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a b s t r a c t

The International Commission on Illumination (CIE) designed its color space to be
perceptually uniform so that a given numerical change in the color code corresponds
to perceived change in color. This color encoding is demonstrated to be advantageous
in scientific visualization and analysis of vector fields. The specific application is analysis
of ice motion in the Arctic where patterns in smooth monthly-averaged ice motion are
seen. Furthermore, fractures occurring in the ice cover result in discontinuities in the
ice motion. This vector jump in displacement can also be visualized. We then analyze
modeled and observed fractures through the use of a metric on the color space, and
image amplitude and phase metrics. Amplitude and phase metrics arise from image
registration that is accomplished by sampling images using space filling curves, thus
reducing the image registration problem to the more reliable functional alignment
problem. We demonstrate this through an exploration of the metrics to compare model
runs to an observed ice crack.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

This paper presents tools for analyzing two-dimensional vector fields. These fields arise in meteorology and oceanogra-
hy, for example. Our particular interest is analyzing sea ice motion in the Arctic, either observed through remote sensing
r simulated using computer models. The statistics of scalar quantities are well studied (e.g., [1]), statistical measures
pplied to vector quantities remains an area of research. Vectors have magnitude and direction, and analysis is further
omplicated because the direction is a circular quantity [2]. In analyzing sea ice forecasts, Grumbine [3] recommends
ive skill measures. A combination of skill measures is necessary since each individually gives an incomplete picture for
etermining how sets of vectors are related. In this paper, we combine three skill measures to form a metric for comparing
ector fields. The metric is constructed from properties of a color map. A benefit of this construction is a natural way to
isualize the metric.
The International Commission on Illumination (CIE) designed a color space to be perceptually uniform so that a given

umerical change in the color code corresponds to a given perceived change in color. We exploit this property of the
olor space to propose a color map for vectors based on use of the CIE Lightness-Chroma-hue (CIEL∗Ch) color space [4].
ithin this space, vector magnitude is mapped to the intensity of the color while hue, or the color itself, indicates the
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direction or vector orientation. Additional information about the vector field can be encoded in the color map by varying
the chroma. Due to the design of the CIEL∗Ch color space, the L2 norm on the color encoding induces a metric on vectors.
hus, we have designed a tool where differences in vector fields can be analyzed through differences in color.
A predominant feature of Arctic sea ice, especially in the winter, is the formation of fractures. Fractures can be described

y a vector giving the amount of opening and its direction at a given point. However, these fractures exist on curves within
two-dimensional domain and do not fill the entire area. Common point-wise differences and root mean squared (RMS)
etrics are flawed when comparing these lower dimensional features within the two-dimensional space. Models that fail

o predict these features can have a smaller RMS error than models that predict these features but at a somewhat displaced
osition or altered orientation than observations indicate. For this reason, Guan et al. [5] introduced the idea of optimally
ligning model output with observed features using image warping techniques. A central contribution of the current paper
s to demonstrate that two-dimensional image warping can be reduced to a simpler-to-solve, one-dimensional problem
sing space filling curves. We further build on our vector color map and distance metric to provide distance measures
etween images of fractures. The measures are the amount of warping needed to align the images (phase error) and an
2 distance after alignment (amplitude error). With these measures additional analysis, such as parameter calibration, is
ossible for fracture models.
In Section 2, we describe the CIEL∗Ch color space and the distance metric on that space. The color map induces a

orresponding metric on vectors which can be visualized naturally through the color map. Examples of the color map and
ector visualization are provided in Section 2.1. In particular, Section 2.1 uses observations of monthly-averaged, daily ice
otion to demonstrate the utility of the metric and its inherent color visualization.
Fracture modeling and visualization is described in Section 3. Image warping is introduced in Section 3.1 and space

illing curves in Section 3.2. Space filling curves reduce the image warping problem to one of functional data alignment,
hich is presented in Section 3.3. An example of aligning images containing single cracks is given in Section 3.4. Motivated
y this example, the definition of an image amplitude metric and phase distance measure are given in Section 3.5. The
se of space filling curves to reduce image alignment to functional data alignment, the metrics for comparing image
eatures based on image warping, and the color map to visualize metrics are new to this work. Section 3.6 demonstrates
se of these measures in parameter calibration by parameterizing positions and orientations of cracks in an image. The
rocedure of registering images using space filling curves is shown to work across the parameter space and the measures
re minimized around the correct parameter setting. Section 4 provides concluding comments.

. Vector visualization

Vectors are typically visualized using arrows. It can be difficult to visually decipher the contributions of magnitude and
irection when comparing two vector fields using arrows [6–8]. Color is a useful device to aid visual perception. However,
he color space could be misleading if not chosen appropriately [7]. We consider the CIE-L∗a*b* 1976 color space [4,7]
hich is split into three color channels lightness, L∗, the red–green component, a∗, and the yellow–blue component, b∗.
he components a∗ and b∗ comprise Cartesian coordinates of the chroma and hue. The lightness ranges from 0 to 100,
nd the a∗ and b∗ channels range from −100 to 100. This color model is derived specifically so that the L2 metric on the
olor components measures closeness in perceived color, a feature not present in more familiar RGB, HSV, or CMYK color
odels [7]. The L2 distance metric between two colors encoded by the triples (L∗

1, a
∗

1, b
∗

1) and (L∗

2, a
∗

2, b
∗

2) is denoted by
E and given by

∆E =

√
(L∗

1 − L∗

2)2 + (a∗

1 − a∗

2)2 + (b∗

1 − b∗

2)2. (1)

The metric ∆E can also be written in the cylindrical CIEL∗Ch formulation,

∆E =

√
(L∗

1 − L∗

2)2 + (C1 cos h1 − C2 cos h2)2 + (C1 sin h1 − C2 sin h2)2. (2)

The lightness L∗ remains unchanged, but the polar coordinates of chroma, C , and hue, h, are used instead of the Cartesian
coordinates a∗ and b∗. The usual transformation holds

C =

√
a∗2 + b∗2, h = arctan(b∗/a∗). (3)

Lightness determines how dark or light the color is and chroma represents how vivid or dull the color is, while hue is the
change in color. Lightness and chroma have a value from 0 to 100, and hue varies from −π to π .

The orientation of a vector is given by the angle it makes to the x-axis, a periodic quantity for two-dimensional vector
fields. The periodic structure has no beginning or end. In a standard color map, the arbitrary end points of a color map
must be the same color to avoid the appearance of a discontinuity [9]. In constructing a color map for vectors, the natural
channel to deal with the periodicity of the orientation is the hue, which is also periodic. Therefore one option is to think
of the lightness as the magnitude of the vector and the hue as the orientation of the vector, with a constant chroma. In
order to assign a color to a vector in a vector field, the set of vectors should be scaled so that magnitudes have valid
lightness values in the range [0, 100]. Thus, two-dimensional vectors with polar coordinates (r, θ ) map to colors with
∗(r, θ ) = r , h(r, θ ) = θ , with constant chroma C . The color metric on two vectors, (r1, θ1) and (r2, θ2), reduces to√

2 2 2 (4)
∆E = (r1 − r2) + 4C sin ((θ1 − θ2)/2).
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Fig. 1. Polar representation of vector color map.

It is straightforward to show that ∆E defined in Eq. (4) is a metric on the space of two-dimensional vectors. For vectors,
E measures differences in vector magnitude and vector orientation. Notice that the value of constant chroma can be
hosen to weight each of the these components stored in L∗ and h, providing a family of metrics on the color space. For
xample if the chroma is zero then no information about the orientation is used and only magnitude of the vector is
isplayed in a gray scale image. Whereas if chroma is 100, the orientation is heavily weighted, about twice the value of
he magnitude in the lightness channel. A chroma of 50 roughly weights the magnitude and orientation equally.

In our applications, we have encountered situations where it is convenient and informative to employ the flexibility in
he CIEL∗Ch color model provided by utilizing non-constant chroma. Non-constant chroma in the color space creates color
appings that enhance or understate aspects of a vector or a group of vectors. One such mapping of two-dimensional
ectors with polar components (r, θ ) scaled so that r ∈ [0, 1], is

L∗(r, θ ) = 50
√
3r

C(r, θ ) = 50r
h(r, θ ) = θ.

(5)

Scaling of vectors is accomplished using the maximum magnitude of the data or a threshold to compare multiple data sets
consistently. The color map, Eq. (5), maps two-dimensional vectors to a cone-shaped subspace of the CIEL∗Ch color space.
The constants are chosen so that the color difference metric, ∆E, has the same value for two vectors of equal magnitude
but opposite orientation and two vectors of the equal orientation and opposite magnitude.

The color map, Eq. (5), can be illustrated without loss of generality by examining vectors in the unit disk. Fig. 1 shows
the color representation for vectors in this disk, with color assigned to the polar representation of the two-dimensional
vector. The scaling of L∗ and C with r results in darker, less vivid colors for smaller vectors. With the chroma linearly
dependent on the vector magnitude, colors are centered around black, representing the absence of color. There is no
natural ordering of hue [7]. Hue can be shifted in Eq. (5) so that a specific color represents a particular angle, e.g. green
for 0◦, by defining a new hue, H(r, θ ) = θ + π . An appropriate shift would be application dependent. We use the color
wheel in Fig. 1(a) as a legend in other figures instead of the usual color bar.

The color metric corresponding to the map Eq. (5) can be written in the form

∆L∗
= 50

√
3|r1 − r2|

∆C = 50
√
(r1 − r2)2 + 4r1r2 sin2((θ1 − θ2)/2)

∆h = θ1 − θ2

∆E =

√
∆L∗2 + ∆C2 cos2(∆h) + ∆C2 sin2(∆h).

(6)

It is again straightforward to verify that Eq. (6) is a metric on the space two-dimensional vectors. For colors, ∆E is still
he L2 metric, Eq. (1) or Eq. (2), but interpreted as a metric on vectors, ∆E is non-Euclidean. However, vectors close in
his metric are mapped to colors that are perceptually close in the color space. An interpretation of this metric in terms
f skill measures is described next.
3
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Eq. (6) is written in a form to suggest a visualization method for vector differences, where the L∗Ch color code is taken
to be (∆L∗, ∆C, ∆h). If the vector difference represents a measurement error, this novel color coding for vector differences
combines information from three skill measures, the magnitude difference (∆L∗), direction error (∆h), and (∆C). The last
f these contributions is not as straightforward as the other two. It contains information about the magnitude of the
ectors themselves, in addition to the differences in magnitude and direction. If, for example, r1 is much larger than
2 then ∆C ≈ 50r1 reflects the larger vector size. A vector difference that has similarly large magnitude vectors with
iffering orientation would appear dark, due to minimal magnitude difference, but have a vivid color due to the differing
rientation. However, for the case with similarly small magnitude vectors and differing orientation, the result would be
dark and dull color, near black.
The mapping, Eq. (5), enables both a vector field and the difference between vector fields to be shown as a unique

nd meaningful L∗Ch color code. In subsequent sections, we rely on the norm ∆E to quantify differences in vectors and
ifferences in images.

.1. Arctic motion data visualization and analysis

An illustration of the color map, Eq. (5), is obtained by visualizing monthly-averaged daily Arctic ice motion vectors
n a 100 km SSM/I grid. The data are available from NSIDC [10]. Zhao and Liu [11] study the circulation regimes and
inter-to-winter variability of Arctic sea-ice motion. They find that the mean Arctic sea-ice motion during the winter
easons from 1988 to 2003 has two distinct features: the Beaufort Gyre and a cyclonic circulation system in the Eurasian
asin moving ice from the Laptev Sea to Fram Strait.
There are several methods available for analyzing and visualizing vector fields, e.g. [6]. Each method has its own

dvantages and disadvantages. Four methods are applied to the Arctic sea-ice motion field in January of 2004 and shown
n Fig. 2. Fig. 2(a) uses quiver arrows to show the displacement field. This is a discrete representation of the vector field.
he direction of a vector is given by the arrow orientation and the magnitude is given by the size of the arrow. When
here is a large range of magnitudes, small magnitude arrows can be difficult to discern. The vector field often has to be
ubsampled in order to effectively see the arrows. Munzner [7] also notes that the accuracy of our perception of angle is
ot uniform. ‘We have very accurate perceptions of angles near the exact horizontal, vertical, or diagonal positions, but
ccuracy drops off in between them. We can tell 89◦ from 90◦, 44◦ from 45◦, and 1◦ from 0◦; however, we cannot tell
7◦ from 38◦’.
The remaining three methods provide a continuous representation of the flow. The Line Integral Convolution (LIC)

n Fig. 2(b) shows the flow but not its direction. However, the LIC is particularly useful in identifying critical points in
therwise smooth flow fields [6] – the gyre center in this view is readily apparent. The color scale in Fig. 2(b) represents
ifferent flows and does not represent the magnitude of the flow. The LIC can be enhanced using the overlay and underlay
echniques from [12]. Fig. 2(c), uses the standard parula1 color map to represent the flow magnitude and the flowlines in
the underlay LIC, and an overlay of the orientation arrows to show the direction of the flow. The combination captures
information about the field within one image through these independent layers. Lastly we show the vector color map given
by Eq. (5) to display the Arctic vector field in Fig. 2(d). The brighter areas of this plot indicate large vector magnitude and
the hues represent the orientation. To help guide the reader in interpreting the hue, we overlay quiver arrows. The chroma,
being also a function of vector magnitude, de-emphasizes the color when the vector magnitude is small. Fig. 2(d) captures
the gyre, has brighter areas to highlight larger magnitude vectors as in Fig. 2(c), and shows flow direction through the
hue or overlaid arrows.

2.2. Arctic motion comparison

Returning to the analysis of Zhao and Liu [11], we can look at the strengths and sizes of the Beaufort Gyre and cyclonic
flow, and how they change from season to season. We take as an example, January 1994 ice motion, depicted in Fig. 3(a),
which shows a Beaufort Gyre, while Fig. 3(b) shows January 1995 ice motion which has a weak Beaufort Gyre and a strong
cyclonic motion.

Figs. 3(a,b) show the CIEL∗Ch rendering of ice motion vectors, using the color map Eq. (5). The cone structure of the
color map dulls small vector magnitudes. The gyre in Fig. 3(a) has a dark center since vector magnitude is relatively
smaller. Around the dark center is a variation in hue indicating the varying vector orientation of flow around the gyre.
The brighter patches of color are regions where vector magnitude is largest. The predominantly pink color in the central
Arctic shown in Fig. 3(b) indicates vectors oriented near zero degrees, a mainly horizontal flow. Both Figs. 3(a,b) have
bright blue areas around Greenland indicating large southward flow of ice being exported from the Arctic.

The color rendering of Figs. 3(a,b) reveals the distinct features of ice motion described in [11]. The difference between
these two patterns of ice motion is quantified by the color metric. A contour plot, using the parula color map, of ∆E
or the difference of vectors in Figs. 3(a,b) is shown in Fig. 3(c). Large values of ∆E, for example off the coast of Alaska
nd Eastern Siberia, indicate either large magnitude and/or large orientation differences. To discern which attribute is
ontributing most to the metric, the difference color map, Eq. (6), can be used. The rendering is displayed in Fig. 3(d).

1 The parula map is the current default map in Matlab. It is not perceptually uniform.
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Fig. 2. Vector visualization comparison.

Near the coast of Alaska, the bright pink areas indicate near zero orientation difference, but large magnitude difference
contributing to ∆E. Near the Eastern Siberian coast, the large difference has a blue hue, indicating both an orientation
difference of about −3π/4 and a magnitude difference in the vectors. Duller colors correspond to smaller magnitude
ifferences and orientation differences whose size is indicated by the hue. Vectors of similar size around Greenland have
small difference and are rendered as dark, dull areas in Fig. 3(d). Parts of the Beaufort Gyre that align with the cyclonic
otion are also dark, dull regions in the figure. The region in the center of the gyre in Fig. 3(a) has an orientation difference
hen compared to the cyclonic motion in Fig. 3(b), since the cyclonic motion is primarily unidirectional. Fig. 3(d) shows
ifferences in hue where the center of the gyre would be, with the darker colors representing small magnitude differences.
5
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Fig. 3. Visualization of Arctic ice motion in L∗Ch color space.

3. Fracture modeling verification

The monthly-averaged Arctic motion of the last section results in smooth vector fields where it makes sense to
compare fields by simple differences. Visualization techniques that rely on smooth flow fields, like LIC are also appropriate.
However, stresses on the ice, particularly in the winter, cause the ice cover to fracture and open up into leads. Shifting
stresses can later cause convergent flow with refrozen leads being crushed into pressure ridges. Thus, ice motion
influences ice mass balance in the Arctic, with leads playing an important role. Lead formation, or fracture, implies that
the displacement field has a jump singularity.

Modeling fracture formation in sea ice is a nascent area of research with no established methods for visualization and
analysis. The jump in displacement is a vector quantity. The magnitude of the vector is the size of the jump, and the
direction is the direction of crack opening. The direction of the jump is measured by the angle that the normal to the
crack makes to the x-axis. The distribution of these fractures in space, the distribution of sizes, and the distribution of
orientations are quantities of interest. It is also of interest to have a metric to compare two fractures, say one predicted
from a simulation and the other observed. A simple difference between two images that contain fractures will be
meaningless since the fractures will not generally be coincident, aligned, or the same size and shape.

Since the displacement jump associated with a fracture is a vector quantity, it can be visualized using the CIEL∗Ch color
map. The orientation angles fall uniquely in the range (−π/2, π/2] and are mapped to a hue in the color map by doubling
their value. Fig. 4(a) shows a sketch of a straight crack with constant jump magnitude. The orientation is indicated by the
yellow coloring associated with the normal to the crack being at an angle of π/4 to the horizontal. Similarly, Fig. 4(b)
depicts a straight crack with a pink color denoting an orientation at zero. For the purposes of this illustration, Fig. 4(a)
will be thought of as an observed crack and Fig. 4(b) as the result of a simulation.
6
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Fig. 4. Visualization of cracks.

Since the displacement jump due to a crack is localized along a curve, fractures cannot be compared using simple
differences between the two localized displacement fields since the fractures do not align. Guan et al. [5] introduced
the idea of image warping as a way to compare localized fractures in two-dimensional images. This section uses the
idealized problem sketched in Fig. 4 to illustrate use of (i) image warping to align localized features for comparison, (ii)
space-filling curves to reduce image warping to the easier problem of functional alignment, (iii) metrics for comparison
of image features based on image warping, and (iv) the CIEL∗Ch color map to visualize the metrics.

3.1. Image warping

An image is a rectangular array of pixels, each pixel having a color. Image registration, finding a correspondence
between pixels across images, is a standard problem in image processing (see [13] for a review). Recently, the concept
of warping images for registration using metrics has become increasingly popular given the properties it provides (Beg
et al. [14], Tagare et al. [15], Vercauteren et al. [16], Xie and Srivastava [17]). In [5] we propose using amplitude and phase
metrics, introduced by Xie and Srivastava [17], which are proper distances in the space of images. The phase metric gives
a measure of how much warping is required to register geometric features. The other, amplitude metric, gives a measure
of the pixel intensity differences, if any, after an optimal warping has been applied. The combination of the measures
allows one to determine how well a model is reproducing geometric features or coherent structures. A low amplitude
metric, for instance, implies there is a smooth deformation from one image to the other, meaning a geometric feature
is likely captured but perhaps misaligned. The magnitude of the phase metric gives a measure of how misaligned the
feature is. In contrast, a high amplitude metric implies the geometric features of the two images are inconsistent and are
not captured by the model.

Mathematically, the image warping process requires determining an optimal, boundary preserving diffeomorphism,
γ ∗, that maps one image to another under the so-called q-map of the image. The reader is referred to [5,17] for details.
However, difficulties arise with this construct. The gradient descent used to determine the optimal warping function is
difficult to control. It is sensitive to step size and the number of basis functions used to represent γ ∗ in its orthonormal
xpansion. The extrinsic metric using the q-map gives a nice metric for computing the distance between images, but
urther statistical analysis, such as principal component analysis, becomes hard due to the fact that the inverse mapping
s not available in closed form. The restriction to boundary-preserving diffeomorphisms also constrains the amount of
otion available for two-dimensional image alignment.

.2. Space filling curves

The same difficulties that arise in warping two-dimensional images do not arise in the amplitude and phase separation
f functional data [18]. In order to transform the image registration problem to one of function registration, we introduce
he idea of sampling the image using space filling curves (SFC).

A naive way to covert a two dimensional image to a one dimensional image is by sweeping through the rows, one
ow at a time, or through the columns, one column at a time, and concatenating them into a single row or column.
owever pixels that are in the same column but in different rows are far apart within this one dimensional construction.
t is useful to try and preserve locality when we transform the images to one dimension, i.e., points that are close in the
wo dimensional image are also close in the one dimensional space. Space filling curves provide a mechanism to map
ultidimensional space into one dimensional space [19] which approximately preserves locality.
7
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Fig. 5. Visualization of the cracks with Hilbert SFC(5) and warping application.

There are many ways to construct a space filling curve, but the most widely used in two dimensions is the Hilbert
curve. Compared to other space filling curves, it has higher autocorrelation [20] and its shape is not biased toward one
dimension over another [21]. Space filling curves are built by a recursive algorithm that gets to finer resolution and
fills out the domain with increasing order, n, with the entire two-dimensional region traversed as n → ∞. Applied to
dimension reduction for images, the order of the space filling curve is finite since only the finite number of pixels in the
image need to be traversed. We will use the notation SFC(n) for a space filling curve of finite order, n. We often only need
rder n = 5− 7 to sample the image adequately. Figs. 5(a,b) show a Hilbert curve of order 5 superimposed on the cracks
rom Fig. 4. The endpoints of the Hilbert curve in this example are in the upper and lower left-hand corners. The space
illing curve provides a parameterization x(s) = (x(s), y(s)), s ∈ [0, 1] for the points x = (x, y) in the image. A variant of
the Hilbert curve algorithm creates a looped (periodic) Hilbert curve, also known as the Moore curve with x(0) = x(1)
and y(0) = y(1). We employ looped variations and rotations of the curve depicted in the figure to sample images. The
rotations place the starting and ending points in different corners of the image.

3.3. Functional data alignment

Once the two dimensional image is mapped to one dimension via the SFC(n), we can use functional alignment to
compare images. Let F be the set of absolutely continuous functions with domain [0, 1]. In functional alignment, given
functions, f1, f2, in F , the goal is to optimally align f2 to f1. Alignment or warping functions, γ , are boundary preserving
diffeomorphisms, γ ∈ Γ = {γ : [0, 1] → [0, 1], γ (0) = 0, γ (1) = 1, γ a diffeomorphism}. For any f ∈ F and γ ∈ Γ , the
composition, f ◦ γ denotes the warping of f , by γ .

Srivastava and Klassen [22] introduce use of the square root slope function (SRSF) of f in the cost function defining the
optimal warp γ ∗. The SRSF of f is q : [0, 1] → R with q(f ) = sign(ḟ )

√
ḟ . Note that if f ∈ F then q ∈ L2. Moreover, for any

∈ L and t ∈ [0, 1], f (t) can be obtained from q through the relation f (t) = f (0)+
∫ t q(s)|q(s)|ds since the integrand is ḟ (s).
2 0

8
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If we warp f by γ , the SRSF of f ◦ γ is (q, γ ) = q(γ )
√

γ̇ , and it can be shown [22–24] that ∥q1 − q2∥ = ∥(q1, γ )− (q2, γ )∥
here q1, q2 are SRSFs of f1, f2. This isometry property suggests a cost function defining the optimal warping function
iven by γ ∗

= arginfγ∈Γ ∥q1 − (q2, γ )∥. That is, we align the SRSFs of any two functions first and then map back to F to
btain the registered functions. The optimization problem is solved using standard dynamic programming.
The isometry property leads to a distance metric between functions f1, f2 that is invariant to their warpings [24]. The

mplitude distance, da, is the difference between the functions once they are aligned and the phase distance, dp, measures
ow much warping is needed to align the functions. These distances are defined as

da(f1, f2) = inf
γ∈Γ

∥q1 − (q2, γ )∥

dp(γ ) = arccos
(∫ 1

0

√
γ̇ dt

)
.

(7)

3.4. Image warping example

Returning to the example shown in Fig. 5, points along the SFC(n), x(s) = (x(s), y(s)), are given a color encoded by
he lightness-chroma-hue triplet, (l(s), c(s), h(s)). The color is assigned based on the vector jump in displacement field
t that point. The lightness channel in the color map corresponds to the magnitude of the vector. Thus, we can view
he lightness as also parameterized by s and obtain a function l(s), s ∈ [0, 1], giving the image lightness. If we align the
ightness functions of the two images we are aligning the vector magnitude of the jump in displacement through its color
pace representation. More precisely, the space filling curve of finite order n is defined by N = 22n nodes. The lightness l(s)
s the piecewise linear function that continuously joins the nodal values l(si), as such l(s) ∈ F . Once the optimal warping
ased on the lightness channel is found we can apply that warping to the other color channels. Fig. 5(c) shows the warped
pace filling curve that results from aligning the simulation to the observation, along with the aligned crack. In mapping
imulation lightness, l2(s), to the observation lightness, l1(s), Fig. 5(c) shows the color (l2 ◦ γ ∗(s), c2 ◦ γ ∗(s), h2 ◦ γ ∗(s))
lotted at x(s). Fig. 5(c) shows the pink, vertical, simulation crack shown in Fig. 5(b) aligned with the observation crack
rom Fig. 5(a) through this process.

Even though the space filling curves try to preserve locality it can still be the case that points close in 2D are not
ecessarily close in 1D. In order to mitigate biases that might be introduced by choosing one space filling curve overlaid
n a specific image, we sample the image with a few different variations of space filling curves and use the best sampling

or that image. Specifically, we take
kπ
2

, where k = 1, 2, 3, 4, rotations of the Hilbert curve and its looped variant the
Moore curve, for a total of 8 different 1D representations of the same image. For each instance of the specific space filling
curve, we compute the amplitude metric, da. Recalling that a small amplitude metric implies a good alignment of features,
we choose the space filling curve that has the smallest amplitude metric.

Black areas in Figs. 5(a–c) correspond to zero lightness or zeros of the function l(s). In aligning l2(s) (simulation) to l1(s)
observation), the zero values can move large distances to align nonzero peaks in the functions. This movement is reflected
n the deformed space filling curve shown in Fig. 5(c). For this application, we are not interested in the movement of the
eros. Using the lightness channel of the 1D image as a weight, we create a weighted displacement field to represent the
otion needed to align features in the 2D images. The displacement from simulation to observation is x ◦ γ ∗−1

− x. The
eighted displacement has the form l2(s)(x◦γ ∗−1

−x)/D. The constant scale D is chosen to ensure that vector magnitudes
re represented in the color space. For example, D can be the maximum magnitude of the vector field in the figure. Or, to

keep the color consistent over several images, D could be the maximum possible vector length for all images (the image
size). Fig. 5(d) shows the weighted vector displacement, which is now localized to the crack. The displacements show a
rotation with the upper part of the simulation crack moving further than the lower part to align with the observation.
Note, we can also align in the opposite direction, from observation to simulation, in which case the weighted displacement
would be l1(s)(x ◦ γ ∗

− x)/D.

.5. Image amplitude and phase

It is of interest to develop metrics on images that mimic the one-dimensional phase and amplitude separation in
q. (7). In this section, we work toward developing such metrics. A rigorous analysis of images requires restricting the set
f images, I, to those whose pixels can be put in one-to-one correspondence with the nodes of a SFC(n), for a given, fixed
rder n. The amplitude distance between images I1, I2 ∈ I should measure the difference in the images once I2 is aligned
ith I1. The data for such a metric would come from comparing Figs. 5(c) to 5(a) in this crack example. As previously
oted, the L2 distance between colors, Eq. (2), has meaning in the L∗Ch color space. Fig. 6(a) shows the color difference
etween the observation, Fig. 5(a), and the warped simulation, Fig. 5(c). Since both cracks have constant magnitude and
rientation, the yellow (π/4) orientation of the observation minus the pink zero orientation of the simulation, results in
he yellow difference in Fig. 6(a). In warping I2 to I1, each point of the observation image with coordinates x(s) has a color
riplet associated with it, (l1(s), c1(s), h1(s)), giving the lightness, chroma, and hue. The corresponding warped simulation
mage has a triplet (l2 ◦γ (s), c2 ◦γ (s), h2 ◦γ (s)) at the same coordinate. These data are used to compute a color difference

E(s) at each point according to Eq. (2), a contour plot of which is in Fig. 6(b). A corresponding amplitude metric, Da,γ , for

9
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Fig. 6. Differences between Fig. 5(a) and (c). The color difference in (a) uses crack orientations in (−π/2, π/2] that are doubled to obtain the hue;
b) is the color difference metric; and (c) is a phase distance measure.

he entire image is obtained by integrating ∆E over the domain of the two image curves I1(s) and I2(γ (s)). In the discrete
etting, this reduces to a sum over the N nodes s1, s2, . . . , sN , defining the space filling curve

Da,γ (I1, I2) =

√ 1
N

N∑
i=1

∆E2(si), where γ warps I2 to I1 (8)

If I1 is warped to I2, the color comparison is between (l2(s), c2(s), h2(s)) and (l1 ◦ γ −1(s), c1 ◦ γ −1(s), h1 ◦ γ −1(s)). The
ubstitution s = γ (t) shows that Da,γ (I1, I2) = Da,γ −1 (I2, I1). When γ = γid, where γid is the identity warping, γid(s) = s,
a,γid is the image amplitude metric for the original, unaligned images. Since ∆E is a metric on colors, it is straightforward
o verify Da,γ is a metric on images.

A phase metric should measure the effort required to warp one image into the other. A candidate phase metric is a
easure of the weighted displacement field, an example of which is in Fig. 5(d). However, using the lightness as a weight
ould include amplitude information in the phase. Moreover, the weighted displacement from I2 to I1 would not be the
ame as from I1 to I2. An alternative is to weight the displacement by the Heaviside function, H , of the lightness, where

(x) =

{
1 x > 0
0 x = 0

. Averaging the displacement from I2 to I1 and from I1 to I2 provides a symmetric measure

∆P(s) =
1
2

(
H(l1(s))∥x ◦ γ ∗(s) − x(s)∥2

+ H(l2(s))∥x ◦ γ ∗−1(s) − x(s)∥2) (9)

Fig. 6(c) shows a contour plot of ∆P for the crack example. This definition of ∆P quantifies the size of the displacement
eeded to align the two images for the subset of pixels in the images with nonzero lightness. For this reason, we refer to
P as a phase distance measure.
A corresponding image phase distance measure is obtained by integrating over the domain

Dp(I1, I2) =

√ 1
N

N∑
i=1

∆P(si). (10)

p is symmetric and non-negative. It is zero if and only if ∆P is zero, in which case γ ∗ is the identity and the two images
ave the same lightness but the chroma and hue can differ. This defect could be corrected by considering the metric to be
efined on the equivalence class of images with the same lightness. However Dp does not satisfy the triangle inequality,
hich is a harder defect to overcome, and thus is not a metric on the space of images. Further refinement is needed, but
his measure has proven to be useful temporarily in developing the calibration framework illustrated in Section 3.6.

.6. Parameterized crack example

This example is devised to illustrate how the image amplitude and phase metrics might be used to perform parameter
alibration. Secondarily, this example shows that cracks can be aligned over a range of positions and orientations within
n image. We create multiple images containing a single crack with fixed magnitude and length but the crack is rotated
nd shifted within the image domain. The rotation or the orientation of the crack is represented by the angle between
he normal of the crack and the x-axis. The cracks are parameterized by two parameters, (a, b), where a is the distance
hifted along the diagonal of the image, ranging from −0.25 to 0.25 in an image of size one, and b is the crack orientation
arying from −π/2 to π/2. Each image contains a single crack as shown in Fig. 7(a), where the thumbnail image is placed
ccording to its parameter values (a, b). The horizontal axis corresponds to the parameter a and the vertical axis to b. Crack

orientation changes going top to bottom, and crack position changes from left to right.
10
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Fig. 7. Multi-crack analysis.
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Instead of a uniform sampling of the parameter space we use a Latin Hypercube Sampling with 80 cases. This sampling
rovides parameter values that do not lie along rows and columns in parameter space, and helps to minimize sampling
ias while exploring effectiveness of the metrics. We view these 80 crack cases in this parameter domain as simulation
ases and we define the observation to be the case at (0,

π

4
) which is indicated by the red star in Fig. 7. We want to see

f the functional alignment through the space filling curves and the resulting metrics is meaningful.
Fig. 7(b) plots the warped simulations for each parameter setting. The process and the metrics used across the

arameter space have been highlighted for the specific case illustrated in Fig. 5 and the associated measures in Fig. 6. Over
ll parameters, we see the warped simulation cases look very similar to the observation in position and color lightness, but
he hue varies. This result is expected since the warping is performed based only on the lightness, with chroma and hue
rought along without change. In fact, the hue in Fig. 7(b) is roughly constant along rows since the vertical-axis parameter
ontrols the crack orientation. Image alignment is good throughout the range of orientation and position parameters. To
uantify the difference between the now aligned images we plot the unaligned image amplitude metric, Da,γid , for all
imulation cases in Fig. 7(c) and the aligned image amplitude metric Da,γ ∗ in Fig. 7(d). As previously noted, comparing
nwarped images, Da,γid , gives no information; whereas the amplitude metric based on image warping, Da,γ ∗ , is minimized
round the correct parameter settings defining the observation, indicating little difference between the warped image
nd the observation image. The image amplitude metric is similar along rows in the parameter domain which reflects the
bserved differences in hue shown in Fig. 7(b). The image phase, Dp, is shown in Fig. 7(e) where larger values indicate
arger warping needed for cases further from the observation and small values when little warping is needed to align the
mages. Note the colors are periodic in the vertical direction for Figs. 7(b,d), because the orientation, and therefore hue,
s periodic.

The fact that the image amplitude and phase measures are minimized near the observation shows that these measures
old promise as tools for parameter calibration. It should be noted that the calibration is performed on the metrics and
ot directly on the images themselves. Working with the metrics drastically reduces the problem size, and provides a
ighly efficient calibration framework.

. Conclusions

The principal motivation for the CIEL∗Ch color space is that it is designed so that equal L2 distances between color codes
esults in equal perceived color differences. Thus renderings using this color map provide reliable visual cues for physically
eaningful differences. Moreover, computations on the color codes reflect measures on the vectors themselves. More
recisely, we have shown that the color map defines a non-Euclidean metric on two-dimensional vectors that combines
nformation from three skill measures. Section 2.1 looks at visualization of a smooth vector field obtained from monthly-
veraged, daily sea ice motion in the Arctic. The color is used to focus attention on two different flow patterns that tend
o arise in the Arctic. Differences in these patterns are also highlighted using a difference color map associated with the
ector metric introduced in this paper.
At a local scale, sea ice motion often results in fractures forming in the ice. Comparing simulation results using fracture

odels with observation is difficult because fractures are discrete localized features that are not likely to be coincident
n both the observation and simulation. Image warping can be used to compare discrete, localized features. However,
arping two-dimensional images is numerically tricky and analytically less convenient than the similar process of aligning

unctions. Section 3.2 introduces the idea of sampling a two-dimensional image using a space filling curve in order to
ransform two-dimensional image warping into the more reliable functional alignment problem. Results are presented
sing idealized fractures to show that image alignment is possible and accurate using space filling curves. Moreover, a
ew image-based amplitude metric and phase distance measure show promise as tools in parameter calibration. However,
ork remains. The proposed image phase measure needs to be modified to form a proper metric. Further, it is unclear

f using the Heaviside function of the lightness to weight the displacement in the phase measure is appropriate in other
pplications. These issues remain subjects for future investigation.
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