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CASE REPORT

Bounding uncertainty in functional data: A case study

Caleb Kinga , Nevin Martinb, and James Derek Tuckerb

aJMP Division, SAS Institute, Cary, North Carolina; bStatistical Sciences, Sandia National Laboratories, Albuquerque, New Mexico

ABSTRACT
Functional data are fast becoming a preeminent source of information across a wide range
of industries. A particularly challenging aspect of functional data is bounding uncertainty. In
this unique case study, we present our attempts at creating bounding functions for selected
applications at Sandia National Laboratories (SNL). The first attempt involved a simple exten-
sion of functional principal component analysis (fPCA) to incorporate covariates. Though
this method was straightforward, the extension was plagued by poor coverage accuracy for
the bounding curve. This led to a second attempt utilizing elastic methodology which
yielded more accurate coverage at the cost of more complexity.
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Functional data analysis;
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Introduction

Functional data have become more prevalent as a pri-
mary source of information in a variety of industries,
thanks in part to the rise of improved sensor technol-
ogy and sampling methods. There has also been a
large amount of research to develop better methods
for analyzing such data, such as functional principal
component analysis (fPCA), functional alignment, and
functional regression models (see Ramsay and
Silverman (2005); Srivastava and Klassen (2016) for
an introduction to the most common methods).
However, there is still space in this area for additional
research. One such area is the construction of bound-
ing curves, such as confidence or tolerance bounds.
The purpose for creating such bounding curves can
be varied, but one specific purpose we discuss here is
for use in defining and/or assessing product
specifications.

Constructing bounding curves can be a difficult
task since functional data do not exhibit random vari-
ation in the same way as univariate data. Initial
attempts have involved converting the functional data
to univariate data through summary metrics, such as
a mean or maximum value. However, these data
reduction techniques obfuscate the true nature of the
functional variation and may lead to specifications
that are either insufficient or grossly conservative.
While there are times where a univariate metric may
be appropriate (i.e., a maximum threshold for a volt-
age curve), in general a bounding curve that respects

the functional variation of the data, however complex
it may be, will always prove superior to univariate
metrics in capturing the different types of variation
that may occur.

Recently, Storlie et al. (2013) developed a method
to test the shape of a population of curves using a B-
Spline basis and a hierarchical Gaussian process
approach to form confidence intervals. Rathnayake
and Choudhary (2016) developed tolerance bounds
for functional data using fPCA. Sun and Genton
(2011) developed a boxplot display for functional
data, which provides a nice visualization technique for
a sample of functions and is also useful for detecting
functional outliers. However, these methods do not
take into account the amplitude and phase variability
present in functional data, that is, they assume that
the data (1) does not need to be aligned or (2) has
already been aligned using some unrelated criterion.
The first assumption is unrealistic in process control
applications while the second approach results in sub-
optimal solutions due to the disjointedness of the two
sources of variation. A more systematic approach is to
develop methods that build the alignment step into
the statistical procedure.

To illustrate the difficulty of assessing functional
uncertainty as well as highlight some of the novel
approaches to overcome this difficulty, we present a
selection of applications from Sandia National
Laboratories (SNL) in which functional data analysis
(FDA) techniques were used to help assess and bound
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uncertainty in functional data. Our case study will
proceed as follows. First, we discuss the motivating
functional data application that initiated the study.
Next, we present our first attempt at providing a solu-
tion based on a simple extension of fPCA to include
external factors combined with bootstrap techniques.
We then discuss how a simulation study revealed
some unforeseen drawbacks to an initial solution and
what steps we took to try and understand the issue.
Ultimately, a second attempt was made using a differ-
ent approach involving elastic FDA techniques.
Although this alternative method was not imple-
mented in the motivating application, it has and con-
tinues to be implemented in similar settings across
SNL, which we illustrate through two additional appli-
cations in the final sections.

By this point, it should be clear that this case study
digresses from the traditional approach. Our goal in
presenting the entire process, including the pivot from
one method to another, is to provide insight into the
entire problem-solving process rather than focus solely
on a single successful solution. Success in research is
almost never gained in a single step, but often
through several smaller steps, each building upon the
strengths of the previous attempt while also trying to
address any setbacks along the way.

In addition, showing a method that did not yield
optimal results can be informative to other research-
ers, and not just to avoid “reinventing the wheel”.
Publication bias is a pre-iminent issue as of late and
has given rise to a replication crisis in scientific
research (Ioannidis 2005). Among the many proposed
solutions, one approach is to encourage the publica-
tion of null or even negative results (Jena 2017).
While the case study presented here is not necessarily
a “null” result, the idea of being open to publishing

case studies in which the outcome was unexpected
may be one worth considering. After all, as this very
case study illustrates, there is no such thing as failure,
only opportunity.

Motivating application

The initial motivating application involved the need
for a more data-driven methodology in specifying
environmental requirements for a munitions system.
Over the course of their lifetimes, military munition
systems are exposed to a variety of environments. Of
particular interest are environments encountered dur-
ing transportation, most notably shocks and vibra-
tions. In this application, the focus was on mechanical
vibrations experienced by munitions systems carried
by aircraft during flight. Engineers wished to charac-
terize the nature of these mechanical vibrations as a
function of air speed and pressure, among other fac-
tors. From this, they could then compute a bounding
curve to serve as the basis for creating product specifi-
cations for the munitions system.

The data used in the computation were collected
using a carefully designed series of test flights at
selected speeds and altitudes. A mock munitions sys-
tem is carried on the wings of the aircraft, with accel-
erometers placed at key points across the test object.
Once a flight test is completed, the data are down-
loaded and converted to Acceleration Spectral
Densities (ASDs), which express the energy per unit
time of the vibration as a function of frequency
(Lalanne 2014). An example of the data is shown in
Figure 1. Note that this data is different from more
common forms of functional data in that the domain
of the data is not time or location.

Common practice for the engineers was to create
specifications by marking a series of lines that bound
the maximum values observed at each frequency.
These lines would be drawn either right at the max-
imum values or some specified value above them,
with this value being conservatively chosen, yet not
necessarily based on any observed variation in the
data. One key weakness of this approach, in addition
to its “ad-hoc” nature, was that it could not easily be
applied to environments not seen during test flights.
It was these extrapolated environments that were of
primary interest to the engineers and stakeholders, so
computing these bounds were vital. One alternative
approach to achieve bounds at extrapolated environ-
ments was to compute the square root of the area
under the curves, resulting in a metric called the root
mean square acceleration (denoted by Grms, see

Figure 1. Example of a sampling of ASD curves.
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Lalanne (2014) for further details). This metric could
then be used as a univariate response in a standard
regression model, which could then be used to
extrapolate to the environments of interest and any
corresponding uncertainty accounted for through pre-
diction intervals and the like. While this did resolve
the extrapolation issue, the resulting specifications
could only be in terms of Grms, resulting in a loss of
functional information.

First attempt: Functional PCA with
bootstrapping

Realizing these limitations, the engineers sought out a
methodology that could compute a general data-
driven bounding curve on the ASDs that was a func-
tion of environmental factors. They had already been
provided a method by a colleague who relied on the
work of Rathnayake and Choudhary (2016), which
relies on fPCA to break down the mean-centered
functional data into its principal component vectors.
The loadings or scores associated with each principal
component vector were then used in a bootstrap pro-
cedure to estimate sampling variation. From the boot-
strapped scores, a tolerance bound curve is created,
designed to capture a given quantile p of the popula-
tion of curves with confidence level 1� a:

The method of Rathnayake and Choudhary (2016)
only applies to functional data collected independent
of experimental factors. That is, there is no built-in
mechanism to directly handle functional variation due
to one or more factors. Thus, a first attempt at

generating bounding curves was to extend the method
of Rathnayake and Choudhary (2016) to allow for
experimental factors (Thomas et al. 2016b). The pro-
cedure is outlined as follows.

The functional PCA method

Consider a collection of functional curves YiðtÞ, i ¼
1, 2, :::, n, where t represents a general input, and
mean lðtÞ ¼ 1=n

Pn
i¼1 YiðtÞ: Then, using fPCA, we

have

YiðtÞ � lðtÞ �
XK
k¼1

ski/kðtÞ, [3.1]

where /kðtÞ is a principal component vector repre-
senting a principal mode of functional variation and
ski is the ith score representing an individual scaling of
the kth principal component vector for the ith func-
tional response curve (Ramsay and Silverman 2005).
The number of principal components K is specified
by the user and can be determined by how many
components are needed to capture a specified percent-
age of the variation in the data.

In examining the principal component scores, it
typically happened that the first and possibly second
principal components showed clear trends with one or
more factors, as illustrated in Figure 2 with the
dynamic pressure (Q), a quantity related to both air-
craft speed and altitude. To account for the presence
of experimental factors, we decided to fit a regression
model directly to these scores.

The choice to use regression models naturally led
us to consider using a parametric bootstrap, wherein
the scores were assumed to have standard normal dis-
tributions (once the regressors were accounted for).
This distributional assumption was based on the prop-
erty that the scores have mean 0 and variance equal
to the kth eigenvalue of the principal component
decomposition of the functional covariance matrix
EfðYðtÞ � lðtÞÞðYðtÞ � lðtÞÞ0g: Furthermore, the col-
umns of the matrix S ¼ fs1, s2, :::, sKg are orthogonal,
so a multivariate normal distribution with diagonal
covariance matrix was used. The goal, as with the ori-
ginal method, was to create a tolerance bound curve
at some specified level of the environmental factor(s)
on a given quantlie p with confidence level 1� a: The
detailed steps of the parametric boostrap algorithm
are summarized below.

1. If the kth principal component has a linear model
associated with it, compute l̂k ¼ xT0 b̂: Otherwise,
compute l̂k ¼ 1

n

Pn
i¼1 ski:

Figure 2. Example of the initial modeling approach. Here, the
scores from the first eigenvector hold a linear relationship with
dynamic pressure, Q. Q-target represents the specific environ-
ment for which tolerance bounds and ultimately product speci-
fications need to be computed.
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2. For b ¼ 1, 2, :::,B,
(a) Simulate ~rkb � r̂k

ffiffiffiffiffiffi
dfk
v2dfk

r
, k ¼ 1, 2, :::, p, where

r̂k is the estimated standard deviation of
the scores for the kth principal component,
dfk are the appropriate degrees of freedom,
and v2dfk is a Chi-squared random variable

with dfk degrees of freedom.
(b) If the kth principal component has a linear

model associated with it, compute ~r2
l ¼

~r2
kbx

T
0 ðXTXÞ�1x0, where X is the model

matrix and x0 is the target level. Otherwise,
compute ~r2

l ¼ ~r2
kb=n:

(c) Simulate ~lkb � Normalðl̂kb, ~r
2
lÞ:

(d) Compute �YbðtÞ ¼ �YðtÞ þPK
k¼1 ~lkb/kðtÞ and

VbðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1 /kðtÞ2~r2
kb

q
, where �Y is the

pointwise mean of the original data and
/kðtÞ is the kth eigenfunction.

(e) Compute PbðtÞ ¼ �YbðtÞ þ zpVbðtÞ, where zp
is the pth percentile of the standard normal
distribution.

3. The pointwise ð1� aÞ-level upper tolerance bound
is given by the ð1� aÞ-percentile of the Pbj, j ¼
1, 2, :::, J:

Simulation study and results

To assess the accuracy of the tolerance bound cover-
age, a simulation study was conducted. Functional
data were simulated by first simulating scores from a
multivariate normal distribution, using the estimated
model means from the ASD data as the true means,

and then combining them with the eigenfunctions
from the original ASD data. The simulation study was
divided into two parts: one which simulated the same
number of curves as the ASD data and one which
used 10 replicates of each of the original curves. The
purpose of the latter simulation was to imitate an
increased sample size consisting of replicate
data points.

The range of tolerance bounds considered were 99-
90, 99-50, 99-75, 95-90, and 95-50, where the first
number represents the quantile of interest and the
second number represents the confidence level. We
then computed the actual coverage by determining the
percentage of simulated boundary curves that covered
the known quantile at each point in the domain. That
is, our computation was of pointwise coverage. It was
at this point that we discovered a surprising result.
The simulation results seemed to indicate that the
actual coverage tended to fall below the nominal
coverage and could actually vary widely over the
domain of the functional data. For example, in one
simulation illustrated in Figure 3, the mean true
pointwise coverage for a 99-90 tolerance bound
(bound on the 99th percentile with 90 percent confi-
dence) was actually closer to 85 percent, fluctuating
between 77 percent and 96 percent across the function
domain. In a pathological twist, the true coverage
only seemed to stabilize with lower confidence levels,
as illustrated in Figure 4. This behavior was also seen
with the replicate data.

Upon seeing these results, we found ourselves in a
bit of a quandary. Our method was certainly an
improvement over those currently being used by the

Figure 3. Example of simulation results. The intended cover-
age on the 95th percentile is 90 percent. However, as can be
seen here, the actual coverage varies significantly.

Figure 4. Example of simulation results for lower coverage tol-
erance bound. The intended coverage on the 95th percentile
is 75 percent. Note that the pointwise bounds are more sta-
ble here.
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engineers. Yet, at the same time, one would not be
able to accurately claim that the resulting bounding
curve covered a given quantile with 1� a confidence,
which could be problematic since the purpose of the
curve was to bound the population with a known level
of uncertainty. Furthermore, there seemed to be no
clear explanation for this strange behavior as the
curves did not seem to exhibit significant phase vari-
ation, ruling that out in our minds as a possible cause.
An attempt was made to try a non-parametric boot-
strap approach, but this only resulted in nonphysical
bounds and did not resolve the coverage inaccuracy.

We presented this work at the 2016 Joint Statistical
Meetings (Thomas et al. 2016a). When looking for
solutions, it’s often helpful to seek outside assistance
and so we decided to reach out to the statistics com-
munity for any insight into ways we could improve
the coverage accuracy and consistency of our method.
At the presentation, a colleague suggested that, by
applying the regression model directly to the scores,
we had in fact eliminated those particular components
as a source of variation. That is, while the bootstrap
did account for the model uncertainty, it did not
adequately account for the variation in the eigenvector
loadings. This colleague then suggested the elastic
method as an alternative, which we now discuss in
the following section.

Second attempt: The elastic method

The basis for the this tolerance bound methodology
stems from the fact that most functional data have two
types of variability — amplitude (vertical) and phase
(horizontal). Most standard FDA approaches do not
account for both types of variability in a principled fash-
ion and so an elastic method is needed (Srivastava and
Klassen 2016). Note that, upon closer inspection, there
is in fact some small phase variability in the ASD data
presented in Figure 1. Specifically, the “peaks” and
“valleys” of the functions are not perfectly aligned across
frequency (i.e., phase variability), nearly drowned out by
the variation across amplitude (i.e., amplitude variabil-
ity). The previous attempt at applying fPCA on the ori-
ginal data only considered the amplitude variability. The
elastic method uses a more natural approach to charac-
terizing functional data by using fPCA on a joint repre-
sentation of the phase and amplitude spaces.

Elastic functional data approach

The elastic methodology begins by characterizing the
phase and amplitude variabilities of the data. This is

an important first step as this characterization is used
to fit an fPCA model that generates new functions
that represent the phase and amplitude variability in
the original data. These generated functions are then
used in a bootstrap procedure to estimate tolerance
bounds on the phase and amplitude spaces separately,
resulting in bounds that appropriately handle the vari-
abilities seen in functional data. The details of the
procedure are provided below with more detail avail-
able to the reader in Tucker et al. (2020). Methods
used in the results are available in R package fdasrvf
available on CRAN.1

To characterize the phase and amplitude variabil-
ities in the original data, the functions are first aligned
along the x-axis using warping functions (Srivastava
and Klassen 2016). The resulting aligned functions are
used to characterize amplitude variability, while the
warping functions are used to characterize the phase
variability. These warping functions, C, are defined as
a set of functions (c) on the interval ½0, 1� that have
the following properties:

� c has one-to-one correspondence from ½0, 1�
into ½0, 1�,

� cð0Þ ¼ 0 and cð1Þ ¼ 1, and
� both c and c�1 are differentiable.

For any function f 2 F, where F is the set of all
real-valued functions on ½0, 1�, f is warped by c
through composition: f � c ¼ f ðcðtÞÞ: The goal is to
align any two functions f1 and f2 using the following
amplitude distance metric:

daðf1, f2Þ ¼ inf
c2C

���q1 � ðq2 � cÞ
ffiffiffi
_c

p ���, [4.1]

where

qiðtÞ ¼ signð _fiðtÞÞ
ffiffiffiffiffiffiffiffiffiffiffi
j _fiðtÞj

q
[4.2]

is known as the square-root slope function (SRSF) and
_f is the derivative of f with respect to t. By using the
SRSF for alignment (instead of the original functions),
the amplitude distance is a proper distance; that is, this
distance metric is non-negative, symmetric, and satisfies
the property daðf1, f3Þ � daðf1, f2Þ þ daðf2, f3Þ:2 Because
of this, it is now possible to define statistics on the func-
tional space (e.g., mean and variance) that naturally han-
dle the known variabilities. Once the SRSFs are aligned,
they can then be mapped back to F to obtain the

1MATLAB code is also available at https://github.com/jdtuck/
fdaSRSF_MATLAB.
2Mathematical proof provided in Srivastava and Klassen (2016).
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aligned original functions. Additional details about
SRSFs are given in Marron et al. (2015); Srivastava et al.
(2011); Tucker, Wu, and Srivastava (2013) and
Srivastava and Klassen (2016).

After aligning the functions, the phase variability
can be characterized using the same functions c that
were used to align the data. The space of C is a non-
linear manifold which creates some difficulty in defin-
ing a distance between two warping functions c1 and
c2 2 C: In order to define a distance, we use the
square-root of the derivative of c:

w ¼
ffiffiffi
_c

p
: [4.3]

This representation allows the set of all w 2 W to be the
positive orthant of a Hilbert sphere (Sþ1). Although this is
still an infinite dimensional manifold, it now has a known
geometry which we can utilize. Therefore, the phase dis-
tance between c1 and c2 can then be calculated as the arc-
length between w1 and w2 on the Hilbert sphere:

dpðc1, c2Þ ¼ dwðw1,w2Þ 	 cos �1
ð1
0
w1ðtÞw2ðtÞdt

 !
:

[4.4]

To be able to compute standard statistics, the
geometry of W is then further simplified by analyzing
the warping functions on a tangent space defined as

TwðWÞ ¼ v 2 L
2

����
ð1
0
vðtÞwðtÞdt ¼ 0

( )
: [4.5]

Here, v is a tangent space vector and allows us to
perform fPCA in a linear space and then map back to
C. For details see Tucker et al. (2020).

Figure 5 shows an example of how phase and amp-
litude variabilities are decomposed using simulated
data. Figure 5(a) gives the original data yi, where amp-
litude and phase variation are both present, noted by
the fact that the “peaks” of the curves do not align
along either the x or y axes. Figure 5(b,c) give the
warping ci and aligned f 
i functions, respectively,
while Figure 5(d) shows the SRSFs qi. The f 
i func-
tions have been aligned such that the only variability
remaining is variability along the y-xis (amplitude).
The corresponding ci provide a measure of the phase
variability in the original data.

Once the variabilities have been characterized, an
fPCA model can then be fit on a joint representation
of the aligned and warping functions. This idea

Figure 5. Notional example of warping functional data.
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expands on the work of Lee and Jung (2017) by using
a concatenated function ðgCÞ on the extended domain
½0, 2� for some C> 0, defined as

gCðtÞ ¼ q
ðtÞ, t 2 0, 1ÞCvðt � 1Þ, t 2 1, 2½ �,��
[4.6]

where C is a scaling factor and q
 is the SRSF of the
aligned function f 
 and v is the corresponding tangent
vector computed from c. Then, for a sample of ampli-
tude-phase functions fgC1 , :::, gCn g, their sample mean

can be defined as l̂C
g ¼ ½l̂q
 l̂C

v � with a sample

covariance matrix of

KC
g ¼ 1

n� 1

Xn
i¼1

ðgCi � l̂C
g ÞðgCi � l̂C

g ÞT 2 R
ð2TÞ�ð2TÞ:

[4.7]

The Singular Value Decomposition KC
g ¼

UC
g R

C
g ðUC

g ÞT provides the joint principal directions of

variability in the given amplitude-phase functions as the
first K � n columns of UC

g :

After the fPCA coefficients have been estimated, a
probability model can be applied to the coefficients,
allowing for a distribution on F from which to sample
new functions. Let c ¼ ðc1, :::, cKÞ be the K dominant
principal coefficients. These c can then be modeled
using a multivariate Gaussian probability distribution
with zero mean and covariance R, that is, c �
N kð0,RÞ, where R is a K�K diagonal matrix with
diagonal elements estimated using the eigenvalues of

the sample covariance matrix, r̂C
1 , :::, r̂

C
K : The super-

script C shows the dependence on the scaling factor.

The fPCA model is then used in a bootstrapping
procedure to estimate tolerance bounds. For the pur-
poses of illustration, we will describe the construction
of a symmetric tolerance interval intended to capture
100p% of the population. An extension to one-sided
tolerance bounds is straightforward. The fPCA model is
repeatedly sampled using the above described coefficient
model and the ð1� pÞ=2 and 1� ð1� pÞ=2 quantiles
of the set of random SRSF-based amplitudes and warp-
ing functions (denoted as ðq
ð1�pÞ=2, q



1�ð1�pÞ=2Þ and

ðcð1�pÞ=2, c1�ð1�pÞ=2Þ, respectively) are estimated. The

quantiles are estimated using an extension of the box-
plot procedure of Xie et al. (2017) This process is
repeated S times such that the a=2 and ð1� a=2Þ quan-
tiles of ðq
ð1�pÞ=2, q



1�ð1�pÞ=2Þ and ðcð1�pÞ=2, c1�ð1�Þp=2Þ

can be estimated. These quantiles form ð1� aÞ100%
bootstrap tolerance intervals with 100p% coverage.

Figure 6 shows the resulting tolerance bounds on
aligned functions (left) and the warping functions
(right) of the simulated data. While the bounds on
the warping functions are intuitive, the bounds on
the aligned functions may be unexpected as they
overlap near x¼ 0.60. This is due to the geometric
approach in which the bounds are estimated. For the
functions in Figure 6, the tolerance region indicates
that the variation is not solely in amplitude (as is
typically expected) but rather as more of a “twisting”
variation. The aligned functions represent the overall
“shape” of the original data and therefore their toler-
ance bounds capture a global “shape” tolerance
region of the aligned function space, allowing for the
possibility of the bounds crossing. Further discussion

Figure 6. Tolerance bounds on aligned (left) and warping (right) functions.
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of this idea is provided in Tucker et al. (2020) and
Xie et al. (2017).

Tucker et al. (2020) describe a coverage study that
was performed using the new method that showed the
tolerance bounds were close to their true coverage lev-
els, albeit somewhat conservative. In particular, for a
tolerance bound on the upper 90 percent quantile
with 95 percent confidence, the approach achieved
actual confidence levels of 97.6 percent and 98.4 per-
cent for the aligned and warping functions, respect-
ively. The confidence coverage was greatly improved
compared to the original method proposed in Section
3 as it accounted for variability in both the amplitude
and phase directions. Note that while the elastic func-
tional data approach does not currently account for
external factors, the method could be extended using
the approach similar to Cardot (2007), by adding fac-
tors into the elastic fPCA representation.

Further extensions

By the time a tolerance bound procedure had been
developed using the elastic methodology, the engi-
neers on the ASD project had decided to revert back
to their original procedures. It seemed another draw-
back of our first attempt was that it had led in some
of their applications to bounds that were nonphysical.
Though we were still able to publish the new method
for elastic functional tolerance bounds (Tucker et al.
2020), a different application had to be used. More
details on that application can be found there, but for
the purposes of this case study we present another
project which led us (“us” now referring to Derek and
Nevin; the other researchers had left Sandia by this

point) to an important extension of the elastic toler-
ance bound methodology.

Engineers at the labs were working on compact
model calibration for electrical device design. Their
data were collected by measuring Zener diode devices,
capturing log current vs. voltage for approximately 44
nominally identical diodes, as shown in Figure 7.
Differences in the log current-voltage behavior across
diodes were due to manufacturing process variation
and it was of interest to bound a percentage of the
population of log current-voltage functions with a
given level of confidence. These bounds would then
be used in the calibration process of their compact
models; that is, models for individual devices within
an electrical circuit design.

As these bounds were to be used in compact model
calibration, they needed to be defined in the original
data space (as opposed to the warping and aligned
spaces separately) while still accounting for both types
of variability. It was determined that the elastic FDA
method could be extended to produce bounds in the
original data space by composing four pairwise com-
binations of the bounds, as follows:

1. Lower amplitude bound with the inverse of the
lower phase bound: f 
a=2 � c�1

a=2:

2. Lower amplitude bound with the inverse of the
upper phase bound: f 
a=2 � c�1

1�a=2:

3. Upper amplitude bound with the inverse of the
lower phase bound: f 
1�a=2 � c�1

a=2:

4. Upper amplitude bound with the inverse of the
upper phase bound: f 
1�a=2 � c�1

1�a=2:

While estimating four tolerance bounds may not be
intuitive, each bound represents a combination of
phase and amplitude variability that is important to
capture. Two of the bounds bound lower phase vari-
ability, while the other two bound upper phase vari-
ability. Similarly, two bound lower amplitude
variability, while the other two bound upper ampli-
tude variability. Each combination of upper and lower
bound is important to consider as it corresponds to
some bounding behavior that may be relevant to cap-
ture in compact modeling.

An fPCA model was fit to the Zener diode data
and 500 bootstrap samples were generated to calculate
tolerance bounds on the aligned and warping func-
tions, as shown in Figure 8(a,b). These bounds were
constructed such that they represent where we would
expect 90 percent (p¼ 0.90) of the devices to fall with
95 percent confidence (a ¼ 0:05). The bounds were

Figure 7. Zener diode electrical data from 44 devices.
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then transformed back to the original data space, as
shown in Figure 9. Figure 10 provides a closer view of
the current-voltage curve that is critical to estimate
accurately for compact model calibration. The engi-
neers were pleased with the resulting four bounds, as
they represent combinations of high and low current
and voltage that are important to characterize. They
also recognized that if phase variation had been
ignored, the bounds that would have been produced
would result in a nonphysical representation of Zener
diode behavior (i.e., they would lead to physically-
impossible parameters in the model calibration).

Additionally, a coverage study was conducted to
assess whether these bounds are performing as
intended. This study involved sampling a new set of

44 diode devices from the original data with replace-
ment (i.e., the same device can be sampled more than
once). The warping functions and aligned SRSFs were
then calculated for each device. For amplitude, the
upper 90 percent quantile of the SRSFs was calculated
and compared to the tolerance bound to see if the
entire SRSF fell within that bound. This was repeated
500 times to estimate the coverage level of this bound.
This same process was performed for the phase toler-
ance bounds using the warping functions. The actual
amplitude and phase confidence levels were estimated
to be 97.7 percent and 99.3 percent, respectively.
While somewhat conservative, these values are rela-
tively close to the expected value of 95 percent confi-
dence, and are consistent with the results seen in
Tucker et al. (2020).

Further details on the application of this method to
Zener diode data are described in Reza et al. (2020).
This work illustrated a successful application and
extension of the new tolerance bound approach.
Future work for the engineers on this project involves
incorporating this approach into their semi-automated
model calibration workflow.

Lasting impacts

In addition to Zener diode data, the elastic method
has also been applied to weld residual stress data for
nuclear power plant systems and many other applica-
tion areas at SNL. As of the writing of this case study,
there has been renewed interest in applying the elastic
method to new ASD applications. Overall, there has
been a sharp increase in awareness of the importance

Figure 8. Tolerance bounds on aligned (left) and warping (right) Zener diode functions.

Figure 9. Tolerance bounds on original Zener diode data.
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of FDA in the Statistical Sciences Department at SNL
which has led to continued research to extend the
methodology. Additionally, as more engineers are
becoming familiar with the concept of FDA, they are
recognizing the added benefit that can come from
analyzing functions in their entirety.

While the initial fPCA/bootstrap approach was
ultimately replaced by the elastic method, this should
not imply it should be abandoned entirely. With the
exception of the coverage anomaly, it remains a
sound, practical approach to modeling previously
aligned functional data. In this case study, the choice
was made to switch to the elastic method, but an
alternative choice could easily have been made to
revise the initial approach to more accurately estimate
the true variation in the functional data once the
regression models have been estimated. As it stands,
this remains an open research question.

The purpose of this case study has been to openly
portray the twists and turns of the collaboration and
research process. Rarely is the path to a successful
solution a straight one, and there is no guarantee that
it will even end. The best we can do is try and
improve on what has come before, however windy
that path may be.
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