pi(rk|θi), and (14)
pRS(rk, sk|Θ) = pR|S(rk|sk,Θ)PS(sk|Θ), (15)

where Θ ∈ O, (k = {1, 2, · · · , N}, i = {1, 2, · · · ,M}). The
i.i.d. assumption yields the following expressions for the density
functions of the incomplete and of the complete data vectors:

pV (v|Θ) =
N∏
k=1

pR(rk|Θ), (16)

pW (w|Θ) =

N∏
k=1

pR|S(rk|sk,Θ)PS(sk|Θ), (17)

pW |V (w|v,Θ) =

N∏
k=1

PS|R(sk|rk,Θ). (18)

Given an observed incomplete data realization, SEM computes
a random sequence {Θt}∞t=0, by performing at the tth iteration the
following processing steps:

MoLC

Rag

Boot

Bayes

N = 250

R
M

S
E

ν

−.9 0 1 2 3 4 5 6 7 8 9 10
10−4

10−2

100

102

104

106
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• E-step: compute the conditional complete data density
pw|v(·|v,Θt) corresponding to the current parameter esti-
mate Θt ∈ O, (k = {1, 2, · · · , N}, i = {1, 2, · · · ,M}),
i.e.,

PS|R(sk|rk,Θt) = pR|S(rk|sk,Θt)
PS(sk|Θt)

pR(rk|Θt)

=
βtipi(rk|θti)
pR(rk|Θt)

= τ tik. (19)

• S-step: sample a complete data realization wt according to
the conditional density computed in the E-step. This is done
by sampling a label stk for each kth sample according to the
current estimated posterior probability distribution {τ tik : i =
1, 2, · · · ,M} of the pixel (k = {1, 2, · · · , N}), thus implic-
itly partitioning the data into M subsets.

• M-step: update the parameter estimate, by computing, ac-
cording to each partition generated by the S-step, a standard
supervised ML estimate Θt+1 ∈ O

βt+1
i =

|Qit|
N

(20)

θt+1
i = arg max

θi∈Oi

∑
k∈Qit

ln pi(rk|θi), (21)

for i = {1, 2, · · · ,M} and where Qit = {k : stk = σi}
is the index set of the samples assigned to the component
σi, ∀ i = {1, 2, · · · ,M}.

3.2. Parameter Estimation for FMM of K-distributions

Since we know that there is no closed form to the ML solution
for the parameter estimation of a K-distribution [22], the M-step
in the SEM procedure causes difficulty when estimating the pa-
rameters of a FMM when the component densities are assumed
to be K-distributed as would be in our target plus signal model.
Therefore, an experimental study was conducted to compare the
performance and feasibility of different parameter estimators for the
K-distribution for substitution for the ML estimator in the M-step.
Several methods were compared including Raghavan’s Method of
Moments (MoM) [23], method of log-cumulants (MoLC) [24],
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Bayesian MoM, and Bootstrapped MoM [22]. Figure 1 presents
the root mean squared error (RMSE) of the four estimators for
ν = [−0.9 : 10] for a sample size of 250. These results were
formed over 1000 Monte-Carlo iterations and from these results we
decided to utilize the Bayesian Method of Moments (MoM) param-
eter estimation method in place of the ML estimator in the M-step
of the iterative SEM estimation process. We chose this method due
to its nice estimation properties over the range of ν and for small
sample sizes. Therefore, our proposed method is the same as above
except we change the M-step to use Bayesian MoM to calculate
θt+1
i in (21) for the K-distribution of each partition.

An example of using the above algorithm for estimating the
parameters of a FMM of K-distributions is presented in Fig-
ure 2. The truth is shown by the solid curve and is a two com-
ponent mixture with β = [1/2, 1/2] and Θ = [ν1, α1, ν2, α2] =
[0.1, 0.5, 2, 4] and the estimate is shown by the dashed curve. As
can be seen, the algorithm does quite well in estimating the distri-
bution with the estimate parameters being β̂ = [0.4955, 0.5045],
Θ̂ = [0.26, 0.41, 2.096, 3.85]. The estimation algorithm was also
ran for 1000 Monte Carlo trials with a mean-squared error of 0.076
and standard error of 0.52.

4. GENERALIZED LIKELIHOOD RATIO TEST

In this section we derive the GLRT for the detection of targets in
sonar imagery with K-distributed background. Our detection prob-
lem is the decision between two hypotheses which is either a K-
distributed background alone (H0) or signal plus background (H1)
i.e., a FMM of K-distributions. Thus, our hypotheses can be defined
as

H0 : z ∼ p0(z|θ0)

H1 : z ∼ p1(z|Θ1). (22)

where z is our observation and p0(z|θ0) ∼ K(α0, ν0) and p1(z|Θ1) =∑M
i=1 βipi(z|θi), where pi(y|θi) is K-distributed.

Therefore, the GLRT for this model is

Λ(z) = max
θ0,Θ1

ln

∑M
i=1 βipi(z|θi)
p0(z|θ0)

H1

≷
H0

λ (23)

where we maximize over the entire parameter space and compare
against a predetermined decision threshold, λ. If the GLRT is greater

than λ we declare the sample as a target sample and if it is less than
λ we declare the sample as background.

The modified Bessel function of the second kind in the K-
distribution can be well-approximated [25] by,Ka(b) ≈ e−b√

2
π
b
, b�

a. Therefore, we can simply write the GLRT as

Λ(z) ≈ max
θ0,Θ1

ln

 M∑
i=1

βi
2αi

Γ(νi)

(αiz
2

)νi e−αiz√
2
π

(αiz)


− ln(2α0) + ln(Γ(ν0))− ν0 ln(α0z) + ν0 ln 2

+α0z +
1

2
ln

(
2

π
α0z

)
. (24)

Hence, avoiding the numerical difficulties of the computation of
M + 1 Bessel functions for each sample and greatly simplifying
the functional form of the GLRT.

5. SIMULATION RESULTS

An experiment was conducted to show the performance of the de-
veloped detector (24) versus the K-distributed detector in [6] which
models the difference in hypotheses as a change in the parameters of
the K-distribution and also versus the standard Rayleigh and Gaus-
sian cases for sonar imagery data. Specifically, we want to show that
the GLRT in (24) for FMMK-distributions underH1 has higher per-
formance over the detectors developed in [6]. Moreover, we would
like to study the sensitivity of the GLRT to different signal-to-clutter
ratio (SCR) levels, where SCR is defined to be the target highlight
intensity level relative to the mean background level of the image,

The sonar image database used in the test was developed by
NSWC PCD to test detector performance for various target shapes
in realistic seabed environments. Various targets were placed in a
real sonar image at different orientations and an acoustic scattering
model was used to generate raw sonar returns which is the beam-
formed into high-resolution images [26]. This generation method
incorporates both the physical attributes of the target and the context
of the seabed by using the amplitude pixel values in the sonar im-
age as a reflectivity map for scattered sound energy. Targets were
generated from four classes, namely a box, cone, sphere, and cylin-
der and are inserted into backgrounds from a high-resolution high-
frequency imaging sonar with varying bottom difficulty. There were
11 different background types with the four targets in 13 different
arrangements, giving a total of 143 images. From the images 572
background snippets and 572 target snippets were created. There-
fore, from the data set under H0 the image is pure background and
underH1 we have target plus background. For each snippet the SCR
was varied from 3 dB to 20 dB, hence allowing us to see the targets
in different target strength scenarios.

The detectors were trained on a set of 286 target and 286 back-
ground snippets with varying SCR and the optimum threshold was
determined from this training set by forming the receiver operat-
ing characteristic (ROC) curve for the training set and choosing the
threshold that corresponds to the knee point (where PD+PFA = 1).
The optimum threshold was set at λ = 1.5. It was assumed that un-
der H1 the FMM contained M = 2 components and was trained us-
ing the developed SEM algorithm in Section 3.2. The motivation be-
hind using M = 2 is to use a simple target model consisting of only
highlight and shadow structures which has a bimodal distribution of
two delta functions. In the detection process, the GLRT is calculated
using (24) for each pixel in an image snippet. The log-likelihood
value is then compared against the detection threshold (λ) and either
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Fig. 3. Receiver Operating Characteristic Curves for Different Statistical Distribution Assumptions for Different SCR.

a background pixel or target pixel is declared. Using the calculated
log-likelihood values, ROC curves were generated by varying λ.

5.1. Performance Under Different SCR Calculations

From the log-likelihood values a study on the effect of SCR on the
detection performance was conducted. Using the calculated log-
likelihood values a set of ROC curves were generated for each SCR
in the dataset. Figure 3a presents the ROC curves for the FMM de-
tector for 3, 5, and 15 dB SCR with the knee points being marked
by ‘*’. The corresponding PD values are presented in Table 1.

FMM K-dist K-dist Rayleigh Gaussian
3 dB 0.74 0.61 0.57 0.54
5 dB 0.76 0.73 0.64 0.62

15 dB 0.87 0.85 0.67 0.75

Table 1. Knee Point Probability of Detection for ROC Curves in
Figure 3

For a complete comparison of the performance of the FMM K-
distributed detector, ROC curves were also generated for both the
standard K-distribution as well as the Rayleigh and the Gaussian

cases. The ROC curves were generated the same way as the FMM
case except the log-likelihood ratio was calculated using the corre-
sponding equations in [6]. Figures 3b-3d present the ROC curves for
these cases, respectively with the knee points being marked by ‘*’.
The corresponding PD values are presented in Table 1. As expected
for all detectors we notice an increase in the performance as SCR
increases. For 15 dB SCR the FMM has a much higher PD for a
lower PFA, than those of the other three detectors. Moreover, the
FMM detector has the best performance for the low SCR cases due
to the ability of our FMM of K-distributions to correctly model the
target plus background case under H1. It is also interesting to note
here that the Gaussian detector requires a high SCR to produce any
performance similar to the K-distributed based detectors.

6. CONCLUSION

In this paper, we developed a FMM K-distributed detector for the
detection of objects in sonar images that containK-distributed back-
grounds. It has been shown that by using an approximation to the
Bessel function we can formulate an explicit, concise GLRT for a
model using a FMM consisting of K-distributed random variables.
Our experiments on the SAS image data set provided by the NSWC



PCD demonstrated good detection performance across all SCR’s
over those of the standard K-distributed as well as the Rayleigh, and
Gaussian-based detector. Overall, the FMM K-distributed detector
shows promise in improving the detection rate while lowering the
false alarm rate in the detection of underwater objects from sonar
imagery.
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