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Abstract—We consider the problem of estimation and clas-
sification of signals in presence of compositional noise, where
the traditional techniques do not provide either a consistent
estimator for signals or a robust distance for classification. We
use a recently introduced comprehensive framework that: (1) uses
a distance-based objective function for data alignment leading
to a consistent estimator of signals, (2) combines the classical
data and smoothness terms for signal registration in a natural
fashion, obviating the need for an arbitrary relative weight,
and (3) leads to warping-invariant distances between signals for
robust clustering and classification. We use this framework to
introduce two pairwise distances that can be used for signal
classification: (1) a y-distance which is the distance between
the aligned signals and (2) an x-distance, that measures the
amount of warping needed to align the signals. This problem is
motivated by automatic target recognition in underwater acoustic
data, where the task of clustering and classifying objects using
acoustic spectrum is complicated by the uncertainties in aspect
angles at data collections. Small changes in the aspect angles
corrupt signals in a way that amounts to compositional noise.
We demonstrate the use of this framework in classification of
spectral signatures in acoustic data and highlight improvements
in signal classification over current methods.

Index Terms—compositional noise, functional data analysis,
random warping, Riemannian methods, spectral signal classi-
fication, signal registration, SONAR

I. INTRODUCTION

The problem of underwater object detection and classi-
fication using sonar has attracted a substantial amount of
attention [1]–[5]. This problem is complicated due to various
factors such as variations in operating and environmental
conditions, presence of spatially varying clutter, variations in
target shapes, compositions and orientation. Moreover, bottom
features such as coral reefs, sand formations, and vegetation
may totally obscure a target or confuse the classification
process. Consequently, a robust classification system should be
able to quantify changes between the returns from the bottom
and any target activity in sonar data. Thus, a robust system
designed to mitigate false alarms in various clutter density
scenarios will be desirable.

Considerable research has been devoted to the development
of different detector and classification methodologies to de-

tect and classify underwater objects utilizing sonar imagery.
Dobeck [1], [6] utilized a nonlinear matched filter to identify
mine-size regions that match the target template in a side-
scan sonar image. For each detected region, several features
were extracted based on the size, shape, and strength of
the target template. A stepwise feature selection process was
then used to determine the subset of features that maximizes
the probability of detection and classification. A k-nearest
neighbor and an optimal discrimination filter classifier were
used to classify each feature vector and the decisions of the
two classifiers were fused to generate the final decision. In
[2], the adaptive clutter filter detector in [7] was individually
applied to three different sonar images varying in frequency
and bandwidth. Final classification is done using an optimal
set of features using a nonlinear log-likelihood ratio test where
the decisions of the individual detector and classifier are
fused. Recently in [4] we developed a new coherence-based
detection framework for dual-sensor problem using Canonical
Coordinate Analysis (CCA) that can be applied to the data
collected using two disparate sonar systems. Using this method
allows for the simultaneous detection and feature extraction of
coherent target information among two sonar images.

These methods all use traditional synthetic aperture sonar
(SAS) images which often provides high quality images of
proud targets which are useful for image based detection,
localization, and identification algorithms; however, this is not
the case for buried targets where images are usually blurred
with less structure definition, and hence, target identification
from these images is more difficult. Generating acoustic color
data products is one way to overcome these shortcomings.
Acoustic color [8], [9] is a simple, spectral-based method
that generates a normalized plot showing the strengths of
the return signatures off an object in individual frequency
bands at various aspects that may provide features useful for
identification. The problem is then how does one do statistical
analysis on these acoustic color images, which are essentially
a two-dimensional function of frequency and aspect which
represents target strength.

The solution to this problem is statistical functional data
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Fig. 1. (a) An example of frequency warping between two functions in the same class: f36 (upper panel), f4 (middle panel, left) and f4 ◦ γ (lower panel),
where γ is the optimal warping (middle panel, right) between f4 and f36. (b) Same as (a) except that the functions f19 and f258 are in different classes.

analysis. However, one must be aware of a problem that man-
ifests itself when doing classification and pattern recognition
problems on this type of data. The data can be sensitive
to sensor placement and alignment between samples over a
target. Shown in Fig. 1(a) are two observed signatures (upper
and middle panels) of the same target from two similar angles,
one in blue line and one in red line, and it is easy to see
shifts in peaks and valleys between the two signals. The
bottom panel shows an alignment of red line to the blue line,
denoting removal of warping noise, and the optimal warping
function used here is shown in the right panel. Fig. 1(b) is
same as (a) except that the two signatures are taken from two
different target classes, where a more drastic warping is needed
to align the signal. This motivates the use of a measure of
warping as a separate metric by itself for target classification.
In some instances, it may be relatively easy to decide how to
warp functions from different samples for proper alignment,
however this can become quite cumbersome for large data-sets
and tends to be done in a supervised fashion. What we mean
by warping is that a real-valued signal g on the frequency
domain [0,Ω] is composed with a random warping function
γi : [0,Ω]→ [0,Ω] resulting in a nonlinear frequency-shift of
the locations of peaks and valleys but not the heights of those
peaks and valleys. In this paper, we present a method to over
come this problem by particularizing our previously developed
framework developed in [10] to the estimation of spectral
signatures for targets in presence of compositional noise,
and evaluate it empirically in presence of both compositional
and additive noise. Moreover, we introduce two metrics for
classification of target classes from SONAR data: one of them
is invariant to compositional noise and the other measures the
warping itself.

This paper is organized as follows: Section II presents
the current theory in elastic function alignment and presents

the Fisher Rao Metric and the corresponding classification
metrics. Section III presents the results of this method when
applied to acoustic color data presenting both the warping and
separability of the metric in feature space. Finally, conclusions
and observations are offered in Section IV.

II. FUNCTION REPRESENTATION AND ALIGNMENT

In this section, we adapt the theoretical framework presented
in our recent report [11] and a conference paper [10] for
automatic target recognition algorithms using SONAR data.
This resulting framework achieves three important goals: (1)
completely automated alignment of signals using nonlinear
warpings, (2) estimation of underlying signals observed under
random warpings, and (3) derivation of individual phase and
amplitude metrics for comparing and classifying signals. For
a more comprehensive introduction on this theory, including
asymptotic theorems and estimator convergences, we refer the
reader to [11].

First we introduce some notation. Let f1, f2, . . . , fn :
[0,Ω]→ R be real-valued signals that are observed and let Γ
be the set of boundary-preserving diffeomorphisms of the unit
interval [0,Ω]: Γ = {γ : [0,Ω] → [0,Ω]| γ(0) = 0, γ(Ω) =
Ω, γ is a diffeomorphism}. Elements of Γ play the role of
warping functions. That is, for any γ ∈ Γ, fi ◦ γ denotes a
composition or a warping of fi by γ.

Let f be an acoustic signal viewed as a real-valued function
with the domain [0,Ω]. For concreteness, only functions that
are absolutely continuous on [0,Ω] will be considered; let F
denote the set of all such functions. In practice, since the
observed data is discrete, this assumption is not a restriction.
Our first goal is to find a distance function that will be
invariant to random warpings of the input functions. This
distance is based on the Fisher-Rao Riemannian metric that
was introduced in 1945 by C. R. Rao [12] to compare different
probability distributions. An important attribute of this metric



is that it is preserved under identical warping of functions and
Cencov [13] showed that it is the only Riemannian metric
with this attribute. In order to keep the discussion simple,
we will directly state the geodesic distance, denoted by dFR,
rather than deriving it from the Riemannian metric. It turns
out that it is difficult to compute the distance dFR from the
first principles, but Srivastava et al [11] introduced a square-
root representation that greatly simplifies this calculation. This
function, q : [0, 1] → R, is called the square-root velocity
function or SRVF of f , and is defined in the following form:

q(ω) = ḟ(ω)/

√
|ḟ(ω)| .

It can be shown that if the function f is absolutely continuous,
then the resulting SRVF is square-integrable. Thus, we will
define L2([0,Ω],R), or simply L2, to be the set of all SRVFs.
For every q ∈ L2, the function f can be obtained precisely
using the equation:

f(ω) = f(0) +

∫ ω

0

q(s)|q(s)|ds . (1)

Thus, the representation f ⇔ pair (f(0) and q) is invertible.
If we warp a function f by γ, the SRVF of f ◦ γ is given
by: q̃(ω) = (q, γ)(ω) = q(γ(ω))

√
γ̇(ω). The main motivation

for using the SRVF for functional analysis is that under this
representation, the complicated Fisher-Rao metric becomes
the standard L2 metric and, therefore, the original form of
this metric is not needed at all [11]. For any two functions
f1 and f2, define dFR(f1, f2) ≡ ‖q1 − q2‖, where q1 and
q2 are the SRVFs of f1 and f2, respectively. An important
property of this distance is the following is that the Fisher-
Rao distance dFR is invariant to identical warping of the two
input functions, i.e.,

dFR(f1, f2) = dFR(f1 ◦ γ, f2 ◦ γ) , ∀γ ∈ Γ .

Why is this property important? The reason is that it leads
to a distance between signals that is robust to their random
warpings. This distance is defined as follows.

Definition 1 (Amplitude or y distance): For any two sig-
nals f1, f2 ∈ F and the corresponding SRVFs, q1, q2 ∈ L2,
we define the amplitude or the y distance Dy to be:

Dy(f1, f2) = inf
γ∈Γ
‖q1 − (q2 ◦ γ)

√
γ̇)‖.

An addition property of Dy is that it is invariant to the random
warpings of the input signals, i.e., Dy(f1 ◦ γ1, f2 ◦ γ2) =
Dy(f1, f2) for all γ1, γ2 ∈ Γ.

It is quite possible that the level of warping may be different
in different signal classes, and one can also use that for
classification. Towards that goal, we define another metric Dx

that compares relative warping needed to align any two signals.
For any two functions f1, f2 ∈ F and the corresponding
SRVFs, q1, q2 ∈ L2, let γ∗ be given by:

γ∗ = argmin
γ∈Γ

‖q1−(q2, γ)‖ = argmin
γ∈Γ

‖q1−(q2◦γ)
√
γ̇‖. (2)

If γ∗ = γid, then no warping is needed or the functions
are perfectly aligned. Therefore, it makes sense to use the
difference between γ∗ and γid, in the set Γ, to define Dx.

We will define that value as the horizontal distance between
functions:

Definition 2 (Phase or x distance): For any two functions
f1, f2 ∈ F , let γ∗ be the optimal frequency warping function
as given in Eqn. 2. Then, the horizontal distance between them,
Dx(f1, f2), is defined to be:

Dx(f1, f2) =
√

Ω cos−1

(〈√
γ̇∗,
√
γ̇id

〉)
=
√

Ω cos−1

(∫ Ω

0

√
γ̇∗(ω)dω

)
.

where 〈·, ·〉 denotes the standard inner product operation in the
L2 space.

III. EXPERIMENTAL RESULTS

In this section we describe some experimental results to
demonstrate the classification of SONAR data using the dis-
tances Dy and Dx developed in the previous section. We
choose the acoustic color data (spectral response) over spatial
impulse response data to exploit resonances that occur in the
frequency domain for different materials.

A. Data Description

The data set used in these experiments was collected at the
Naval Surface Warfare Center Panama City Division (NSWC
PCD) test pond. For a description of the pond and a similar
experimental setup the reader is referred to [14]. The raw
SONAR data was collected using a 1 - 30kHz LFM chirp and
data was collected for nine proud targets that included a solid
aluminum cylinder, an aluminum pipe, an inert 81mm mortar
(filled with cement), a solid steel artillery shell, two machined
aluminum UXOs, a machined steel UXO, a de-militarized
152mm TP-T round, a de-militarized 155mm empty projectile
(without fuse or lifting eye), and a small aluminum cylinder
with a notch. The aluminum cylinder is 2ft long with a 1ft
diameter; while the pipe is 2ft long with an inner diameter
of 1ft and 3/8 inch wall thickness. During the experiment the
targets were placed with added uncertainty of their orientation.

The acoustic signals were generated from the raw SONAR
data to construct target strength as a function of frequency
and aspect angle. Due to the relatively small separation
distances between the targets in the experimental setup, the
scattered fields from the targets overlap. To generate the
acoustic templates, SAS images were formed and then an
inverse imaging technique was used to isolate the response
of an individual target and to suppress reverberation noise.
A brief summary of this process is as follows: The raw
SONAR data is matched filtered and the SAS image is formed
using the ω − k beamformer [15]. The target is then located
in the SAS image and is then windowed around selected
location. This windowed image contains the information to
reconstruct the frequency signals associated with a given target



Amount of Smoothing 0 25 75 125 175

Dx 0.57 0.58 0.59 0.58 0.55

Dy 0.63 0.73 0.67 0.64 0.60

L2 0.43 0.44 0.45 0.45 0.44

TABLE I
CLASSIFICATION RATES VERSUS AMOUNT OF SMOOTHING APPLIED.

via inverting the ω−k beamformer [16] and the responses were
aligned in rage using the known acquisition geometry. For the
nine targets, 2000 different data collections runs were done,
and 1102 acoustic color templates were generated using the
method described above from the data set. From the acoustic
color maps, one-dimensional functional data was generated
by taking slices at aspect value of 0◦ and therefore generating
1102 data samples.

B. Classification using Pairwise Distances

In this section we present experimental results for classi-
fication of signals using different metrics developed in this
paper. We applied our metrics for classifying SONAR data
containing n = 1102 SONAR signals with nine target classes
and the numbers of observations in the nine classes are

{ni}9i=1 = {131, 144, 118, 118, 121, 119, 120, 114, 117},

respectively. A selected subset of functions in each class is
shown in Fig. 2. We observe that the original data is quite
noisy, due to both the compositional and the additive noise,
increasing variability within class and reducing separation
across classes. This naturally complicates the task of target
classification using SONAR signals.

To have a robust estimate of the SRVF {qi}, we at first
smooth the original signals {fi} using a standard box filter
[1/4, 1/2, 1/4]. That is, numerically we update the signals at
each discrete point by

fi(ωk)→
(

1

4
fi(ωk−1) +

1

2
fi(ωk) +

1

4
fi(ωk+1)

)
.

To determine the effect of smoothing on the classification
performance we conducted a small study on the number of
times the smoothing filter is applied. Table I presents the
classification performance versus applying the smoothing filter
0, 25, 75, 125, and 175 times. It is interesting to note that
the performance is quite stable with respect to smoothing and
smoothing 25 times gives slightly better performance. Hence,
we use that level of smoothing for each signal for the rest of
the analysis .

We first compute the standard L2 distance between each
pair, i.e., (L2)ij = ‖fi − fj‖, i, j = 1, . . . , n. The matrix
of pairwise L2 distances are shown as a gray scale image
in Fig. 3(a). This image of the pairwise distances looks very
noisy, underlying the difficulty of classification using SONAR
data. Based on this distance matrix, we perform classification
by using the LOO cross-validation on the standard nearest-
neighbor method. It is found that the accuracy is 44.37%

(489/1102). Then we computed distances Dy and Dx between
all pairs of signals and these distance matrices are shown as
gray scale images in Fig. 3(b) and (c), respectively. Note that
in theory Dx and Dy should lead to symmetric matrices but
in practice, due to the numerical errors, these matrices are
not exactly symmetric. So, we force them to be symmetric
using Dx → (Dx +DT

x )/2, Dy → (Dy +DT
y )/2, where the

superscript T indicates the transpose of a matrix.
In the image of Dy (Fig. 3(b)), we find that the pairwise

distances are more structured than the L2 distances. We also
perform classification using the LOO cross-validated nearest-
neighbor based on the Dy distances. The accuracy turns out
to be 72.87% (803/1102), a significant improvement over the
result (44.37%) in the standard L2 distances. Interestingly,
we find that the Dx distances also have strong indication
of the target class in the data. In Fig. 3(c), we see that the
Dx image has some clusters (dark squares) along the main
diagonal. The classification accuracy by Dx turns out to be
58.35% (643/1102), which is also higher than the classification
performance of the standard L2 norm in the function space.

Since Dx and Dy each only partially describe variability
in the data, corresponding to phase and amplitude differences
between the functions, there is a possibility of improvement
if Dx and Dy are used jointly. One simple idea is to linearly
combine these two distances and use the weighted distance
to perform classification on the data. Here the amplitude
and phase are being treated as two different “features” of
the signals. To accurately represent the contribution from
each distance, we at first normalize Dx and Dy by the
maximum values in the matrices, respectively. That is, Dx →
Dx

maxDx
, Dy → Dy

maxDy
. Then, for τ ∈ [0, 1], we define

Dτ = τDx + (1− τ)Dy.

Dτ is a weighted average of Dx and Dy with D0 = Dy and
D1 = Dx.

The next step is the estimation of an optimal τ . Towards
this end, we randomly select 50% of the given signals as
training data and evaluate the LOO classification performance
for different values of τ . Since this selection is random, the
resulting evolution is potentially random. Fig. 4(a) shows
the performance profile versus τ for 100 randomly selected
training data. An average of these curves is superimposed on
the same plot (thick line). A histogram of the optimal values
of τ for different random selections of the training data is
shown in (b). Both these figures show that a broad range of τ
values, from 0.3 to 0.7, all result in a decent increase in the
classification performance over the individual metrics Dx and
Dy , and the general pattern of increase is similar. In fact, if we
use the full data and plot the LOO classification performance
versus τ , we obtain the plot shown in (c). The overall shape
(and the location of the maximizer) of this curve is very
similar to the curves in (a) and underscores the independence
of different observations. From this study, we select a value,
say τ = 0.41 and use that to perform LOO classification on
the full data.
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Fig. 2. Original SONAR functions in each of the 9 classes.
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Fig. 3. The pairwise distances using the L2 (a), Dy (b), and Dx (c) metrics.

When τ = 0.41, we get an accuracy at 76.13% (839/1102),
which is higher than the accuracy in any of the L2, Dy , and
Dx distances. This indicates that the variability in the SONAR
signals are better characterized when we separate the phase
and amplitude variabilities, and better classification can be
achieved when both variabilities are utilized.

In order to compare with another existing idea, we compute
the “naive” distance between any two signals presented in
the previous section which is according to (DNaive)ij =
argminγ∈Γ ‖fi− fj ◦ γ‖. We also perform the cross-validated
nearest-neighbor using the DNaive, and find that the accuracy
is 63.70% (702/1102). This is slightly better than the accuracy
by Dx, but worse than that by Dy . This indicates that even a
simple-minded warping can help remove certain warping noise
in the SONAR data, but the performance is not as good as a
more formal SRVF-based warping.

Next we generated a cumulative match characteristic (CMC)
curve for the distances Dx, Dy , Dτ (τ = 0.41), DNaive,
and L2. A CMC curve plots the probability of classification

against the returned candidate list size and is presented in Fig.
5. Initially, Dy and Dτ outperform the other distances with
DNaive slightly outperforming Dx. After a slight increase in
the returned list size Dx begins to outperform DNaive and
our method rapidly approaches over 90% classification rate,
in contrast to the DNaive and the standard L2 distances.

IV. CONCLUSIONS AND OBSERVATIONS

The statistical analysis and classification of targets using
acoustic signatures is a challenging task. In particular, this task
is complicated by the presence of compositional noise in the
observed signals. We have proposed a comprehensive approach
that solve the problem of estimating and comparing signals in
unified framework, using a cost function that is eventually
a warping-invariant distance between the two signals. This
framework is applied to both the real and simulated data.
It provides two distances – Dx and Dy – that can be used
for classifying noisy signals using any metric-based classifier.
We have used the leave-one-out classifier in this paper to
demonstrate the improvements over traditional methods for
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signal comparisons. In experiments involving real data we
demonstrate a LOO performance of almost 76% which eas-
ily outperforms the standard L2 distance (44%) and current
methods using naive alignment (64%).
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