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Abstract—The use of multiple disparate platforms in many
remote sensing and surveillance applications allows one to exploit
the coherent information shared among all sensory systems
thereby potentially reducing the risk of making single-sensory bi-
ased detection and classification decisions. This paper introduces
a target detection method based upon multi-channel coherence
analysis (MCA) framework which optimally decomposes the
multi-channel data to analyze their linear dependence or coher-
ence. This decomposition then allows one to extract MCA features
that can be used to implement a coherence-based detector. This
detector is applied to a data set of simulated disparate sonar
imagery provided by the Naval Surface Warfare Center (NSWC)
- Panama City. This database contains images of both targets and
non-targets with various variabilities with respect to resolution,
signal-to-noise ratio (SNR), target and non-target types, etc.
Sensitivity analyses are then carried out in order to gauge the
performance under such variablities that may be encountered
in disparate multi-platform detection problems. Performance of
the detection method will be given in terms of probability of
detection (Pd), probability of false alarm (Pfa), and the receiver
operating characteristic (ROC) curves.

Index Terms—Binary hypothesis testing, disparate sonar plat-
forms, multi-channel coherence analysis, underwater target de-
tection

I. INTRODUCTION

The problem of developing a robust underwater target de-
tection and classification system that can operate with multiple
disparate sensing systems poses many technical challenges
and has recently attracted considerable interest in many areas
of remote sensing. In the traditional centralized processing
scheme preliminary detection, feature extraction, and object
classification are performed based upon the data collected
by every individual sensor platform. Final decision making
usually takes place at the fusion center using some type of
decision-level, feature-level, or combined fusion mechanism.
However, decision-making based upon individual sensory data
can lead to incomplete, degraded, or locally biased (sensor-
level) decisions resulting in a poor final detection and classi-
fication performance at the fusion center. Thus, new methods
are needed to detect, isolate, and represent, in terms of

some pertinent attributes, the coherent or common information
shared among the multiple data sets. This can be an extremely
challenging problem due to the disparate nature of the problem
and variations in the operating conditions which can often arise
in many multi-platform sensory systems.

An approach to multiple-channel signal detection was con-
sidered in [1] by introducing the Generalized Coherence (GC)
estimate, a nonparametric measure of the information shared
by any number of channels. This measure is formed by finding
the determinant of the Gram matrix formed by all N channels
normalized by the product of the squared norm of each
channel. This GC measure exhibits many attractive properties
including invariance to constant channel gain. The GC measure
is shown to have an appealing geometrical interpretation as it
is noted that the determinant of the Gram matrix heuristically
measures the squared volume of a parallelepiped in n-D
space, where n corresponds to the dimension of each channel.
Thus, the more the channels have in common, the smaller the
normalized volume, and the closer the GC estimate to one.
The distribution of the GC estimate is then derived under
conditions of white Gaussian noise, theoretically allowing
one to determine thresholds corresponding to a particular
false alarm rate. Simulations are then provided demonstrating
the GC estimate’s capability in multiple-channel detection
problems. The existing work [2] - [3] in the area of target
detection from sonar imagery has primarily been focused on
one sonar platform, with fusion across multiple algorithms. In
[4], the adaptive clutter filter detector in [3] is individually
applied to three different sonar images varying in frequency
and bandwidth. Final classification is done using an optimal
set of features using a nonlinear log-likelihood ratio test where
the decisions of the individual detector and classifier are
fused. The optimal set of features is determined based upon
cascading another classifier on the previous classifier during
the training stage. This is done as a repeated application during
the training stage where at each iteration the threshold and
optimal feature set is chosen and updated. In our previous
work [5], we developed a new framework for multi-sensor
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coherence analysis using Multi-Channel Coherence Analysis
(MCA) [6] that can be applied to the data collected using
multiple disparate sonar systems. Using this method allows for
the simultaneous detection and feature extraction of coherent
target information among multiple disparate sonar images.

This paper reviews the N -channel coherence-based detector
using the MCA framework [5]. This detector exploits the
coherence of objects present in N disparate channels based
on the assumption that the presence of objects in all data sets
will lead to a higher level of coherence compared to that of
noise alone. New expressions for the log-likelihood ratio and
J-divergence in the MCA framework are provided and used for
the simultaneous detection of targets from N disparate sonar
data. In order to examine the proposed method’s robustness
to variables of disparity, a thorough sensitivity analysis was
conducted using a data set consisting of synthetically gener-
ated images of targets provided by the NSWC - Panama City
Division.

The characterizing difference among the method presented
in this work and that of [1] are the statistics used to form
detection decisions on whether or not an unknown but common
signal is present within the data collected by a number of
sensing systems. While the method presented in [1] forms the
inner product of each pair-wise combination of channels to
measure the overall coherence, the method of this work first
projects the multi-channel data into a new coordinate system
where the relations (linear) among the channels are maxi-
mized. The optimal Gauss-Gauss detector [7]- [8] for binary
hypothesis testing in the composite multi-channel domain is
then developed by deriving expressions for the log-likelihood
ratio and J-divergence, a global measure of the amount of
discriminatory information available for detection. However,
one advantage of the statistic presented in [1] is the fact that
the measure is nonparametric in the sense that no a priori
information of the problem is needed before-hand.

This paper is organized as follows: Section II will review
the MCA framework. Section III develops the MCA-based
Gauss-Gauss detection method [7]- [8]. Section IV provides
the results and discussion of the sensitivity analyses and finally
concluding remarks will be made in Section V.

II. MULTI-CHANNEL COHERENCE ANALYSIS

Consider N zero mean random vectors, x1, x2,..., and xN ,
representing multiple data channels comprising the composite
data channel z =

[
xH

1 xH
2 · · · xH

N

]H ∈ Cd×1. Without loss
of generality, we will assume all random vectors to be zero
mean throughout this analysis. Let each channel xj ∈ Cdj×1

be of dimension dj , where it is assumed that x1 is of the
smallest dimension and we denote d =

∑N
j=1 dj . The d × d

dimensional covariance matrix of the composite data channel
z is given by

Rzz = E
[
zzH

]
=




R11 R12 · · · R1N

R21 R22 · · · R2N

...
...

. . .
...

RN1 RN2 · · · RNN


 , (1)

where Rjk = E[xjxH
k ] is the auto-covariance (j = k) or

cross-covariance (j 6= k) matrices of data channels xj and xk

and clearly we have Rjk = RH
kj .

Similar to Canonical Correlation Analysis (CCA) [9], [10]
the ith multi-channel coordinate of the jth channel is found
by searching for the ith coordinate mapping vector, αi,j , of
data channel xj . This linear transformation produces the ith

multi-channel coordinate for the jth channel,

vij = αH
i,jxj . (2)

If the ith coordinate mapping vectors are found for all
N channels, we can then obtain the composite coordinate
mapping vector ai =

[
αH

i,1 αH
i,2 · · · αH

i,N

]H
which is

then used to find the composite coordinate vector vi =
[vi,1 vi,2 · · · vi,N ]T =

[
xH

1 αi,1 xH
2 αi,2 · · · xH

Nαi,N

]H
which consists of the ith multi-channel coordinate of every
channel. The associated covariance matrix of vi is given by

Rvivi
= E

[
vivH

i

]

=




αH
i,1R11αi,1 · · · αH

i,1R1Nαi,N

...
. . .

...
αH

i,NRN1αi,1 · · · αH
i,NRNNαi,N


 .(3)

Recall that in the two-channel CCA [7], [11], the correla-
tions between the mapped coordinates are maximized subject
to the constraint that the transformed coordinates have unit
variance. In the multi-channel case, however, the analysis is
not as well-defined as all correlations between all possible
pairs of channels must be maximized simultaneously. To
accomplish this, one approach that has been proposed [6] is to
maximize the sum of all correlations (the SUMCOR objective
function) subject to the unit trace constraint of matrix Rvivi .
Thus, the optimization problem for finding the first composite
coordinate mapping vector a1 using the objective function and
constraint just described becomes

a1 = arg max
a1

N∑

j=1

N∑

k=1

αH
1,jRj,kα1,k

= arg max
a1

N∑

j=1

N∑

k=1

[Rv1v1 ]j,k (4)

subject to the constraint

tr (Rv1v1) =
N∑

j=1

αH
1,jRjjα1,j = 1,

It is shown [6] that the constrained optimization problem for
the first coordinate mapping vectors, α1,j using a Lagrange
multiplier method leads to

N∑

k=1

Rjkα1,k = λ1Rjjα1,j , ∀ j, k ∈ [1, N ]

or in matrix notation as

Rzza1 = λ1Da1, (5)



where D is a block diagonal matrix with diagonal blocks
Rjj , ∀ j ∈ [1, N ], i.e.

D = diag [R11, R22, . . . , RNN ] . (6)

The result in (5) represents a generalized eigenvalue problem
for which standard methods of solution are well-known. We
will then consider the simultaneous solution to all mapping
vectors ai’s, i ∈ [1, d] and write (5) as RzzA = DAΛ
where A consists of all d coordinate mapping vectors, and
Λ consists of all d eigenvalues. This solution can then be
rewritten in terms of a standard eigenvalue problem EP =
PΛ where E = D−

1
2RzzD

−H
2 and P is a unitary matrix(

PPH = PHP = I
)
. Clearly, we can find the mapping matrix

A via A = D−
H
2 P . Inspection of matrix E shows that it

is simply the composite covariance matrix of the whitened
version of z = [ xH

1 · · · xH
N ]H . That is, if we define

this whitened version of the composite data channel vector
by w = [ wH

1 · · · wH
N ]H = D−

1
2 z, then the whitened

composite vector w has correlation matrix E
[
wwH

]
=

D−
1
2RzzD

−H
2 = E. Matrix P is then used to map the

whitened channels to their multi-channel coordinates. In or-
der to find mapping vectors corresponding to the principal
coordinates [6], we only consider the r = d1 = minj {dj}
coordinates such that λ1 > λ2 > . . . > λr. Thus, Λ =
diag [λ1, λ2, . . . , λr] will become a r × r diagonal matrix
composed of the dominant eigenvalues and P will become a
d× r matrix composed of the eigenvectors corresponding to r
dominant eigenvalues. To find the mapped coordinate vector,
v, that contains all mapped coordinates for all N channels,
we will first define Ψj (dimension dj × r) to contain those
dominant r eigenvectors pi,j , ∀ i ∈ [1, r] of the mapping
matrix P that correspond to the jth channel

Ψj =
[

p1,j p2,j · · · pr,j

]
, ∀ j ∈ [1, N ] . (7)

Clearly, the connection between P and Ψj is evident

P =




Ψ1

Ψ2

...
ΨN




d×r

. (8)

Note that in the case of two channels, Ψ1 and Ψ2 are directly
related to the mapping matrices of CCA [8]. All of the mapped
coordinates of the jth channel can then be found by

µj = ΨH
j R

− 1
2

jj xj , ∀ j ∈ [1, N ], (9)

where µj = [ v1,j v2,j · · · vr,j ]T . Clearly, we have the
following two properties

N∑

j=1

E
[
µjµ

H
j

]
=

N∑

j=1

ΨH
j Ψj = I

N∑

j=1

N∑

k=1

E
[
µjµ

H
k

]
=

N∑

j=1

N∑

k=1

ΨH
j R

− 1
2

jj RjkR
−H

2
kk Ψk = Λ

If we define block diagonal matrix Ψ that contains
the Ψj matrices along its diagonal blocks, i.e. Ψ =
diag [Ψ1,Ψ2, . . . ,ΨN ], then we can resolve all N channels
into their multi-channel coordinates using

v = ΨHw = ΨHD−
1
2 z. (10)

III. MCA DETECTION

A classical detection problem is that of choosing between
two hypotheses that are relevant to the given problem. For
this coherence-based detector, the null hypothesis (H0) is the
hypothesis that all N channels consist of background noise and
the alternative hypothesis (H1) that all N channels consist of
signal plus noise. Figure 1 shows the graphical setup of the
problem under consideration. Several simplifying but sensible
assumptions used in this analysis are

1) Noise between different channels is mutually uncorre-
lated, i.e. E

[
njnH

k

]
= 0 ∀ j, k ∈ [1, N ], j 6= k.

2) Signal is uncorrelated with the background noise, i.e.
E
[
sjnH

k

]
= E

[
njsH

k

]
= 0 ∀ j, k ∈ [1, N ].

3) Noise contained on any one channel has covariance
matrix, i.e. E

[
njnH

j

]
= Rnj

∀ j ∈ [1, N ].
4) Signal contained on any pair of channels has covariance

matrix, i.e. E
[
sjsH

k

]
= Rsjk

∀ j, k ∈ [1, N ].

H0 = z =




n1

n2

...
nN




H1 = z =




s1 + n1

s2 + n2

...
sN + nN




MCA




µ1

µ2
...

µN


 = v

Fig. 1. Multi-Channel Hypothesis Test and MCA.

Under H0, the matrices Rzz and D become

Rzz0 = D0 = diag [Rn1 , Rn2 , . . . , RnN
] .

Note that the subscript notation refers to the hypothesis being
considered. Thus, the solution to the eigenvalue problem under
H0 leads to Λ0 = I , while for A0 no unique solution exists.
Now, since any non-zero vector will satisfy the generalized
eigenvalue problem, for simplicity we choose the eigenvectors
of the null hypothesis to be the same as those of the alternative
hypothesis, i.e. A0 = A1 = A.

Under H1 and using the stated assumptions, the correspond-
ing Rzz and D matrices are

Rzz1 =




Rs11 +Rn1 Rs12 · · · Rs1N

Rs21 Rs22 +Rn2 · · · Rs2N

...
...

. . .
...

RsN1 RsN2 · · · RsNN
+RnN




D1 = diag [Rs11 +Rn1 , Rs22 +Rn2 , . . . , RsNN
+RnN

]

leading to the following arbitrary eigenvalue problem.

Rzz1A1 = D1A1Λ1 (11)



The log-likelihood ratio that minimizes the risk involved in
deciding between the two hypotheses is defined [12] to be

l(z) = ln
[
p(z|H1)
p(z|H0)

]
(12)

which is compared to a global threshold η to form the
discriminant function γ(z),

γ(z) =
{

1 ∼ H1 l(z) ≥ η
0 ∼ H0 l(z) < η

Assuming that under both hypotheses the composite data chan-
nel z is multivariate Gaussian with zero mean and covariance
matrix Rzz, the log-likelihood ratio of the composite data
vector becomes

l(z) = zH
(
R−1

zz0
−R−1

zz1

)
z. (13)

Next, we can formulate R−1
zz in terms of the sum of the

correlations of each coordinate and their corresponding eigen-
vectors. To do this, we recall the fact that PHEP = Λ.
Taking the inverse of this relationship, it is simple to show
that R−1

zz = AΛ−1AH . Thus, the log-likelihood function in
(13) becomes

l(z) = zH
(
A0Λ−1

0 AH
0 −A1Λ−1

1 AH
1

)
z.

Since the eigenvalues under the null hypothesis are all one,
i.e. Λ0 = I , and owing to the lack of a unique solution for
the mapping matrices of the null hypothesis, we can write the
log-likelihood ratio as

l(z) = zH
[
A1

(
I − Λ−1

1

)
AH

1

]
z, (14)

where A1 and Λ1 are the mapping matrix and diagonal matrix
of multi-channel correlations, respectively, for the set of data
with which we are performing the hypothesis test.

Next, we will formulate the J-divergence [11], [13] which
is a measure of the separability of the two hypotheses. The
J-divergence is defined to be

J = EH1 [l(z)]− EH0 [l(z)] , (15)

where EH1 [ · ] and EH0 [ · ] represent the expectation opera-
tion evaluated under the H1 and H0 hypotheses, respectively.
The expected value of the log-likelihood function becomes

E [l(z)] = E
[
tr
(
zHQz

)]
. (16)

Where Q =
(
R−1

zz0
−R−1

zz1

)
. Using the cyclic property of the

trace, we can write

E [l(z)] = E
[
tr
(
QzzH

)]

= tr (QRzz) . (17)

Thus, we can write the J-divergence as

J = EH1 [l(z)]− EH0 [l(z)]
= tr (QRzz1)− tr (QRzz0)
= tr

[
−2I +R−1

zz0
Rzz1 +R−1

zz1
Rzz0

]
. (18)

Rearranging and using the cyclic property of the trace, we can
write the J-divergence as

J = tr
[
−2I + Λ1 + Λ−1

1

]
=

r∑

i=1

(
−2 + λi + λ−1

i

)
. (19)

Therefore, the only pieces of information we need to know
when performing detection in this framework are the matrices
A1 and Λ1.

IV. SIMULATION RESULTS

A. Data Description and Pre-Processing

This N -channel coherence-based detection method was then
applied to a data set consisting of synthetically generated sonar
images (snippets) of both targets and non-targets of different
geometrical shapes. The sonar snippets were generated with
different resolutions, SNR, range, and aspect angles mimicking
different realistic operating conditions. For this study, two
different resolutions, namely 1in and 3in, were considered.
Additionally, SNR ranged from 0dB to 15dB in increments of
3dB, range values spanned from 10m to 120m in increments
of 1m, and aspect angle ranged anywhere from 0◦ to 360◦

in increments of 1◦. A subset of the data corresponding
to target snippets was used to represent the H1 hypothesis
while background snippets were used to represent the H0

hypothesis. Thus, all non-target snippets were excluded. The
subset of target snippets (1610 snippets) was further parti-
tioned into 3 different parts forming 138 cone-type targets, 736
cylinder-type targets, and 736 trapezoidal-type targets. When
performing detection, each of the N images is partitioned
into blocks of size dependent on the resolution. Each block
is then channelized and used to form a realization of the
composite data vector, z. The ensemble set formed from all
realizations pertaining to that set of N images is then used to
form the sample composite covariance matrix Rzz which is
then decomposed by the MCA process and used to form the
discriminant function, l(z) in (14). Each block (realization)
from the ensemble set is then applied to the log-likelihood
ratio test and if 50% or more of the blocks pass, that set of
N snippet images is said to contain a target. Figure 2 displays
the process behind the MCA-based detection system used for
this analysis.

B. Dual Resolution Disparate Detection Performance

In some disparate detection applications, each platform
may carry multiple sensing systems with different spatial and
spectral characteristics in order to highlight different attributes
of the target. To simulate such a situation, a two-channel de-
tection problem was constructed where each channel consisted
of snippets of targets of the same type at the same range,
aspect angle, and SNR. However, the two channels differed in
resolution, one snippet-image of high resolution (1in) and the
other of a lower resolution (3in). When performing detection,
a 4×4 block size was used for the high resolution images and
a 2 × 1 block size for those of lower resolution. This setup
was then run for all 1610 images at various ranges and aspect
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Image N
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Fig. 2. N-Channel MCA Detector.

angles and the results partitioned on the basis of target type
and SNR.

Figures 3(a)-(c) display the ROC curves for conical, cylin-
drical, and trapezoidal type targets, respectively, at three
different SNR values of 0dB, 6dB, and 12dB, respectively.
Figures 4(a)-(c), on the other hand, display sensitivity to target
types for a given SNR. Table I gives the probability of detec-
tion at the knee point of the ROC, i.e. where Pd + Pfa = 1,
for all target types and SNR values. As can be observed
from the results in Table I, it is apparent that for cylindrical
and trapezoidal targets the detection performance generally
improves as a function of SNR as one would expect. However,
the performance of the detector for the cone targets does not
follow the same behavior. This may be attributed, in part, to
the fact that only a small number of cone targets were available
for this study.

TABLE I
PROBABILITY OF DETECTION (%) VS. SNR

Target Type 0dB 3dB 6dB 9dB 12dB 15dB

Cone 91.30 94.93 96.38 89.86 81.16 87.68
Cylinder 83.70 85.19 82.20 85.33 89.67 94.02

Trapezoid 84.24 84.51 84.65 85.73 90.08 93.75

C. Dual Aspect Angle Separation Disparate Detection Perfor-
mance

Another question that may arise in any disparate detection
problem is that of sensor locations. That is, for different types
of targets how does the detection performance change as a
function of disparities in location of the sensor platforms. This
clearly relates to the target’s aspect/orientation with respect to
the sensor platform as well as the range of the platform from
the target. To determine the answer to this question, a study
is carried out where both channels consisted of images of the
same resolution (1in), at ranges within ±1m of one another,
and at an identical SNR of 9dB, while the disparateness was
with respect to aspect angle separation. More specifically,
the two channels correspond to sonar snippet-images from
the same target at two aspect angles with separation angle θ
such that if φ1 and φ2 represent the aspect angles associated
with their respective image then pairs of images were chosen

such that |φ1 − φ2| ∈ [θ − δ, θ + δ], where δ represents the
perturbation from the separation angle, θ, due to non-uniform
motion of the vehicle. Here, the value of δ was chosen to be
10◦. The aspect angle separation θ was then varied from 0◦ to
180◦ in increments of 30◦ and its affect on the performance of
the detector was studied. Figures 5(a) and (b) display the ROC
curves for cylindrical and trapezoidal targets, respectively, for
several values of θ. Note that all images in the database
corresponding to cone targets were generated at an angle
of 0◦ and thus excluded from this study. Table II gives the
probability of detection at the knee point of the ROC versus
aspect angle separation and target type. From both Figures 5(a)
and (b) and the results in Table II, it can be concluded that the
performance of the detector is fairly robust to disparateness in
aspect angle separation as the probability of detection at the
knee point of the ROC never falls below 92%.

TABLE II
PROBABILITY OF DETECTION (%) VS. ASPECT ANGLE SEPARATION (θ)

Target Type 0◦ 30◦ 60◦ 90◦ 120◦ 150◦ 180◦

Cylinder 94.40 96.14 97.83 98.33 97.47 96.82 94.92
Trapezoid 92.86 96.29 97.21 97.66 97.57 96.09 93.14

Figure 6 displays the plots of empirical J-divergence as a
function of aspect angle separation, θ, for both cylindrical and
trapezoidal targets. Both curves were generated by empirically
estimating the difference in means of the log-likelihood ratio
among target (H1) and noise (H0) snippets and averaging
over all such pairs of images that match the criteria explained
previously (i.e. same SNR, same resolution, ranges within
1m, aspect separation within some range of a particular
angle). The results in Figure 6 match what was observed in
Figures 5(a) and (b) as the performance of the detector seems
to improve as the separation in aspect angle deviates from
0◦ and 180◦. Again we can draw the same conclusion that
the detector is fairly robust to separation in aspect angles as
the difference between maximum and minimum J-divergence
never grows larger than approximately 0.6. Additionally, the
J-divergence values for cylindrical target are higher than those
of trapezoidal target. This result is also evident in the ROC
plots of Figures 5(a) and (b).
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Fig. 3. Detector Performance for Different Target Types vs. SNR.

V. CONCLUSION

In this paper, a multi-channel, multi-sensory binary hypoth-
esis detection system has been introduced using the MCA
framework. An N -channel Gauss-Gauss detector was then
formulated in the MCA coordinates. Detection is performed
by extracting the multi-channel mapping vectors and the cor-
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Fig. 4. Detector Performance for Various SNR Values vs. Target Type.

relation sums from the data samples collected by the sensory
platforms. These mapping vectors and coherent features are
then used in the log-likelihood ratio to detect targets in the
sonar images. This MCA-based detector is then applied to a
synthetic sonar image data set to investigate the performance
of the detector to different sensing disparities. These studies
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(a) Cylindrical Target Type
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(b) Trapezoidal Target Type

Fig. 5. Detector Performance for Two Target Types vs. Aspect Angle
Separation.

were specifically focused on the dual channel detection prob-
lem as the data set did not allow for more than 2 channels.
We evaluated the detector performance versus differences
in target types, SNRs, and aspect angles. The detector was
found to be robust to SNR changes across most of the target
types and robust to varying degrees of aspect separation by
observing the probability of detection at the knee point of
the ROC curve. Furthermore, the J-divergence was empirically
estimated and shown to also be robust to disparities in aspect
angle separation. Through this work we have shown that MCA
provides an elegant framework when performing coherence-
based detection among multiple disparate sensory channels.

ACKNOWLEDGMENT

This work was supported by the Office of Naval Research,
Code 321OE under contract #N00014-08-1-0142.

REFERENCES

[1] D. Cochran, H. Gish, and D. Sinno, “A geometric approach to multiple-
channel signal detection,” IEEE Transactions on Signal Processing,
vol. 43, pp. 2049–2057, September 1995.

 

 

Trapezoid Targets
Cylinder Targets

E
m

pi
ri

ca
l

J-
D

iv
er

ge
nc

e

Aspect Angle Separation
0 30 60 90 120 150 180

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Fig. 6. J-Divergence vs. Aspect Angle Separation.

[2] G. J. Dobeck, J. Hyland, and L. Smedley, “Automated detec-
tion/classification of sea mines in sonar imagery,” Proc. SPIE, vol. 3079,
pp. 90–110, April 1997.

[3] T. Aridgides, P. Libera, M. Fernandez, and G. J. Dobeck, “Adaptive
filter/feature orthogonalization processing string for optimal LLRT mine
classification in side-scan sonar imagery,” Proc. SPIE, vol. 2765, pp.
110–121, April 1996.

[4] T. Aridgides and M. Fernandez, “Enhanced ATR algorithm for high
resolution multi-band sonar imagery,” Proc. SPIE, vol. 6953, pp. 0H1–
0H10, March 2008.

[5] N. Klausner, M. R. Azimi-Sadjadi, and J. D. Tucker, “Underwater
target detection from multi-platform sonar imagery using multi-channel
coherence analysis,” Proc. of SMC 2009 Conference, to be published.

[6] B. Thompson and M. Azimi-Sadjadi, “Iterative multi-channel coherence
analysis with applications,” Neural Networks, vol. 21, pp. 493–501,
2008.

[7] A. Pezeshki, L. Scharf, J. Thomas, and B. Van Veen, “Canonical
coordinates are the right coordinates for low-rank Gauss-Gauss detection
and estimation,” IEEE Transactions on Signal Processing, vol. 54, pp.
4817–4820, December 2006.

[8] L. Scharf and C. Mullis, “Canonical coordinates and the geometry of
inference, rate, and capacity,” IEEE Transactions on Signal Processing,
vol. 48, pp. 824–831, March 2000.

[9] H. Hotelling, “Relations between two sets of variates,” Biometrika,
vol. 28, pp. 321–377, 1936.

[10] A. Rencher, Methods of Multivariate Analysis, 2nd ed. Wiley-
Interscience, 2002.

[11] L. Scharf and B. Van Veen, “Low rank detectors for Gaussian random
vectors,” IEEE Transactions on Acoustics, Speech, and Signal Process-
ing, vol. 35, pp. 1579–1582, November 1987.

[12] H. L. Van Trees, Detection, Estimation, and Modulation Theory Part I.
John Wiley and Sons, 1968.

[13] S. Kullaback, Information Theory and Statistics. New York: Dover,
1968.


	Introduction
	Multi-Channel Coherence Analysis
	MCA Detection
	Simulation Results
	Data Description and Pre-Processing
	Dual Resolution Disparate Detection Performance
	Dual Aspect Angle Separation Disparate Detection Performance

	Conclusion
	References

