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Abstract—The recently introduced theory of compressed sens-
ing (CS) enables the reconstruction of sparse signals from a
small set of linear measurements. If properly chosen, the number
of measurements can be much smaller than the number of
Nyquist rate samples. However, despite the intense focus on the
reconstruction of signals, many signal processing problems do
not require a full reconstruction of the signal and little attention
has been paid to doing inference in the CS domain. In this
paper we show the performance of CS for the problem of signal
detection using Gauss-Gauss detection. We investigate how the
J-divergence and Fisher Discriminant are affected when used in
the CS domain. In particular, we demonstrate how to perform
detection given the measurements without ever reconstructing
the signals themselves and provide theoretical bounds on the
performance. A numerical example is provided to demonstrate
the effectiveness of CS under Gauss-Gauss detection.

Index Terms—binary hypothesis testing, compressive sensing,
Fisher Discriminant, J-divergence, signal detection

I. INTRODUCTION

The up and coming area of compressive sensing (CS) has
become a hot topic in many signal processing applications
today. The theory behind CS provides a generalization of
the point-wise conventional sampling theorem where samples
are theoretically interpreted as inner products of an unknown
signal vector with a set of user-defined basis vectors. This
framework has many applications where standard Nyquist
sampling theory is feasibly impossible as sparse signals can
be reconstructed from a smaller subset of linear measurements
when certain criterion are met. Most of the work in signal
processing revolving around this area is concerned with reli-
able signal recovery while not much attention has been paid to
use of the compressed signals for applications such as detec-
tion, classification, and general inferences in the CS domain.
Moreover, many times the theoretical foundation of CS lacks
the consideration of the effects additive or multiplicative noise
can have when we make compressive measurements of the
environment, allowing one to question the robustness of this
architecture.

Examples of applications where detection and classifica-
tion performed in the CS domain may become desirable are
abundant. For instance, suppose we are interested in detecting
underwater objects using electro-optical sensing devices in an
environment without sunlight and therefore do not require a
large number of samples for inference purposes as most of
the image will be dark. Or imagine the patient who must wait
extended periods of time while medical imaging devices scan

their body in the hope of detecting malignant tumors when
really we could take a smaller number of samples thereby
alleviating the process. In either case, it becomes necessary
to understand the effects compressive sampling schemes will
have on the performance of these automated detection and
classification techniques.

The Restricted Isometry Property (RIP) from Candés and
Tao [1] is the fundamental theorem in CS theory and states the
fact that some classes of sampling vectors exhibit a degree of
incoherence with any sparse signal and thereby preserve the
distance between all sparse vectors. This theory will also play
a key part in the analysis given in this paper. This important
theorem is generalized in [2] to show that for any two sparse
signals separated by a given angle and satisfying the conditions
stated by the RIP, the angle separating their compressively
sampled versions will also be bounded above and below by
constants related to those given by the RIP condition. This
work then goes on to consider several detection problems
and it is shown that a universal CS matched filtering scheme
is an effective way to detect any sparse signal both with
the robustness and performance of the ideal detector. This is
ultimately related back to the generalized RIP property and
the fact that compressive measurements will still maintain the
angles separating any set of sparse signals.

Likewise, signal detection, classification, and estimation in
the CS domain are considered in [3]. Throughout the course
of this work a bound is derived for the probability of detection
showing it to approach one exponentially fast in terms of
how many compressive measurements are made and that the
exponential rate depends on the signal-to-noise ratio (SNR).
Next, through the use of a simple classification problem, it is
shown that the probability of error of the classifier will increase
upon projection to a lower-dimensional space in a way that
depends on the SNR. Finally signal estimation is considered
and again bounds are derived which decay sub-linearly as a
function of the number of compressive measurements that are
made, illustrating the fact that estimation is in a sense a harder
problem than detection and classification in the CS domain.

Through the use of looking at the application of soft
margin Support Vector Machine (SVM) classification in the
compressed domain, [4] ultimately shows that learning in the
compressive measurement domain is possible by showing that
a family of matrices satisfying the RIP condition preserves the
learnability of the data set. The main result of the paper is



that the accuracy of the soft margin SVM’s classifier in the
measurement domain is at most O

(√
δ
)

worse than the ac-
curacy of the classifier in the original, high-dimensional space
where the constant δ is determined from the RIP condition.
Experimental results are then formulated for a synthesized data
set.

In this work, we consider the standard signal detection
problem [5] and develop error bounds for the J-divergence as
well as the Fisher distance in the compressive domain. Both the
J-divergence and Fisher Discriminant in some manner measure
the distance between two hypotheses for a given detection
problem and therefore give one some sense of the amount
of discriminatory information present for the purposes of
detection and classification. Throughout the analysis, we will
consider two different scenarios, namely where compressive
measurements of an unknown signal are made which is sub-
sequently corrupted by additive noise and where compressive
measurements are made of a sparse signal corrupted by addi-
tive noise. By providing bounds on the J-divergence and Fisher
distance for both cases, it is the goal of this work to develop
quantitative inferences of how discriminatory information is
affected by performing these compressive measurements.

This paper is organized as follows. Section II will provide a
brief review of compressive sensing. Section III briefly reviews
linear Gauss-Gauss signal detection. Section IV introduces the
detector in the CS domain and bounds on the performance of
J-divergence and Fisher Discriminant for both of the cases
considered. In Section V, a numerical example is given to
analyze the CS for Gauss-Gauss detection. Finally, concluding
remarks will then be given in Section VI.

II. REVIEW OF COMPRESSIVE SENSING

We now provide a brief review of compressive sensing and
its applicability to areas such as detection and classification.
Suppose now that the signal we are interested in sampling or
sensing is in some sense “simple” enough that we can get away
with a smaller number of samples than that of conventional,
point-wise sampling schemes. In other words, we assume the
signal x ∈ Rn to be r-sparse in some domain meaning that
it is well approximated by a linear combination of r vectors
from a basis of Rn, i.e.,

x ≈
r∑
i=1

θiφi (1)

with r � n and φ = {φ1, · · · , φN} a collection of basis
vectors in Rn. The natural approach to sampling would be
that each column of a sampling matrix Ψ ∈ Rm×n would
be a vector whose entries are all zero except for the entry
corresponding the desired sample location in x.

Since it is assumed that the signal x is r-sparse, the
linear measurement matrix Ψ whose rows are incoherent with
the columns of Φ, the matrix containing the basis elements
φi, we know from the CS theory that there exists an over-
measuring factor c > 1 such that only M := cK incoherent
measurements, y, are required to reconstruct x with a high
degree of confidence [6], [7]. Therefore reducing the amount

of computations one needs to make to effectively reconstruct
the data.

One class of measurement matrices that are used in com-
pressed sensing are matrices that satisfy the Restricted Isom-
etry Property (RIP) which was proposed by Candés and Tao
[1].

Definition 1 (Restricted Isometry Property). For each integer
r = 1, 2, . . . , define the isometry constant δ of a matrix Ψ as
the smallest number such that

(1− δ)||x||2l2 ≤ ||Ψx||2l2 ≤ (1 + δ)||x||2l2 (2)

holds for all r-sparse vectors x.

This property implies that a matrix Ψ obeys the RIP of order
r if δ is not too close to one and when this property holds,
Ψ approximately preserves the Euclidean length of r-sparse
signals.

The following theorem [8] shows that a large family of
random matrices that satisfy the RIP condition.

Theorem 1. If entries of
√
mΨ are sampled i.i.d from either

• Gaussian distribution: N (0, 1), or
• Bernoulli distribution: BE(−1, 1),

and m = Ω(r log(n/r)) then except with probability e−c(δ)m,
Ψ satisfies the restricted isometry property.

Throughout the rest of this paper we assume that Ψ is a
linear measurement matrix satisfying the RIP condition and
are generated using either method stated in Theorem 1.

III. REVIEW OF STANDARD GAUSS-GAUSS SIGNAL
DETECTION

In this section, we provide a brief review of standard Gauss-
Gauss signal detection. Assume we have an observation y ∈
Rn×1 which is a normal random vector that is distributed with
mean m = µx and covariance matrix R. A classical detection
problem, [5] is to test the hypothesis H0 : µ = 0 i.e., noise
alone y = n, versus H1 : µ = 1 i.e., signal plus noise y =
x + n, where R is the covariance matrix of the noise. It is
assumed that noise and signal are uncorrelated.

The log-likelihood ratio test (LRT) that minimizes the risk
involved in deciding between H0 and H1 leads to

γ(y) =

{
1 ∼ H1, when l(y) > η
0 ∼ H0, when l(y) ≤ η

where l(y) = xHQy is the log-likelihood ratio. The matrix
Q = R−1, is the inverse of the covariance matrix under both
hypotheses, and can be decomposed as

Q = UΛUH , (3)

where Λ is a diagonal matrix with diagonal elements λi, which
are the eigenvalues of Q, and U is an eigenvector matrix
containing the corresponding eigenvectors in its column space.
We can therefore rewrite the log-likelihood as

l(y) = xHUΛUHy. (4)



A. J-divergence

The J-divergence [9] between the two hypotheses, which is
a global measure of the separability or detectability, is defined
as J = EH1

[l(y)] − EH0
[l(y)], where EH0

[·] and EH1
[·] are

the expectation operation under the H0 and H1 hypothesis,
respectively. Using the cyclic property of the trace we can
write the J-divergence as,

J = tr(xHUΛUHEH1
[y])− tr(xHUΛUHEH0

[y])

= tr(xHUΛUHx) = xHΛx, (5)

Thus, we only need to solve the eigenvalue problem in (3)
to form the J-divergence in (5) and the log-likelihood function
in (4).

B. Fisher Discriminant

The Fisher Discriminant provides an alternative method to
measuring the separability of two hypotheses by measuring the
squared distance between the means normalized by the sum of
the variances, i.e.,

F =
(EH1

[l(y)]− EH0
[l(y)])

2

VarH1(l(y)) + VarH0(l(y))

=
J2

VarH1(l(y)) + VarH0(l(y))
, (6)

where again the subscript notation refers to the operation under
its respective hypothesis. It is clear that the variance of the log-
likelihood under the H1 hypothesis is given as

VarH1
(l(y)) = EH1

[
l(y)2

]
− (EH1

[l(y)])2

= xHQEH1

[
yyH

]
Qx−

(
xHQx

)2
, (7)

while that for the H0 hypothesis is

VarH0
(l(y)) = EH0

[
l(y)2

]
− (EH0

[l(y)])2

= xHQEH0

[
yyH

]
Qx. (8)

From the statement of the problem, it is assumed that
both hypotheses share the same covariance structure so that
EH1

[
yyH

]
= R + xxH and EH0

[
yyH

]
= R. From

Equations (7) and (8) it can easily be seen that VarH1
(l(y)) =

VarH0
(l(y)) = xHQx and thus the Fisher Discriminant posed

in the framework of this simple detection problem is given as

F =
1

2
xHQx =

1

2
xHΛx =

1

2
J. (9)

IV. DETECTION IN COMPRESSIVE SAMPLING DOMAIN

We now assume that the observer is allowed to make only
a limited number of observations, where each observation is
the inner product between the sparse signal vector, x and a
sampling matrix chosen a priori. These observations can be
described in two cases. The first case where a sparse signal is
sampled with additive noise, which can be viewed as,

y = Ψx + n (10)

The second case where we make a compressed measurement
of a noise signal, y ∈ Rm×1, i.e.,

y = Ψ(x + n). (11)

We will now explore the effects this compressive sampling
scheme has on the J-divergence and Fisher Distance for both
cases described above.

A. Compressed Signal Measurements

We now turn our attention to the detection problem in the
CS domain for compressive signal measurements corrupted by
additive noise. In this case, assume we have an observation
y ∈ Rm×1 which is a normal random vector with mean m =
µΨx and covariance matrix R and is a compressive sensing
measurement described y = µΨx+n. The detection problem
is then to test the hypothesis H0 : µ = 0 i.e., noise alone
y = n, versus H1 : µ = 1 i.e., signal plus noise y = Ψx + n,
where R is the covariance matrix of the noise. It is assumed
that noise and signal are uncorrelated.

The LRT that minimizes the risk involved in deciding
between H0 and H1 leads to

γ(y) =

{
1 ∼ H1, when l(y) > η
0 ∼ H0, when l(y) ≤ η

where l(y) = xHΨHQy is the log-likelihood ratio in the CS
domain. The matrix Q is defined as before, Q = R−1, and
can be decomposed as

Q = UΛUH , (12)

where Λ is a diagonal matrix with diagonal elements λi, which
are the eigenvalues of Q, and U is an eigenvector matrix
containing the corresponding eigenvectors in its column space.
We can therefore rewrite the log-likelihood as

l(y) = xHΨHUΛUHy. (13)

1) J-divergence: The J-divergence [9] between the two
hypotheses, which is a global measure of the separability
or detectability of the two hypothesis again is defined as
J = EH1 [l(y)]−EH0 [l(y)], where EH0 [·] and EH1 [·] are the
expectation operation under H0 and H1 hypothesis, respec-
tively.

Using the cyclic property of the trace as before we can write
the J-divergence as,

J = tr(xHΨHUΛUHEH1
[y])− tr(xHΨHUΛUHEH0

[y])

= xHΨHΛΨx, (14)

We know that for a matrix A ∈ Rm×m that is symmetric
with eigenvalues λ1(A) ≤ · · · ≤ λm(A) and a matrix V ∈
Rm×n with V HV = I and λ1(V HAV ) ≤ · · · ≤ λn(V HAV ).
Then from Poincaré’s Separation Theorem we know that the
following inequality is true [10]

λi(A) ≤ λi(V HAV ) ≤ λm−n+i(A). (15)

Since, we have assumed that the matrix Ψ satisfies RIP with
constraints δ and r, then it follows that [1]

1− δ ≤ λmin(ΨH
t Ψt) ≤ λmax(ΨH

t Ψt) ≤ 1 + δ (16)

or in other words the eigenvalues of ΨH
t Ψt lie between (1−δ)

and (1 + δ). Where t are the indices of the columns of Ψ that



are picked from the r non-zero entries of x. Using (16) with
(15) we can bound the matrix ΨHQΨ in (14) by

(1− δ)λi(Q) ≤ λi(ΨHQΨ) ≤ (1 + δ)λm−n+i(Q) (17)

Then using Rayleigh’s Inequality [11] we can bound the J-
divergence in (14) by

||x||2(1− δ)λ1(Q) ≤ xHΨHQΨx ≤ ||x||2(1 + δ)λm(Q)
(18)

Recalling the fact that Q = R−1, we can write the above
relationship in terms of the covariance matrix R as

||x||2 1− δ
λm(R)

≤ J ≤ ||x||2 1 + δ

λ1(R)
(19)

Comparing this to the J-divergence for the standard case we
see that when δ is small we have nearly the same separation
between the hypothesis. Therefore the J-divergence in the CS
domain for this case is affected by δ which is the price paid
for taking smaller samples. Moreover, as δ → 0 we have the
same performance as the standard detector.

2) Fisher Discriminant: In the same manner as the previous
subsection, we wish to investigate the effects compressive
sensing measurements can have on the Fisher Discriminant.
From the definition of the detection problem we can see that

VarH1(l(y)) = EH1

[
l(y)2

]
− (EH1 [l(y)])2

= xHΨHQEH1

[
yyH

]
QΨx

−(EH1
[l(y)])2 (20)

and

VarH0
(l(y)) = EH0

[
l(y)2

]
− (EH0

[l(y)])2

= xHΨHQEH0

[
yyH

]
QΨx. (21)

Again because both hypotheses share the same covariance
structure, we can see that EH1

[
yyH

]
= R + ΨxxHΨH and

EH0

[
yyH

]
= R. Therefore,

VarH1
(l(y)) = VarH0

(l(y)) = xHΨHQΨx (22)

and the Fisher Distance becomes

F =

(
xHΨHQΨx

)2
2xHΨHQΨx

=
1

2
xHΨHQΨx. (23)

Clearly in this simple detection problem, the Fisher distance
shares bounds with that of the J-divergence under the same
assumptions, i.e.,

1

2
||x||2 1− δ

λm(R)
≤ F ≤ 1

2
||x||2 1 + δ

λ1(R)
. (24)

Again we can see that the ability to discriminate among two
hypotheses is ultimately affected by the constant δ in this
compressive sensing framework.

B. Compressed Noisy Signal Measurements

We now turn our attention to the detection problem in
the CS domain when compression measurements are made
of a noisy sparse signal. In this case, assume we have an
observation y ∈ Rm×1 which is a normal random vector
with mean m = µΨx and covariance matrix ΨRΨH and is
a compressive sensing measurement of a noisy sparse signal,
i.e., y = Ψ(µx + n). The detection problem is then to test
the hypothesis H0 : µ = 0 i.e., noise alone y = Ψn, versus
H1 : µ = 1 i.e signal plus noise y = Ψ(x+n), where ΨRΨH

is the covariance matrix of the compressed sampled noise. It
is again assumed that noise and signal are uncorrelated.

The LRT that minimizes the risk involved in deciding
between H0 and H1 leads to

γ(y) =

{
1 ∼ H1, when l(y) > η
0 ∼ H0, when l(y) ≤ η

where l(y) = xHΨHQy is the log-likelihood ratio and Q =
(ΨRΨH)−1.

1) J-divergence: In this case we can write the J-
divergence as

J = xHΨH(ΨRΨH)−1Ψx

= xHMx (25)

where M = ΨH(ΨRΨH)−1Ψ. We can take the singular value
decomposition (SVD) of Ψ = UΣV H , where U and V are
unitary matrices, i.e. UHU = I and V HV = I and the matrix
Σ is a block diagonal matrix containing the singular values of
Ψ. Inserting the SVD of Ψ into M we get

M = ΣH(ΣV HRV ΣH)−1Σ (26)

Using the bounds for λ(AB) [11] and the fact that ΣHΣ is
bounded by (16) we can bound N = (ΣV HRV ΣH)−1 by

1

(1 + δ)λn(R)
≤ λi(N) ≤ 1

(1− δ)λ1(R)
(27)

Using (16) again we can bound M by

1− δ
(1 + δ)λn(R)

≤ λi(M) ≤ 1 + δ

(1− δ)λ1(R)
(28)

Then using Rayleigh’s Inequality [11] we can bound the J-
divergence in (25) by

||x||2 1− δ
(1 + δ)λn(R)

≤ xHMx ≤ ||x||2 1 + δ

(1− δ)λ1(R)
(29)

Comparing this to the J-divergence for the standard case we
see that when δ is small we have nearly the same separation
between the hypothesis. Therefore the J-divergence in the CS
domain for this case is affected by δ which is price paid taking
smaller samples.



2) Fisher Discriminant: Given the the fact that both hy-
potheses share the same covariance structure, the variance
of the log-likelihood ratio becomes identical under both the
alternative and null hypothesis and is given as

VarH1
(l(y)) = VarH0

(l(y))

= xHΨH
(
ΨRΨH

)−1
Ψx. (30)

Therefore, the Fisher Discriminant becomes

F =
1

2
xHΨH

(
ΨRΨH

)−1
Ψx (31)

and we can bound F similar to (29) as

1

2
||x||2 1− δ

(1 + δ)λn(R)
≤ F ≤ 1

2
||x||2 1 + δ

(1− δ)λ1(R)
. (32)

For both cases we see that the ability to discriminate between
two hypotheses is directly related to the constant δ. We also see
that inducing compressive measurements of noise-corrupted
signals generally leads to a loosening of the bounds as it is
obvious that for any δ ∈ (0, 1)

1− δ
1 + δ

< 1− δ

1 + δ

1− δ
> 1 + δ.

Again we can make the same observation that as δ → 0 we
have the same performance as the standard detector. It also
needs to be mentioned here that for each of these detection
methods in the compressive sensing framework is not nec-
essarily optimal as once could design a compressed detector
for the sparse signal that would be optimal. However, with
the rise in interest in the CS Theory one needs to understand
the performance of the detector in this domain. One example
of using these detection methods in the CS-domain is if we
want to know if the signal is present before we reconstruct
the signal. Therefore by knowing the performance bounds of
J-divergence and Fisher Discriminant one will know what to
expect if one needs to perform detection in this domain.

V. NUMERICAL SIMULATION

An experiment is conducted to show the effectiveness of
the Gauss-Gauss detector under compressive sensing measure-
ments for case I and case II. Where case I is compressed signal
measurements (y = Ψx + n) and case II is compressed noisy
signal measurements (y = Ψ(x + n)). For both cases under
H0, y = n is a zero-mean white Gaussian vector process with
covariance matrix R0. Under H1, x is a signal of length 512
with a sparsity condition of 10, i.e., there are only 10 non-
zero entries in x. The sensing matrix (Ψ) was generated using
a uniform spherical ensemble where the columns are uniformly
distributed on the sphere Sn−1.

The sample data matrices are formed for the two cases
using number of samples ranging from 15 to 100 samples in
10 sample increments. The matrices are also formed under
varying signal-to-noise ratio (SNR) conditions ranging from
0dB to 16dB in 3dB increments for each sample size. With
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Fig. 1: Area under the curve performance for case I and II.

this data we could study the performance of Gauss-Gauss
detection under CS for varying sample sizes and varying SNR.

The eigenvalues for the matrix Q for both cases were
estimated and then the J-divergence and log-likelihood ratio
were computed. For each case, the J-divergence and log-
likelihood functions are formed and a separate test set of 100
samples is then applied to the detector. The experiment was
repeated for 1000 Monte Carlo trials.

The plots of the area under the receiver operating charac-
teristic (ROC) curve (AUC) versus the number of observations
and versus SNR are presented in Figure 1a and 1b, respectively
for cases I and II. These plots represent the averaged results
for 1000 Monte Carlo trials. Figure 1a is calculated at a fixed
SNR of 9 dB and we see that the performance is constant for
case I which is to be expected from the CS theory. For case II
we see an increase in performance as the number of samples
increase, however the performance is relatively similar over
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Fig. 2: J-divergence performance for case I and II.

the increase in the number of observations. Figure 1b shows
an increase in AUC as the SNR increases for both cases which
is to be expected with case I having a sharper increase.

The plots of the J-divergence versus the number of ob-
servations and versus SNR are presented in Figure 2a and
2b, respectively for cases I and II. These plots represent the
averaged results for 1000 Monte Carlo trials. Figure 2a is
calculated at a fixed SNR of 9 dB which is the same as the
AUC calculation and we see that the performance is constant
for case I which is to be expected from the results presented
in Figure 2a. The bounds that were defined in (19) are shown
in the figure by the dashed lines and show a good fit around
the empirical calculation. For case II we see a slight increase
in performance as the number of samples increase and the
bounds that were defined in (29) are shown by the dashed
lines and show a good fit around the empirical calculations.
Figure 2b shows an increase in J-divergence as SNR increases

for both cases with case I having a much sharper increase. The
calculated bounds for case II are wider than case I as expected.

VI. CONCLUSION

In this paper, we began by considering a simple, linear de-
tection problem and derived expressions for the J-divergence
and Fisher Discriminant, both of which give one a sense of
the amount of available discriminatory information for the
purposes of detection and classification. Then using linear
measurement matrices commonly used in CS, we considered
a case of this detection problem where we make compressive
measurements of the signal which is then corrupted by ad-
ditive noise and derived bounds for both measures. We next
concerned ourselves with the case where compressive measure-
ments are taken of a noise corrupted version of the signal and
again bounds were derived. Overall, we have shown that for
both cases the derived bounds depend on the energy present
in the signal

(
||x||2

)
, the largest and smallest eigenvalues of

the covariance matrix (λmax(R), λmin(R)), and the constant δ
described by the RIP condition. Ultimately however, the bound
on the amount of discriminatory information projected into
the CS domain becomes solely determined by the constant
δ. We have also shown that inducing compressive measure-
ments on noise corrupted signals tends to loosen the error
bounds on these measures thereby decreasing the certainty of
the discriminatory information available in this case. Again,
given a reasonable value of δ, the amount of discriminatory
information available for detection and classification closely
resembles that in the original, high-dimensional original data
domain. Numerical simulations were also provided confirming
the developed bounds.
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