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Abstract

Quantifying the variability between different T-waves
can shade light into the analysis of ventricular repolar-
ization liability. The variability present in the time-domain
(warping) can corrupt the direct measurement of T-wave
amplitude variability. Dynamic Time Warping (DTW) and
a variation based on a square-root slope function (SRSF)
transformation of the original T-waves have been proposed
to remove the underlying time-domain warping. We com-
pared the performance of both warping algorithms in re-
moving induced time-domain variabilities to a simulated
electrocardiogram (ECG) signal, we assessed the robust-
ness against additive Laplacian noise of dy and da, two
markers of T-wave amplitude variability, after the time-
domain warping has been removed, and we used da to
measure the T-wave amplitude variability induced in real
ECG during a Tilt test. Results confirmed that da is a
robust marker of T-wave amplitude variability not related
to time-domain underlying warping and demonstrated that
da is affected by changes in the sympathetic activity pro-
duced by a tilt test.

1. Introduction

The T-wave on the electrocardiogram (ECG) reflects the
spatio-temporal repolarization heterogeneity of the ven-
tricular myocardium and its duration and morphology are
commonly used to diagnose pathologies and assess risk
of malignant arrhythmias [1]. Variabilities in such spatio-
temporal repolarization heterogeneities are associated with
increased arrhythmic risk [2], and this motivates the com-
parison of T-wave morphologies. However, a serious chal-
lenge arises when the T-waves are observed with flexibility
or domain warping along the time domain. This warping
may denote an inherent variability produced by repolariza-

tion heterogeneities or changes in heart rate that needs to
be separated from the variability along the amplitude do-
main.

The most traditional algorithm of time-domain warping
is the dynamic time warping (DTW) [3], which performs a
sample-to-sample projection of one T-wave to a reference
T-wave that aims at minimizing the Euclidean distance be-
tween both T-waves. DTW leads to a warping function that
can be used to remove the time domain variability present
in the original T-waves and, then, compute the Euclidean
distance between the reference and the warped T-wave to
calculate the genuine amplitude variability. Recently, a
variation of DTW was proposed [4, 5] based on a math-
ematical representation of the signals, called the “square-
root slope function” (SRSF), to improve alignment and
provide fundamental mathematical equalities that lead to
a formal development of the warping problem. Together
with the warping cost function, they proposed dy , the Eu-
clidean distance of the difference between the SRSFs of
the reference and the warped T-waves.

The objectives of this study are (1) to demonstrate that
the warping algorithm based on SRSFs is more capable
than DTW in removing time-domain variability, (2) to pro-
pose a new marker of T-wave amplitude variability, da,
with higher robustness against additive Laplacian noise
than dy , (3) to assess whether da can be used to quantify
the changes in T-wave amplitude produced by a Tilt test.

2. Methods

2.1. Warping Functions and Amplitude
Variability Markers

Consider two T-waves, fr(tr) = [fr(tr(1)), ..., fr(tr(Nr))]
T

and fs(ts) = [fs(ts(1)), ..., fs(ts(Ns))]
T , where tr =

[tr(1), ..., tr(Nr)]
T and ts = [ts(1), ..., ts(Ns)]

T and Nr



and Ns being the total duration of tr and ts, respectively.
We take fr(tr) as the reference T-wave and fs(ts) as the
T-wave to be compared with respect to fr(tr).

Let γ(tr) be the warping function that relates tr and
ts, such that the composition fs(γ(tr)) denotes the re-
parameterization or time domain warping of fs(ts) using
γ(tr), i.e. fs(γ(tr)) represents the amplitude values of
fs(ts) if its temporal vector was tr. Then, the DTW algo-
rithm finds the optimal warping function, γ∗W(t

r), as:

γ∗W (tr) = argmin
γ(tr)

(‖fr (tr)− fs (γ (tr))‖) . (1)

The SRSF of a T-wave f(t) is defined in the following
form [4, 5]:

qf (t) = sign
(
ḟ (t)

)√∣∣∣ḟ (t)
∣∣∣ (2)

If we warp a f(t) by γ(t), the SRSF of [f ◦ γ](t) is
given by: qf (γ(t))

√
γ̇(t). Now, the optimal warping

function was proposed in [4, 5] as the function that min-
imizes the Euclidean distance of the difference between
the SRSF of the original signals, obtaining a transformed
warping function, denoted as γ∗TW(t

r):

γ∗TW (tr) = argmin
γ(tr)

(∥∥∥qfr (tr)− (qfs (γ (tr))
√
γ̇(tr)

∥∥∥) .
(3)

We can define two markers of amplitude variability:

dy =

∥∥∥∥qfr (tr)−
(
qfs (γ∗TW (tr))

√
γ̇∗TW (tr)

)∥∥∥∥ , (4)

da =
‖fr (tr)− fs (γ∗TW (tr))‖

‖fr (tr)‖
× 100. (5)

2.2. Signal Preprocessing and T-wave selec-
tion

Preprocessing of the ECG signals included low-pass fil-
tering at 40 Hz to remove electric and muscle noise but
allow QRS detection, cubic splines interpolation for base-
line wander removal and ectopic beats detection.

Principal Component Analysis was calculated lead-wise
over the T-waves from the available leads to emphasize the
T-wave energy, improve its delineation and enhance mor-
phological differences [6].

Each T-wave from the first principal component was
selected using the T-wave onset and T-wave offset delin-
eation marks [7]. Then, each T-wave was further low-pass
filtered at 20 Hz to remove the components that could po-
tentially corrupt the T-wave shape.

2.3. Simulation Study

The accuracy of the different markers of T-wave ampli-
tude variability, dy and da, in detecting T-wave amplitude
variations was assessed by simulating, under the presence
of different levels of additive noise, controlled variations
in the T-wave duration.

Let the T-wave from a reference noise-free cardiac beat,
sampled at 1 kHz, be the reference T-wave, fr[tr].

T-wave amplitude variability was modelled by multiply-
ing the deviations from the iso-electric line of each T-wave
i by a sinusoidal wave in the following way:

fsi (t
r) = fr (tr) ·

(
1 + 0.15 · sin

(
π (i− 1)

I − 1

))
, (6)

i= 1, ..., I,

T-wave time domain modulation was introduced by
modifying the temporal domain of fr[tr] according to the
following equation:

tsi = tr(1) + (tr(Nr)− tr(1)) .
(

tr − tr(1)
tr(Nr)− tr(1)

)α(i)
α(i) =

(
0.45(i− 1)

I − 1
+ 0.8

)
, i = 1, ..., I (7)

where i is the heart beat, and I is the number of modulated
beats. The i-th modulated cardiac beat was obtained by
transforming fr[tr] to fsi [t

s
i ]. Then, a computer-generated

ECG signal was obtained by concatenating the I = 300
modulated cardiac beats after the reference cardiac beat.
This led to a 301-beat ECG signal. Then, this computer-
generated ECG signal was preprocessed, detected and de-
lineated, and the T-waves were delimited as explained in
section 2.2. The reference dra = [dra(1), ..., d

r
a(I)] and

dry = [dry(1), ..., d
r
y(I)] series were obtained by warping

each fsi [t
s
i ] with fr[tr], located in the first beat using eq.

(3) and applying eqs. (4 and 5).
Then, zero mean Laplacian noise was iteratively added

to the computer-generated ECG signal, such that the
signal-to-noise ratio (SNR) was, in decibels (dB): SNR =
{6, 12, ..., 36}. The estimated dSNR

a = [dSNR
a [1], ..., dSNR

a [I]]
and dSNR

y = [dSNR
y [1], ..., dSNR

y [I]] series were obtained by
comparing the T-waves from the noisy modulated ECG
signal with noisy reference T-wave, located in the first
beat. The estimation errors were, then, calculated as:

ed (SNR) =

√√√√∑I
i=1 (d

SNR (i)− dr (i))2∑I
i=1 (d

r (i))
2

× 100, (8)

where d = {dy, da}. The noise generation and relative
error measurement steps were repeated 50 times in order
to have robust relative error values.
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Figure 1. Demonstration of pinching problems using γ∗W (tr) (left) and γ∗TW (tr) (right).

2.4. Real ECG

ECG recordings from a database acquired at the Univer-
sity of Zaragoza for the study of the autonomic nervous
system (ANS-UZ) were analyzed [8]. Recordings were
obtained from 17 healthy subjects (age 28.5±2.8 years,
11 males) with no previous medical history related to car-
diovascular diseases. Each recording consisted of 8 ECG
leads, sampled at 1 KHz, acquired during a 13-min head-
up tilt test (4-min supine, 5-min at 70◦, 4-min supine).

The ECG recordings were preprocessed and delineated
and da series were obtained for each subject by compar-
ing each T-wave with the last one. The smoothed pseudo
Wigner-Ville distribution (SPWVD) was used to estimate
the time-varying spectral properties of da. The SPWVD of
a signal x(t) is defined as [9, 10]:

Sx(t, f) =

∫ ∫ ∞
−∞

κ(τ, ψ)Ax(τ, ψ)e
j2π(tψ−fτ)dψdτ

(9)
where Ax(τ, ψ) is the ambiguity function of x(t), and
κ(τ, ψ) is the elliptical exponential kernel defined in [11].
The range between 0.04 and 0.15 Hz (low-frequency com-
ponent, LF) represents both sympathetic and parasympa-
thetic modulation, although an increase in its power is
generally associated with a sympathetic activation. The
range between 0.15 and 0.4 Hz (high-frequency compo-
nent, HF) corresponds to parasympathetic modulation and
is synchronous with the respiratory rate. For each subject,
the temporal evolution of the power content of da, within
each frequency band, P daB (t), were obtained integrating

Sx(t, f) in the frequency band B ∈ {LF,HF}, respectively.

3. Results and discussion
3.1. Simulation Study

Figure 1 presents an example of warping functions us-
ing eq. (1) (left) and (3) (right). Top panels show fr(tr) in
solid blue and fs(ts) in dash-dotted cyan. Bottom panels
show fr(tr) in solid blue and the warped fs(ts) using ei-
ther γ∗W (tr) (left) or γ∗TW (tr) (right). The fact that fr(tr)
and fs(ts) have different amplitude values makes the cost
function in eq. (1) to become degenerate and the result-
ing warped function to be “pinched”. The cost function
described in eq. (3), on the contrary, has a built-in regu-
larization term,

√
γ̇∗TW (tr), that prevents it from becoming

degenerate and resulting in absurd results. Therefore, we
will only use γ∗TW (tr) as the optimal warping function in
the rest of this document.

Figure 2 shows the mean±standard deviation of the rela-
tive error between dSNR

a and dra (blue), and dSNR
y and dry (red),

for different values of SNR. It can be seen how the relative
error values of dy are constantly higher than those from da.
This is because dy is calculated using the difference of the
SRSFs of the original T-waves, and since the SRSF trans-
formation is proportional to the derivative, it highlights the
high components of the signal, but, at the same time, is less
robust against additive broadband noise.

3.2. Real ECG

Since we have previously shown that da is not influ-
enced by the “pinching effect”, and is more robust against
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Figure 2. Relative error between reference and esti-
mated da (blue) and dy (red) under the presence of additive
Laplacian noise.
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Figure 3. Temporal trend of the series during a Tilt test.
(First and second panels) Temporal evolution of the RR
and da series, respectively, for subject 9 in the database.
(Thir and fourth panels): Temporal evolution of the in-
stantaneous power of da in LF and HF, respectively, es-
timated as the median (blue) + median absolute deviation
(red) among subjects.

additive Laplacian noise than dy , we decided to use da to
measure T-wave amplitude variability during a Tilt test.

The results of comparing the amplitude of each T-wave
in the ECG- recording with the last one are reported in
Figure 3. RR and da series for a subject (male, 24 years
old) are shown in the top and second panels. The temporal
evolution of the median (blue) + absolute deviation (red)
instantaneous power in the LF and HF bands for da are
reported in the third and fourth panels, respectively. The
increase in P daLF (t) during tilt indicates that da is affected
by changes in the sympathetic activity, which have been

shown to increase during orthostatic body positions [12].

4. Conclusions

The present paper proposes a novel marker of T-wave
amplitude variability completely unrelated to non-linear
time domain variability, robust against additive Laplacian
noise and capable of quantifying the variability in the T-
wave amplitude produced by an orthostatic change.
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