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ABSTRACT

Detection and classification of underwater objects in sonar imagery are challenging problems. In this paper, a new
coherent-based method for detecting potential targets in high-resolution sonar imagery is developed using canon-
ical correlation analysis (CCA). Canonical coordinate decomposition allows us to quantify the changes between
the returns from the bottom and any target activity in sonar images and at the same time extract useful features
for subsequent classification without the need to perform separate detection and feature extraction. Moreover,
in situations where any visual analysis or verification by human operators is required, the detected/classified
objects can be reconstructed from the coherent features. In this paper, underwater target detection using the
canonical correlations extracted from regions of interest within the sonar image is considered. Test results of the
proposed method on underwater side-scan sonar images provided by the Naval Surface Warfare Center (NSWC)
in Panama City, FL is presented. This database contains synthesized targets in real background varying in degree
of difficulty and bottom clutter. Results illustrating the effectiveness of the CCA based detection method are
presented in terms of probability of detection, and false alarm rates for various densities of background clutter.

Keywords: Canonical correlation analysis, sonar imagery, target detection and classification, feature extraction,
coherence detection.

1. INTRODUCTION

Detection and classification of underwater objects in sonar imagery is a complicated problem due to various factors
such as variations in operating and environmental conditions, presence of spatially varying clutter, variations
in target shapes, compositions and orientation. Moreover, bottom features such as coral reefs, sand formations,
and vegetation may totally obscure a target object.

Various methods have been explored for target detection and classification in sonar imagery. In1,2 Dobeck
utilizes a nonlinear matched filter to identify mine-size regions in the sonar image that match the target signature.
For each detected region, several features are extracted based on the size, shape, and strength of the target
signature. A stepwise feature selection process is then used to determine the subset of features that optimizes
the probability of detection and classification. A k-nearest neighbor and an optimal discrimination filter classifier
are used to classify each feature vector and the decisions of the two classifiers are fused for the final decision. In3

Ciany segments the sonar images into ”sub-frames” on which each frame is adaptively thresholded to identify
the target structure. Geometric features are then extracted from contiguous target structure regions of interest
within the sub-frame. Classification of each region as target or non target is done through a multi-level weighted
scoring-based classification system. In4 Adridges presented an adaptive clutter filter detector which exploits the
difference in correlation characteristics between clutter and targets. After detection, features are extracted and
then orthogonalized and then the classification is performed on the orthogonal feature set through an optimal
Bayesian classifier. Chandran in5 presented the use of a matched filter designed to capture the target structure.
Higher order spectra are then extracted as the feature set to classify objects using a k-nearest neighbor classifier,
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a minimum distance classifier, and a threshold classifier based on the minimum and maximum values of a feature
obtained over all classes, and the final decision are fused.

One detection and feature extraction method that has not been explored for sonar imagery is Canonical Co-
ordinate Analysis or (CCA). This method has shown great promise in underwater target classification problems
using sonar backscatter.6 The canonical coordinate decomposition method determines linear dependence7 or
coherence between two data channels. This method not only determines the amount of dependence or inde-
pendence between two data channels (e.g. two sonar pings with certain separation) but also extracts, via the
canonical coordinates, a subset of the most coherent features for classification purposes. Canonical coordinate
decomposition allows us to quantify the changes between the returns from the bottom and when target activities
are present and at the same time extract useful features for target classification without the need to perform
separate detection and anomaly feature extraction.

In this paper a new coherent-based detection and classification method for high-resolution sonar imagery is
developed using CCA as a feature extraction process and an optimal Neyman-Pearson detection scheme. In
both cases, the canonical correlations are formed from region of interests (ROI) within the sonar image. From
these canonical correlations, coherence (or incoherence) can be measured and used to determine if a target is
present in the processed ROI. The data set used in this study was provided by the NSWC in Panama City, FL.
The data-set consists of high-resolution side-looking sonar imagery that contains either no targets, one target,
or multiple targets.

This paper is organized as follows: Section 2 reviews the CCA method and its application as a feature ex-
traction (estimation framework) or as a detection tool for implementing the Neyman-Pearson detector. Section 3
describes the preprocessing and feature extraction process done on the NSWC Scrub data set to extract the
canonical correlations. In Section 4, the detection results of using CCA to detect of underwater targets in sonar
imagery are presented. Finally, conclusions and observations are made in Section 5.

2. REVIEW OF CANONICAL COORDINATE DECOMPOSITION

CCA is a method that determines linear dependence (or coherence) between two data channels by mapping the
data to their canonical coordinates where linear dependence is easily measured by the corresponding canonical
correlations. The language and terminology used in this section is taken mostly from7,8.

Consider two data channels x ∈ R
m×1 and y ∈ R

n×1 where m ≤ n, when it is assumed that x and y are zero
mean random vectors that yield a composite covariance matrix
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where, Rxx, Ryy, and Rxy = RH
yx, are the covariance matrices of data channels x, y, and between x and y

respectively. The singular value decomposition (SVD) of the coherence matrix C may then be written as7
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The canonical coordinates of x and y can now be defined as7
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where elements of the u and v vectors are the canonical coordinates of x and y, respectively.

Hence, x and y are mapped to their respective canonical coordinates using
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Figure 1. Canonical Coordinate Decomposition Process.

u = WHx and v = DHy. (4)

via the canonical decomposition matrices WH = FHR
−1/2

xx and DH = GHR
−1/2

yy (see Figure 1). The canonical
coordinates u and v share the composite covariance matrix
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where the diagonal cross-covariance matrix

K = Ruv = FHCG = WHRxyD (6)

is the canonical correlation matrix of canonical correlations ki; i = 1, 2, . . . , m, with 1 ≥ k1 ≥ k2 ≥ · · · ≥ km > 0.7

Note that we have E[uivj ] = kiδ(i − j), where δ(·) represents the Kronecker delta function.

One of the most important properties of canonical correlations is that they are invariant under uncoupled
nonsingular transformations of x and y.7 Canonical correlations can also be used to determine useful properties
regarding x and y, such as linear dependence (coherence) and mutual information.7

2.1. CCA As An Estimation or Feature Extraction Tool 8

The estimation problem is stated as estimating channel x (signal) from channel y (observation). The minimum
mean square error estimator of x from y can be written as,8

x̂ = R−1/2

xx FKGHR−1/2

yy y, (7)

with minimum error covariance
Qxx = R−1/2

xx F (I − K2)FHRH/2

xx . (8)

The volume of the error concentration ellipse divided by the volume of the prior concentration ellipse is

V =
det(Qxx)

det(Rxx)
= det(I − K2). (9)

The processing gain (PG) and the information rate (R) given8 in terms of V as PG = V −1 and R = −(1/2) logV ,
respectively. It is clear that the dominant canonical coordinates are the ones that minimize V , maximize PG,
and maximize R. Thus the optimal rank-r ≤ n estimator of x̂, of x, from y, is the estimator that retains only the



dominant canonical coordinates and maximizes the coherence between x and y. In canonical coordinate domain
this rank-r estimator can be defined as,

x̂ = R−1/2

xx FKrG
HR−1/2

yy y, (10)

and it can be shown
û = Krv, (11)

where Kr holds the top r dominant canonical correlations. In this framework, classification can then be made
by using either the dominant canonical correlations as a feature vector or using u− Krv which shows how well
x can be estimated from y where the target is more coherent than the environment in which it is found.

2.2. CCA As An Detection Tool 8

The detection problem is stated as a hypothesis testing problem of distinguishing hypothesis of H0 : y :
CNn[0, Rnn], i.e. noise alone, versus hypothesis H1 : y : CNn[0, Ryy = Rxx + Rnn], i.e. signal plus noise,
where CNn[0, Rxx] denotes the n-variate proper complex normal distribution with mean vector zero and covari-
ance matrix Rxx. In8 the Neyman-Pearson detector for testing H0 and H1 as defined above is written as the
log-likelihood ratio in terms of canonical coordinates and correlations as,

l(y) = (R−1/2
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This is the standard Gauss-Gauss log-likelihood ratio, but in the canonical coordinates v = GHR
−1/2

yy y and l(y)
is the weighted sum of the magnitude-squared of the canonical coordinates weighted by canonical correlation-
dependent weights. If we define G = [g1, · · · , gn], then l(y) can be written as follows,
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The J-divergence8 between H1 and H0 is

J = EH1
l(y) − EH0

l(y) = tr(CCH + (CCH)−1 − 2I) = tr(KKH + (KKH)−1 − 2I) (14)

where EH0
and EH1

are the expected values of l(y) under H0 and H1, respectively. We then can rewrite the
J-divergence in terms of the canonical correlations as,
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The function (ki−
1

ki

)2 is non-increasing in the interval (0, 1]. Consequently the rank-r detector that maximizes the
divergence is the detector that uses the dominant coordinates corresponding to the dominant canonical correlations
ki. The divergence between the two hypothesis considering the r dominant canonical correlations is,

Jr =

r2

∑

i=1

(ki −
1

ki
)2 (16)

Thus, for building low-rank detectors, the dominant canonical coordinates need to be retained in order to find the
coherence between the two data channels x and y. Using the coherence one can find the information necessary
to detect presence of a target in the environment.
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Figure 2. Block Diagram of the Side Scan Sonar CCA-based Detection Method.

3. CCA ANALYSIS OF HIGH RESOLUTION SONAR IMAGERY

In order to prepare the data for CCA, the high resolution images are first normalized using a serpentine forward-
backward filter.9 The purpose of this normalization is to help distinguish the target’s highlight and shadow
signature from the bottom and artifacts present in the image. The purpose of the normalization is to reduce the
variability of the local mean throughout the image in order to use it as a reference level so that the highlight and
shadow of the target can be more easily identified. The serpentine forward-backward filter (SFBF) normalizer
first uses a forward second order digital filter and attempts to select a path in which the filter output best
follows the original image. Basically the path is generated by taking the next point on the path to a point
where its neighbors intensity are near the filtered output value. The purpose of the forward and backward
filters is to estimate the local mean on one side of a pixel and the backward filter is used to estimate the local
mean on the opposite side of the pixel. The local mean estimate that is nearest to the original image value is
selected to normalize that pixel. Processing the image in the forward-backward direction helps preserve target
edges, highlights, and shadows. Any background non-ideals, i.e. target size artifacts, are normalized out to the
underlying mean of the image. For a more detailed explanation of the normalization algorithm the reader is
referred to .9

After the normalization process, the first 120 pixels are ignored which corresponds to the sonar altitude as
it traveled through the water column, which is 1/10th of the maxium range. Next, the image is partitioned into
overlapping ROI’s of size M ×N . For this data set the ROI size of 12× 34 was experimentally determined to be
optimal considering the average size and shape of the targets in the data set. The overlap along the horizontal
and vertical directions was 50% in order to ensure that a target would be covered by more than one ROI in case
of splitting. Each ROI is then channelized in a column-wise fashion for CCA. The x and y channels consist of
the first 8 pixels in one column x and the first 8 pixels in the adjacent column y. This process is continued
moving in the horizontal direction across the ROI. On the next pass through the ROI, the channels are given
a 50% overlap in the vertical direction to ensure complete coverage of the target in the ROI (see Figure 2).
The idea behind this channelization is to look for common coherent attributes that can be used to relate one
channel to the other according to the framework discussed in Section 2.2. Clearly, for background ROI’s high
level of coherence among consecutive columns (channels) does not exist. Note that in this paper we use the
dominant canonical correlations which hold the coherent information between the two channels. One may also
use the subdominant canonical correlations in the detection framework to detect incoherence (or change) between
the two channels. From the dominant canonical correlations, namely k1 and k2, a scalar detection measure of
k1 × k2 was formed for each processed ROI. Based on this measure (instead of J-divergence in (16)) a threshold
is determined experimentally to separate the ROI’s that contain targets from those that do not.
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4. TEST RESULTS ON SONAR IMAGERY

CCA was applied to a data set of high-resolution side-looking sonar images provided by the NSWC, Panama City.
More information on high-resolution side-looking sonars can be found in10,11. The database contains 512 images
with 293 images containing 310 targets with some of the images containing more than one target. The data set
was broken up into easy, medium, and hard cases depending on the difficultly of the background clutter and
bottom types, e.g. vegetation and coral reefs. Easy cases are considered to have low background variation and an
overall smooth bottom with targets that are easily identifiable by a skilled operator. The medium cases contain
background clutter and more difficult bottom conditions. However, the targets are still somewhat discernible to
a skilled operator with some effort. Lastly, the hard cases are those where it is difficult to detect and classify
the targets from a visual inspection due to a high variability of background clutter and very difficult bottom
conditions. The data set was separated into these three classes based on a visual inspection of where the target
was located and whether or not variation in the background and high density of clutter was present.

To show the separability of the dominant canonical correlations for ROI’s that contain targets and background
and those that contain only background, a test was conducted on the entire set of target ROI’s and a random
set of ROI’s containing mainly background (for all three cases) of the same number of target ROI’s. The plots
of the 8 canonical correlations of ROI’s containing targets and those containing background only are shown in
Figure 3. As can be seen, there is good separation, especially for dominant canonical correlations, between
targets and background, which can be attributed to the greater coherence in the channels across the targets
versus the background where there is more pixel variation. This is attributed to the greater coherence between
x and y over an ROI where a target is present.

Using the dominant canonical correlations, k1 and k2 a scalar decision measure of k1 × k2 can be formed
for the entire target set. This scalar value was formed and plotted for the entire target set and random set of
backgrounds and is presented in Figure 4. A detection threshold was chosen based upon this measure to detect
potential targets from the background. From this set of targets and limited number of backgrounds the optimal
threshold value was chosen to be 0.3.

Each image in the entire NSWC database is then blocked into 12 × 34 ROI’s with a 50% overlap for each
block in both the range and cross-range directions. For each ROI the canonical correlations were formed as well
as k1 × k2 scalar detection measure and then compared against the optimal threshold. For the easy cases, there
are 186 images containing 201 targets. The canonical correlation detector detected all but 1 of the targets in the
set with an average of 127 detections per image. For the medium cases, there are 86 images containing 89 targets
and the canonical correlation detector again detected all but 1 of the targets in the set with an average of 213
detections per image. Lastly, for the hard cases, there are 21 images, containing 21 targets, and the canonical
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Detection Rate False Alarm Rate
Easy 0.99 0.03

Medium 0.99 0.05
Hard 0.90 0.06

Table 1. CCA Detection Results

correlation detector detected all but 2 of the targets and averaged 228 detections per image. It is important to
note that with 50% overlap in the ROI’s there will be at least 4 ROI’s overlapping the object depending on the
object length. Taking this into account into the number of detections, it was determined which of the detected
ROI’s were actually over the target which then gives an average of 116 detections on the easy set, 200 detections
on the medium set, and 213 detections on the hard set.

Table 4 gives the probability of detection and false alarm rate for all the ROI’s in these data sets. As can be
seen targets can be detected with a high probability since in each of the cases only one or two targets were missed
with a total of only 4 out of the possible 310 targets. The false alarm rate is low due to approximately 3800
possible ROI’s in an image. Considering that the threshold was formed based on a small set of ROI’s containing
only background, the detector performs extremely well in the medium and hard cases with only an average
of 223 detections per image with a maximum of 312 detections. This shows the usefulness of the dominant
canonical correlations to detect possible ROI’s containing a target. Closer inspection of the four targets that
were misdetected in the entire set indicated that they have no or very little shadow structure, i.e. mainly a bright
spot in the ROI hence making the detection difficult. One particular misdetected target is shown in Figure 5.

5. CONCLUSIONS AND OBSERVATIONS

In this paper, CCA was used as an optimum Neyman-Pearson detector to detect underwater targets in high-
resolution side-looking sonar imagery. The basic idea is that when an object (target or non-target) is present in
an ROI in the sonar image there will be a change in the coherence level compared to the case when there is no
object. Further it has been shown that using the dominant canonical correlations a scalar decision measure can
be formed in order to separate the ROI’s that contain a target from those that contain background only. Our
experiments on the data set provided by the NSWC demonstrated that there is good separability of the canonical
correlations, especially the dominant ones, extracted over ROI’s containing targets from those extracted from
ROI’s that do not contain targets. Overall, CCA did well in detecting all of the targets in all of the images
missing only 4 of the possible 310 targets in the set, while keeping the probability of detection high and false
alarm rate low. Thus, CCA shows great promise as a primary detection tool for the detection of underwater
targets in sonar imagery.



5 10 15 20 25 30

2

4

6

8

10

12

Figure 5. An Example if a Misdetected Target

ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research, Code 321OE under contract #N61331-06-C0027

REFERENCES

1. G. J. Dobeck, J. Hyland, and L. Smedley, “Automated detection/classification of sea mines in sonar im-
agery,” Proc. SPIE 3079, pp. 90–110, April 1997.

2. G. J. Dobeck, “Fusing sonar images for mine detection and classification,” Proc. SPIE 3710, pp. 602–614,
April 1999.

3. C. Ciany and J. Huang, “Data fusion of VSW CAD/CAC algorithms,” Proc. SPIE 4038, pp. 413–420,
April 2000.

4. T. Aridges, P. Libera, M. Fernandez, and G. J. Dobeck, “Adaptive filter/feature orthogonalization processing
string for optimal LLRT mine classification in side-scan sonar imagery,” Proc. SPIE 2765, pp. 110–121,
April 1996.

5. V. Chandran, S. Elgar, and A. Nguyen, “Detection of mines in acoustic images using higher order spectral
features,” IEEE Journal of Oceanic Engineering 27, pp. 610–618, July 2002.

6. A. Pezeshki, M. Azimi-Sadjadi, L. Scharf, and M. Robinson, “Underwater target classification using canon-
ical correlations,” Proceedings of MTS/IEEE Oceans 2003 4, pp. 1906–1911, Sept 2003.

7. L. Scharf and C. Mullis, “Canonical coordinates and the geometry of inference, rate, and capacity,” IEEE
Transactions on Signal Processing 48, pp. 824–891, March 2000.

8. A. Pezeshki, L. Scharf, J. K. Thomas, and B. D. Van Veen, “Canonical coordiantes are the right coordi-
nates for low-rand gauss-gauss detection and estimation,” IEEE Trans. Signal Process. 54, pp. 4817–4820,
Dec 2006.

9. G. J. Dobeck, “Image normalziation using the serpentine forward-bckward filter: Application to high-
reoslution sonar imagery and its imact on mine detection and classification,” Proc. SPIE 5734, pp. 90–110,
April 2005.

10. N. Rimski-Korsakov, Y. Russak, and R. Pavlov, “Simple digital system for side scan sonar data imaging,”
Proc. Oceans’94 1, pp. 643–645, Sept 1994.

11. W. Key, “Side scan sonar technology,” Proc. Oceans’00 2, pp. 1029–1033, Sept 2000.


