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Abstract
Detecting changepoints in functional data has become an important problem as
interest in monitoring of climate phenomenon has increased, where the data is
functional in nature. The observed data often contains both amplitude (y-axis)
and phase (x-axis) variability. If not accounted for properly, true changepoints
may be undetected, and the estimated underlying mean change functions will be
incorrect. In this article, an elastic functional changepoint method is developed
which properly accounts for these types of variability. The method can detect
amplitude and phase changepoints which current methods in the literature do
not, as they focus solely on the amplitude changepoint. This method can easily
be implemented using the functions directly or can be computed via functional
principal component analysis to ease the computational burden. We apply the
method and its nonelastic competitors to both simulated data and observed data
to show its efficiency in handling data with phase variation with both ampli-
tude and phase changepoints. We use the method to evaluate potential changes
in stratospheric temperature due to the eruption of Mt. Pinatubo in the Philip-
pines in June 1991. Using an epidemic changepoint model, we find evidence of
a increase in stratospheric temperature during a period that contains the imme-
diate aftermath of Mt. Pinatubo, with most detected changepoints occurring in
the tropics as expected.
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1 INTRODUCTION

The statistical analysis of functional time series has become increasingly important to many scientific fields including
climatology (Shang & Hyndman, 2011), finance (Kokoszka & Zhang, 2012), geophysics (Hörmann & Kokoszka, 2012),
demography (Hyndman & Booth, 2008), manufacturing (Woodall, 2007), and environmental modeling (Fortuna
et al., 2020). A functional time series is a sequence of functions (i.e., infinite dimensional objects), observed over time.
Functional time series are analogous to univariate or multivariate time series, except that we observe a continuous func-
tion at each point in time (Bosq, 2012). In Figure 1, we plot daily stratospheric temperatures at one location as a functional
time series, one of the motivating data sets for this work. In each year, we observe a function that describes the tem-
perature over the course of that year. Although not obvious in Figure 1, stratospheric temperature trends experienced a
significant change from normal following the 1991 Mt. Pinatubo eruption.
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F I G U R E 1 Daily stratospheric temperature data presented as a functional time series at 115◦E and 10◦N, years 1984–1998 obtained
from the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) reanalysis database (Global Modeling and
Assimilation Office (GMAO), 2015).

Similar to univariate and multivariate time series, a functional time series can experience abrupt changes in its
data-generating mechanism. These abrupt changes are known as changepoints and can complicate further analysis by
invalidating stationarity assumptions. They also can lead to interesting analysis by determining when data has patterns
which are not homogeneous over time, or when a forcing has caused the data-generation mechanism to change. We
consider the problem of detecting changepoints after observing an entire sequence of functions rather than considering a
“streaming” or “real-time” changepoint detection problem. That is, we are interested in evaluating (1) whether a change
occurred in the functional time series or not and (2) if a change was detected, when the change occurred and how the
data-generating mechanism changed. This is particularly useful for changepoints that can traverse multiple years, which
is the case for our motivating problem.

Current methods in the Functional Data Analysis (FDA) literature on changepoint detection have been solely focused
on cross-sectional analysis, or amplitude variability only, and thus completely ignore phase variability that often exist in
the data, especially climate data. In Berkes et al. (2009), a Cumulative Sum (CUSUM) test was proposed for independent
functional data, which was further studied in Aue et al. (2009), where its asymptotic properties were developed. This test
was then extended to weakly dependent functional data by Hörmann and Kokoszka (2010). Zhang et al. (2011) introduced
a test for changes in the mean of weakly dependent functional data using self-normalization to alleviate the use of asymp-
totic control. Sharipov et al. (2016) similarly developed a sequential block bootstrap procedure for these methods. More
recently, Gromenko et al. (2017) considered changes in spatially-correlated functional data, and Aue et al. (2018) pro-
posed a fully functional method for finding a change in the mean without losing information due to functional principal
component analysis (fPCA) truncation.

Phase variability could be just a nuisance parameter or actually contain information. In the latter case, if phase vari-
ability is ignored, the distance metric between functions will be degenerate and the estimated underlying mean function
will not be representative of the data-generating mechanism (Srivastava & Klassen, 2016; Tucker et al., 2013). An example
of this is shown in Figure 2. In Panel (b), it is clear that the mean is not representative of the underlying data-generating
mechanism demonstrated in Panel (a). After alignment shown in panel (c), the mean in Panel (d) accounts for phase
variability and is representative of the underlying data-generating mechanism.

In this article, we present a functional changepoint method that accounts for the amplitude and phase variability.
We demonstrate two different approaches for changepoint detection in this setting: (1) by utilizing the appropriate fPCA
(Lee & Jung, 2017; Tucker et al., 2013) or (2) by utilizing a fully functional approach similar to Aue et al. (2018) where
the mean is computed using the Karcher mean under the Fisher-Rao metric (Srivastava & Klassen, 2016, and described
later). This Fisher-Rao metric is a proper distance and is elastic (that is, it is invariant to random warping). Through
this metric we separate out the amplitude and phase variability for subsequent changepoint analysis. This allows for the
identification of changepoints where the underlying mean changes in amplitude, phase, or a combination of both. We
evaluate performance in two simulation studies, showing that the proposed test statistics properly identify changes and
perform appropriately under the null hypothesis.

A motivation for developing this methodology is to introduce methodology to evaluate changes the temporal pat-
tern of stratospheric temperatures after the eruption of Mt. Pinatubo in June 1991, as presented in Figure 1. Using the
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F I G U R E 2 Example of using proper mean calculation on functional data. Panel (a) presents a set of functional data that contains a
large amount of phase variability. Panel (b) shows the computed mean if the phase variability is ignored. Panel (c) shows the alignment of the
data using the method in Tucker et al. (2013) and the resulting Karcher mean in Panel (d). (a) Original data. (b) Original mean. (c) Aligned
data. (d) Karcher mean.

years 1984–1998, we aim to estimate a change in this sequence of functional data during these n = 15 years. There is
evidence that the eruption of Mt. Pinatubo and its injection of aerosols into the atmosphere increased temperatures in
the stratosphere, leading to many downstream shocks to the climate system (Robock, 2003). Climate data is known to
exhibit strong phase variability in the form of transient or cyclic variability from year to year. In our analysis of strato-
spheric temperature, we find that controlling for phase variability isolates changes in the amplitude while filtering out
transient weather variability from different years. When identifying changes in climate data, controlling for seasonality
is an important aspect of many analyses; see Reeves et al. (2007) and more recently Lund et al. (2022) for an application,
overview, and common challenges for detecting changes in general (non-functional) climate time series data. The data in
Figure 1 demonstrates substantial seasonality in stratospheric temperature. By describing seasonality using smooth func-
tions, the proposed model handles general seasonality characteristics of the data and retains the high-resolution nature
of daily-averaged data.

The remainder of the article is organized as follows: Section 2 presents the elastic amplitude and phase changepoint
methods, and outlines the implementation using fully functional or functional principal component analysis. Section 3
provides analysis of the methodologies on simulated and multiple climate variables from the MERRA-2 data base. Finally,
concluding remarks and future work are presented in Section 4.

2 ELASTIC FUNCTIONAL CHANGEPOINT ANALYSIS

2.1 The functional changepoint problem

Assume we have real-valued functions f1, … , fn that are absolutely continuous on the interval [0, 1]. Using this interval
is not a restriction and can be easily extended to any interval. The standard changepoint problem (Aue et al., 2018; Berkes
et al., 2009) assumes the data is from the following model:

fi = 𝜇 + 𝛿1(i > k∗) + 𝜖i,
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where ||𝜇||2 <∞, ||𝛿||2 < ∞, and E||𝜖i||
2
< ∞ and || ⋅ || is the standard L2 functional norm. The point k∗ labels the time of

the unknown mean change and 𝜖i is a zero mean random error term with may be i.i.d. or potentially weakly dependent
as in Aue et al. (2018). The changepoint detection problem then becomes a hypothesis testing problem of

H0 ∶ 𝛿 = 0 vs. HA ∶ 𝛿 ≠ 0.

Aue et al. (2018) considers the test statistic of Tn = max1≤k≤n ||Sn,k||
2, where

Sn,k =
1
√

n
(k𝜇k − k𝜇n),

𝜇k = k−1∑k
i=1fi. Aue et al. (2018) demonstrate asymptotic properties of this test statistic. In addition to determining

whether there is evidence of a change or not (the detection problem), Aue et al. (2018) also give an estimate of k∗ using
̂k
∗
= argmax1≤k≤n||Sn,k||

2 (the estimation problem).
In addition to the fully-functional statistic, Berkes et al. (2009) and subsequent work propose a functional principal

component-based test statistic that includes dimension reduction. This test statistic evaluates evidence of a change in
the mean of the functional data, and Berkes et al. (2009) also propose an estimate of k∗ which was later adopted in Aue
et al. (2009). These two approaches will motivate our test statistics for functional data with phase and amplitude variability.

Since the test statistics of Aue et al. (2018) and Berkes et al. (2009) are based on functional statistics that do not use
functional alignment, this cross-sectional approach assumes there is no phase variability and that there is only a random
amplitude term. We know from Tucker et al. (2013) and Srivastava and Klassen (2016) that functional data contains two
types of variation, amplitude and phase, and both are important to consider when evaluating functional data for statistical
analysis and modeling.

2.2 The elastic functional changepoint problem

Before introducing the changepoint problem for functional data with amplitude and phase variation, we review key con-
cepts regarding the separation of amplitude and phase variation in functional data. First, we will introduce the group
of warping functions that represent actions on the phase of functions. Let 𝛾 denote a warping function that is from the
following group Γ, the phase space of the unit interval [0, 1] defined as

Γ = {𝛾 ∶ [0, 1] → [0, 1] | 𝛾(0) = 0, 𝛾(1) = 1, 𝛾 is a diffeomorphism}.

This diffeomorphic constraint gives rise to the notion of elasticity because the elements of Γ, that is, phase functions,
can only smoothly stretch and contract portions of the unit interval so that it maps back to itself. It should also be noted,
that defining on the interval [0, 1] is not a restriction and all the following construction can be extended to any arbitrary
interval. The set Γ is a group under the composition operation ◦ and has identity element 𝛾(t) = t. Additionally, we will
use the Fisher-Rao metric and the square-root velocity function (SRVF) for its attractive properties (see Srivastava &
Klassen, 2016 for properties and appropriate proofs). The square-root velocity function (SRVF) is defined as:

q = sign( ̇f )
√

| ̇f |,

where ̇f is the time derivative of the function f . The Fisher-Rao metric and for functions f1 and f2 with corresponding
SRVFs q1 and q2,is defined as

dFR( f1, f2) = ||q1 − q2||
2
,

which is the L2 distance between the SRVFs. Define (q, 𝛾) = q◦𝛾
√
�̇� to represent the effect of a warping function to a

square-root velocity function. That is, if the SRVF of f is q, then the SRVF of f◦𝛾 is (q, 𝛾). An attractive property of the
Fisher-Rao distance is its invariance to random warping, so that for two SRVFs q1 and q2 and a warping function 𝛾 ,
||(q1, 𝛾) − (q2, 𝛾)||2 = ||q1 − q2||

2.
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To consider a changepoint problem for the amplitude of functional data that has phase variability, we propose
the model

qi =
(
(𝜇q + 𝛿q1(i > k∗) + 𝜖i), 𝛾−1

i
)
.

Here 𝜇q is the mean of the square-root velocity functions before a change k∗, 𝛿 is its change, {𝜖i}n
i=1 are random, zero-mean

functions representing amplitude variability, and {𝛾i}n
i=1 are random warping functions that represent phase variability.

Here, we now aim to detect a changepoint in the sequence of SRVF functions while controlling for phase variability. We
can also view the data as

(qi, 𝛾i) = 𝜇q + 𝛿q1(i > k∗) + 𝜖i.

For the changepoint detection problem, we wish to test the hypothesis

H0 ∶ 𝛿q = 0 vs. HA ∶ 𝛿q ≠ 0.

We are also interested in the estimation problem of k∗ and the mean elements 𝜇q and 𝛿q.
We next turn to a different model that hypothesizes a change in the phase of the functional data. Now let

(qi, 𝛾i) = 𝜇q + 𝜖i.

In this setting, we consider a model for 𝛾i as

𝛾i =

{
𝜂i(𝜇𝛾

) if i ≤ k∗

𝜂i(𝜈𝛾 ) if i > k∗,

where 𝜂i(𝜇) denotes a random element of Γ with mean 𝜇 ∈ Γ. Therefore, 𝜇
𝛾
∈ Γ and 𝜈

𝛾
∈ Γ are the mean warping

functions before and after the change, respectively. We then aim to test the hypothesis

H0 ∶ 𝜇𝛾
= 𝜈

𝛾
vs. HA ∶ 𝜇𝛾

≠ 𝜈
𝛾
.

Again, we also consider the estimation problem of k∗ as well as estimating 𝜇q, 𝜇
𝛾
, and 𝜈

𝛾
.

In the next two subsections, we propose a test procedure for changepoints in the amplitude mean and phase mean of
functional data, respectively. While we have separated the amplitude and phase changepoint detection problems, there
may be changes in both the amplitude and phase of the functional data. In this setting, by properly disentangling these
two different sources of variability, one can evaluate changes without the sources of variability potentially impeding each
other. If the practitioner has no prior knowledge on what type of changepoint may exist in the data, one may test for both
an amplitude and a phase change and use a Bonferroni correction to the resulting p-values. However, in many cases,
the type of change may be known a priori. For example, we are primarily interested in an amplitude change in our data
application.

2.3 Amplitude changepoint

From Srivastava and Klassen (2016) the amplitude distance (which is a proper distance) between two functions is
defined as

da(f1, f2) = inf
𝛾∈Γ

||q1 − (q2, 𝛾)||.

Notice that da(f1, f2) is the infimum of the Fisher-Rao distance between the square-root velocity function q1 and a warped
version of the SRVF q2. From a proper distance we can define the Karcher mean of functions as

𝜇

k
q = arg min

q

k∑

i=1
da(q, qi)2.
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It should be noted that since the solution to this optimization problem is invariant to random warping and technically
produces an orbit (i.e., a set of solutions). We pick the element of the orbit similar to Tucker et al. (2013) where the
optimizer is the one corresponding to where the mean of 𝛾i is 𝛾id. Notice that the alignment process and the computation
of a Karcher mean do not take into account potential dependence of elements in the functional time series.

To determine if an amplitude changepoint has occurred, we can define a test statistic using the (scaled) functional
cumulative sum. This is similar to the approach used in Aue et al. (2018). The test statistic is defined as

Sn,k =
1
√

n

(
k𝜇k

q − k𝜇n
q
)
, (1)

where 𝜇n
q is the Karcher mean of the entire data set and for a specific value of k we can compute the Karcher mean 𝜇

k
q . We

can also define a test statistic using the L2 norm to also test for differences in means which is similar to the test statistic
proposed in Gromenko et al. (2017). The test statistic is defined as

Λ2 =
1
n

n∑

k=1
da
(

k𝜇k
q , k𝜇n

q
)2
. (2)

One can use the max-point structural break detector

Tn = max
1≤k≤n

||Sn,k||
2

to test the hypothesis H0 versus HA. One may also estimate the changepoint ̂k
∗

where

̂k
∗
= min{k ∶ ||Sn,k|| = max

1≤k≤n
||Sn,k||}.

For the asymptotic properties of this statistic the reader is referred to Aue et al. (2018). Under this model Tn is distributed
according to

Tn
d
−→ sup

0≤x≤1

∞∑

l=1
𝜆lB2

l (x),

where Bl are i.i.d. standard Brownian bridges defined on [0, 1] and {𝜆l} are the eigenvalues on the long-run covariance
kernel of the error sequence 𝜖i. For this theorem, we assume that the errors 𝜖i(u) are Lp −m approximable, and that again
||𝜇||2 < ∞, ||𝛿||2 < ∞, and E||𝜖i||

2
< ∞; see Aue et al. (2018) for the definition of Lp −m approximable, which allows

for some dependence between elements in the functional time series. The estimation of {𝜆𝓁} can then be done using
the estimator in Section 3.1 of Aue et al. (2018). Computation of critical values of Tn can be done by the simulation of
independent Brownian bridges and truncating the infinite sum; see Section 3.2 of Aue et al. (2018) for more details on
this computation.

The test statistic Tn evaluates potential mean shape changes for functional data under phase variability. We can also
easily implement this using functional principal component analysis (fPCA) as in Berkes et al. (2009). In order to properly
account for the variability, we can use the vertical fPCA and horizontal fPCA presented in Tucker et al. (2013). These
fPCA methods account for the variability by first separating the phase and amplitude and then performing the fPCA on
the spaces separately. Using these methods one can construct the changepoint test in the amplitude space using the SRVF,
q, or specifically the aligned SRVF, q̃, and in the phase space using the warping functions, 𝛾 .

We can use the vertical fPCA from Tucker et al. (2013) to test for an amplitude change. We will first give a short review
of this fPCA method below, and more details can be found in Tucker et al. (2013).

2.3.1 Vertical functional principal components

Let f1, … , fn be a given set of functions, and q1, … , qn be the corresponding SRVFs, 𝜇q be their Karcher mean, and
let q̃is be the corresponding aligned SRVFs using Algorithm 1 from Tucker et al. (2013). In performing vertical fPCA,
one also needs to include the variability associated with the initial values, that is, {fi(0)}, of the given functions. Since



TUCKER and YARGER 7 of 18

representing functions by their SRVFs ignores vertical translation, this variable is treated separately. That is, a functional
variable f is analyzed using the pair (q, f (0)) rather than just q. This way, the mapping from the function space to L2 ×R

is a bijection. In practice, where q is represented using a finite partition of [0, 1], say with cardinality T, the combined
vector hi = [qi fi(0)] simply has dimension (T + 1) for fPCA. We can define a sample covariance operator for the aligned
combined vector ̃hi = [q̃i fi(0)] as

Kh =
1

n − 1

n∑

i=1
( ̃hi − 𝜇h)( ̃hi − 𝜇h)T ∈ R

(T+1)×(T+1)
,

where 𝜇h = [𝜇q f (0)]. Taking the SVD, Kh = UhΛhVT
h , we can calculate the directions of principal variability in the given

SRVFs using the first p ≤ n columns of Uh and can then convert back to the function space  , via integration, to find
the principal components of the original functional data. Moreover, we can calculate the observed principal scores as
𝜂i,l =

⟨
̃hi,Uh,l

⟩
.

The test statistic would then follow directly from Berkes et al. (2009) with test statistic

TN(x) =
1
N

d∑

l=1
𝜆

−1
l

(
∑

1≤i≤Nx
𝜂i,l − x

∑

1≤i≤N
𝜂i,l

)2

, (3)

where 𝜆 are the eigenvalues from Λh and 𝜂 are the scores from the fPCA. The test statistic is distributed as

TN(x)
d
−→

∑

1≤l≤d
B2

l (x), 0 ≤ x ≤ 1,

where Bl(⋅) are independent Brownian Bridges on [0, 1].

2.4 Phase changepoint

From the calculation of the Karcher mean, 𝜇k
q, we have the set of warping functions {𝛾i}k. To perform a changepoint test

on the space of warping functions directly is difficult, as Γ is a infinite-dimensional nonlinear manifold and computation
of the mean is not straightforward due to the unknown geometry. To facilitate computing a mean, we can simplify the
geometry of Γ.

2.4.1 Simplifying geometry of Γ

The space of warping functions, Γ, is an infinite-dimensional nonlinear manifold and therefore cannot be treated as a
standard Hilbert space. To overcome this problem, we will use tools from differential geometry to perform statistical anal-
yses and model the warping functions. The following framework was previously used in various settings including (1)
modeling re-parameterizations of curves (Srivastava & Jermyn, 2009) and (2) putting prior distributions on warping func-
tions (Kurtek, 2017; Tucker et al., 2021), and many others. It is also very closely related to the square-root representation
of probability density functions introduced by Bhattacharya (1943).

We represent an element 𝛾 ∈ Γ by the square-root of its derivative 𝜓 =
√
�̇� . Note that this is the same as the SRVF

defined earlier, and it takes this form since �̇� > 0. The identity 𝛾id maps to a constant function with value 𝜓id(t) = 1. Since
𝛾(0) = 0, the mapping from 𝛾 to 𝜓 is a bijection and one can reconstruct 𝛾 from 𝜓 using 𝛾(t) = ∫ t

0 𝜓(s)
2ds. An important

advantage of this transformation is that since ||𝜓||2 = ∫ 1
0 𝜓(t)2dt = ∫ 1

0 �̇�(t)dt = 𝛾(1) − 𝛾(0) = 1, the set of all such 𝜓s is the
positive orthant of the unit Hilbert sphere in L2: Ψ = S

+
∞. In other words, the square-root representation simplifies the

complicated geometry of Γ to a (subset of a) unit sphere. The distance between any two warping functions, that is, the
phase distance, is exactly the arc-length between their corresponding SRVFs on Ψ:

dp(𝛾1, 𝛾2) = d
𝜓
(𝜓1, 𝜓2) ≡ cos−1

(

∫

1

0
𝜓1(t)𝜓2(t)dt

)

. (4)

Figure 3 depicts the SRVF space of warping functions as a unit sphere (Tucker, 2014).
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F I G U R E 3 Depiction of the SRVF space of warping functions as a sphere and a tangent space at 𝜓1.

While the geometry of Ψ ⊂ S∞ is more tractable, it is still a nonlinear manifold and computing standard statistics
remains difficult. Instead, we use a tangent (vector) space at a certain fixed point for further analysis. The tangent space at
any point 𝜓 ∈ Ψ is given by: T

𝜓
(Ψ) = {v ∈ L2|∫

1
0 v(t)𝜓(t)dt = 0}. To map between the representation spaceΨ and tangent

spaces, one requires the exponential and inverse-exponential mappings. The exponential map at a point 𝜓 ∈ Ψ denoted
by exp

𝜓

∶ T
𝜓
(Ψ) → Ψ, is defined as

exp
𝜓

(v) = cos(||v||)𝜓 + sin(||v||) v
||v||

, (5)

where v ∈ T
𝜓
(Ψ). Thus, exp

𝜓

(v) maps points from the tangent space at 𝜓 to the representation space Ψ. Similarly, the
inverse-exponential map, denoted by exp−1

𝜓

∶ Ψ → T
𝜓
(Ψ), is defined as

exp−1
𝜓

(𝜓1) =
𝜃

sin(𝜃)
(𝜓1 − cos(𝜃)𝜓), (6)

where 𝜃 = dp(𝛾1, 𝛾). This mapping takes points from the representation space to the tangent space at 𝜓 .
The tangent space representation v is sometimes referred to as a shooting vector, as depicted in Figure 3. The remaining

question is which tangent space should be used to represent the warping functions. A sensible point on Ψ to define the
tangent space is at the sample Karcher mean �̂�

𝜓

(corresponding to �̂�
𝛾

) of the given warping functions. We can compute
the mean of the warping functions using Algorithm 2 from Tucker et al. (2013).

We then can perform a test if we have a changepoint in the phase space (on the tangent space of S∞) using the test
statistic

Sn,k =
1
√

n

(

kvk − kvn
)

, (7)

which is similar as defined previously, where vk is the shooting vector of the Karcher mean of the warping functions,
�̂�
𝜓

, computed using the first k warping functions. We can also define the test using the L2 norm similar to Gromenko
et al. (2017) as

Λ2 =
1
n

n∑

k=1
||kvk − kvn

||2.

Under this test we are testing if there is a phase shift or changepoint. The definition of Tn, its distribution, and finding
̂k
∗

are the same as the amplitude changepoint in Section 2.3. As mentioned above we can also implement this using
horizontal fPCA from Tucker et al. (2013).
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F I G U R E 4 Example of simulated data (a) mean before changepoint 𝜇 and mean after changepoint 𝜇 + 𝛿. (b) Simulated data, with
color corresponding to whether the function was before or after the change. For this example, both elastic amplitude fully-functional and
dimension-reduction-based approaches detected a changepoint with ̂k

∗
= 12 = k∗ and p-values of 0.000. The cross-sectional approaches

estimated ̂k
∗

as 11 (fully-functional) or 13 (dimension-reduction) with p-values of 0.142 and 0.319, respectively.

2.4.2 Horizontal functional principal components

To perform horizontal fPCA we will use the tangent space at 𝜇
𝜓

(Srivastava & Klassen, 2016) to perform analysis, where
𝜇
𝜓

is the mean of the transformed warping functions. In this tangent space, we can define a sample covariance function:

K
𝜓
= 1

n − 1

n∑

i=1
vivT

i ∈ R
T×T

.

The singular value decomposition (SVD) of K
𝜓
= U

𝜓
Λ

𝜓
VT
𝜓

provides the estimated principal components of {𝜓i}: the
principal directions U

𝜓,l and the observed scores 𝜂i,l =
⟨

vi,U
𝜓,l
⟩

. This analysis on S∞ is similar to the ideas presented in
Srivastava et al. (2005) although one can also use the idea of principal nested sphere for this analysis (Jung et al., 2012).

We can then use the test defined in Equation (3) to perform the changepoint test. The distribution to find critical point
and confidence interval apply directly.

3 APPLICATION

To demonstrate our proposed method, we will compare our elastic method to the cross-section changepoint methods
of Aue et al. (2009) and Aue et al. (2018). First, we will assess our method’s performance on simulated data where an
amplitude changepoint exists as well as simulated data where a phase changepoint exists. We then apply our method to
a global temperature observations dataset based on the MERRA-2 reanalysis product (Global Modeling and Assimilation
Office (GMAO), 2015) during the time period (1984–1998) that contains the eruption of Mt. Pinatubo in the Philippines
in June 1991.

3.1 Simulation data

3.1.1 Amplitude changepoint

To discuss the basics of the simulation setup, we consider sample sizes of n ∈ {15, 30, 50, 75}, with an ampli-
tude changepoint k∗ = 0.40 ⋅ n so that k∗ ∈ {6, 12, 20, 30}, respectively. For each simulation, the mean functions are
generated as

𝜇(t) = a0 cos(2𝜋t) + b0 sin(2𝜋t) + a1 cos(4𝜋t) + b1 sin(4𝜋t)
𝛿(t) = Δ cos(2𝜋t) + Δ sin(2𝜋t) + Δ cos(4𝜋t) + Δ sin(4𝜋t),
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where ai ∼ U[0, 1] and bi ∼ U[0, 1] for i ∈ {0, 1}, and Δ is a signal strength parameter. The error term is taken as

𝜖i(t) = Z1,i + Z2,i
1
√

2
cos(8𝜋t) + Z3,i

1
√

2
sin(8𝜋t),

where Zl,i
ind∼  (0, 𝜎2

l ), with (𝜎1, 𝜎2, 𝜎3) = (0.14, 0.10, 0.08). Finally, each function was warped with an independent, ran-
dom warping function with variance 0.2, generated similarly to Section 5.1 of Harris et al. (2021). We consider results
over 100 simulations for each value of n and each signal strength Δ ∈ {0, 0.04, 0.08, 0.12, 0.16}. In Figure 4, we plot an
example of the simulated data with n = 30 and Δ = 0.16, as well as its results using these test statistics. For each simula-
tion, we compute score-based and fully-functional test statistics for both the cross-sectional (Aue et al., 2009; 2018) and
elastic amplitude changepoint methods.

Overall changepoint detection results are presented for the dimension-reduction based methodology in Table 1. The
Δ = 0 column (no change) represents the estimated Type I error of the detection procedure. We see that both approaches
control Type I error well. As Δ and n increase, it becomes easier to detect changepoints under the alternative hypothesis.
The elastic approach uniformly improves power over the cross-sectional approach, detecting close to all changepoints
when 𝛿 ≥ 0.12 and n ≥ 30. In contrast, the cross-sectional approach only detects some changepoints and may not be
consistent in this setting, as increasing n does not always substantially improve the number of changepoints detected.

We present respective results for the fully-functional approaches in Table 2. While Type I error is slightly inflated
for both approaches, similar gaps in power between the elastic and cross-sectional approaches hold when the
alternative is true, again suggesting that the cross-sectional approach will miss potential changes in the data. In general,

T A B L E 1 Proportion of simulations with estimated changepoint at the 𝛼 = 0.05 level for the amplitude change.

Elastic PCA 𝚫 = 0 𝚫 = 0.04 𝚫 = 0.08 𝚫 = 0.12 𝚫 = 0.16

n = 15 0.01 0.07 0.58 0.77 0.86

n = 30 0.02 0.22 0.92 0.99 1.00

n = 50 0.03 0.25 0.95 1.00 1.00

n = 75 0.01 0.39 0.98 1.00 1.00

Cross-sectional PCA 𝚫 = 0 𝚫 = 0.04 𝚫 = 0.08 𝚫 = 0.12 𝚫 = 0.16

n = 15 0.01 0.02 0.03 0.05 0.07

n = 30 0.02 0.09 0.17 0.18 0.30

n = 50 0.02 0.08 0.13 0.34 0.36

n = 75 0.05 0.04 0.24 0.24 0.40

Note: (Top) Using the elastic PCA test statistic (bottom) using the cross-sectional PCA test statistic of Aue et al. (2009).

T A B L E 2 Proportion of simulations with estimated changepoint at the 𝛼 = 0.05 level for the amplitude change.

Elastic fully-functional 𝚫 = 0 𝚫 = 0.04 𝚫 = 0.08 𝚫 = 0.12 𝚫 = 0.16

n = 15 0.19 0.18 0.35 0.54 0.85

n = 30 0.07 0.16 0.27 0.85 1.00

n = 50 0.06 0.11 0.52 1.00 1.00

n = 75 0.09 0.20 0.86 1.00 1.00
Cross-sectional
fully-functional 𝚫 = 0 𝚫 = 0.04 𝚫 = 0.08 𝚫 = 0.12 𝚫 = 0.16

n = 15 0.13 0.10 0.13 0.09 0.15

n = 30 0.04 0.12 0.07 0.16 0.15

n = 50 0.06 0.06 0.12 0.18 0.20

n = 75 0.04 0.08 0.13 0.21 0.28

Note: (Top) Using the elastic fully-functional test statistic (bottom) using the cross-sectional fully-functional test statistic of Aue et al. (2018).
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the fully-functional test statistics tend to have more less power than the dimension-reduction-based test statistics. We also
compare the estimation of k∗ using a sample-size-normalized RMSE based on the estimated changepoints ̂k

∗
mc over each

simulation mc = 1, … ,MC = 100:
√
√
√
√
√ 1

MC

MC∑

mc=1

(
̂k
∗
mc − k∗

n

)2

,

with results in Table 3 for the fully-functional test statistics. The results mirror the testing results, with the elastic approach
consistently estimating k∗ better compared to the cross-sectional approach. The cross-sectional approach only partially
improves estimates as Δ increases or n increases, again suggesting that cross-sectional approaches will be inadequate
when there is phase variability in the data even if the sample size and signal strength are large.

3.1.2 Phase changepoint

To evaluate changepoint detection in the mean phase of functional data, We consider the same simulation setup
with the exception of the following. We take 𝛿(t) = 0, and the warping functions have mean 𝛾(t) = t before k∗. After
k∗, the mean of the warping functions is a randomly-generated warping function with variance Δ

𝛾
, where Δ

𝛾
∈

{0, 0.075, 0.15, 0.225, 0.30}. The variance of the noise in each warping function was set to 0.05.
We give results in Tables 4 and 5. The elastic test for a phase change and the cross-sectional test perform similarly for

both testing and changepoint estimation. The cross-sectional approach has a bit higher Type I error and slightly more
power when n = 15. The results are essentially same between the two approaches for the estimation problem.

T A B L E 3 Sample-size-normalized RMSE of estimated change time for the amplitude change.

Elastic fully-functional 𝚫 = 0 𝚫 = 0.04 𝚫 = 0.08 𝚫 = 0.12 𝚫 = 0.16

n = 15 0.21 0.21 0.17 0.10 0.06

n = 30 0.23 0.18 0.10 0.05 0.03

n = 50 0.24 0.16 0.06 0.01 0.01

n = 75 0.23 0.15 0.05 0.01 0.00

Cross-sectional fully-functional 𝚫 = 0 𝚫 = 0.04 𝚫 = 0.08 𝚫 = 0.12 𝚫 = 0.16

n = 15 0.19 0.21 0.21 0.19 0.18

n = 30 0.21 0.21 0.21 0.18 0.19

n = 50 0.22 0.21 0.18 0.17 0.14

n = 75 0.20 0.21 0.19 0.14 0.14

Note: (Top) Using the elastic fully-functional test statistic (bottom) using the cross-sectional fully-functional test statistic of Aue et al. (2018).

T A B L E 4 Proportion of simulations with estimated changepoint at the 𝛼 = 0.05 level for the phase change.

Elastic fully-functional 𝚫 = 0 𝚫 = 0.04 𝚫 = 0.08 𝚫 = 0.12 𝚫 = 0.16

n = 15 0.06 0.41 0.81 0.81 0.93

n = 30 0.03 0.61 0.82 0.95 0.97

n = 50 0.04 0.75 0.95 0.95 0.98

n = 75 0.00 0.88 0.92 0.97 1.00
Cross-sectional fully-functional 𝚫 = 0 𝚫 = 0.04 𝚫 = 0.08 𝚫 = 0.12 𝚫 = 0.16

n = 15 0.14 0.65 0.88 0.93 0.95

n = 30 0.07 0.65 0.85 0.94 0.99

n = 50 0.08 0.76 0.96 0.92 0.98

n = 75 0.08 0.88 0.93 0.97 1.00

Note: (Top) Using the elastic fully-functional test statistic (bottom) using the cross-sectional fully-functional test statistic of Aue et al. (2018).
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T A B L E 5 Sample-size-normalized RMSE of estimated change time for the phase change.

Elastic fully-functional 𝚫 = 0 𝚫 = 0.04 𝚫 = 0.08 𝚫 = 0.12 𝚫 = 0.16

n = 15 0.21 0.15 0.04 0.05 0.05

n = 30 0.21 0.12 0.05 0.04 0.04

n = 50 0.19 0.11 0.04 0.04 0.01

n = 75 0.21 0.04 0.05 0.04 0.00

Cross-sectional fully-functional 𝚫 = 0 𝚫 = 0.04 𝚫 = 0.08 𝚫 = 0.12 𝚫 = 0.16

n = 15 0.22 0.15 0.07 0.07 0.03

n = 30 0.22 0.12 0.06 0.04 0.02

n = 50 0.22 0.11 0.05 0.04 0.01

n = 75 0.22 0.05 0.05 0.04 0.01

Note: (Top) Using the elastic fully-functional test statistic (bottom) using the cross-sectional fully-functional test statistic of Aue et al. (2018).

F I G U R E 5 A phase simulation example with Δ
𝛾
= 0.3 and n = 30. (a) Simulated functional data (b) estimated amplitude means using

the elastic fully-functional test statistic. (c) Estimated means using the cross-sectional fully-functional test statistic. Both approaches detected
the correct changepoint k∗ = 12 with a p-value of 0.000.

While the cross sectional approach is able to detect changes, it will not be able to identify the data-generating processes,
as it interprets all variability in the data as amplitude variability. To demonstrate this, we plot an example in Figure 5. While
the mean amplitude functions are the same before and after the changepoint, the data warping in (a) shows considerably
different observed functions. The estimated means based on the elastic and cross-sectional fully-functional statistics are
shown in (b) and (c) respectively. While the elastic approach estimates nearly the same amplitude function before and
after the changepoint, phase variability is present and the cross-sectional detection procedure does not recognize the
similarity between the mean amplitude functions of the data.

3.2 MERRA-2 stratospheric temperature

We now present our data analysis on stratospheric temperature of the climate reanalysis data MERRA-2 (Global
Modeling and Assimilation Office (GMAO), 2015). Using data from the years 1984–1998, we aim to evaluate changes
related to the eruption of Mt. Pinatubo in June 1991. See, for example, Thompson et al. (2009) for information on
variability and variables related to Mt. Pinatubo’s eruption. For this study, we focus on daily stratospheric temperature
near the 50 millibar pressure surface. We run each detection procedure at 3312 different locations on a grid. Since
we are primarily interested in an amplitude changepoint, we do not present results based on a change in the phase
function.

We begin by presenting fully-functional results for a single location in Figure 6. In (a) and (b), we plot the orig-
inal functional data along with the estimated mean functions for the elastic approach (a) and the cross-sectional
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F I G U R E 6 An example of MERRA-2 stratospheric temperature (in Kelvin) fully-functional results at 0◦W and 2◦N. The elastic
approach had ̂k

∗
= 1993 with a p-value of 0.028, and the cross-sectional had ̂k

∗
= 1993 with a p-value of 0.067. (a) Functional data and

estimated means after alignment. (b) Functional data and estimated means before alignment. (c) Estimated warping functions. (d) Estimated
change for elastic approach. (e) Estimated change for cross-sectional approach. (e) Warping functions.

approach (b) before and after the estimated change. The elastic approach appears to align weather patterns, maintaining
cyclical behavior in the temperature throughout the year. In contrast, the cross-sectional approach averages these over
years while ignoring phase variability. The distinction between these two estimates is filtered into estimates of the change
function in (d) and (e). The estimated change function from the elastic approach (d) does not have major oscillations since
the cyclical behavior is shared between the two mean functions. For the cross-sectional approach of Aue et al. (2018),
however, this variability is propagated into the estimate of the change function, resulting in an estimate that is more noisy.
By accounting for phase variability in the original data, the estimate of the change is more easily isolated and estimated.
In panel (c), we plot the warping functions, colored based on if they were before or after the changepoint. While some
phase variability is present and substantially affects the estimates, functions do not have to be warped drastically, and
there does not appear to be a trend or change in the warping functions.

We present the results for all locations in Figure 7. Locations were only plotted if there was an associated p-value
less than 0.05. For the most part, the elastic and cross-sectional approaches have similar results. Both detect changes in
the tropics in 1993 and 1994, where the impact of Mt. Pinatubo is particularly strong. The elastic approach detects fewer
changes in the poles, which are less likely to be associated with the eruption of Mt. Pinatubo. To interpret the changes
detected, we see that the changes in the tropics correspond to a decrease in temperature. Combined with the time of
the changepoint, both methodologies detect when the stratospheric temperature “returns to normal” after a period of
increase in 1991 and 1992 immediately following the eruption. The estimated changes are comparable between the two
approaches. We summarize the detected changepoints in Table 6. The vast majority of the detected changepoints had
̂k
∗
= 1992 or ̂k

∗
= 1993, with an associated decrease in temperature on average. In Figure 8, we plot results based on the

dimension reduction test statistics. Although fewer changepoints were detected, overall the pattern and nature of the
changes are similar to those of the fully-functional test statistics.

In our analysis, we appear to primarily detect a decrease in temperature after the year 1992 or so. Since Mt. Pinatubo
is expected to temporarily increase stratospheric temperatures immediately after the eruption, we appear to be detecting
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F I G U R E 7 MERRA-2 stratospheric temperature fully-functional results. (a) Estimated change years ̂k
∗

with p-values less than 0.05
using elastic approach (left) and cross-sectional approach (right). (b) Averaged estimated change ∫ 1

0
̂
𝛿(t)dt with p-values less than 0.05 for

elastic approach (left) and cross-sectional approach (right).

T A B L E 6 Summary of detected test statistics by the elastic fully-functional method.

Year # of detections Avg. change (K) Year # of detections Avg. change (K)

1984 0 N/A 1992 350 −1.12

1985 0 N/A 1993 291 −1.41

1986 0 N/A 1994 17 −1.18

1987 9 0.03 1995 3 −1.64

1988 6 1.60 1996 0 N/A

1989 19 −1.36 1997 0 N/A

1990 6 −0.35 1998 0 N/A

1991 6 −0.97

when the temperature “returns to normal” as suggested before. To more directly target the eruption, we consider the
epidemic-type changepoint model studied in Aston and Kirch (2012):

fi = 𝜇 + 𝛿1
(

k∗1 < i ≤ k∗2
)
+ 𝜖i,

where the only difference with the “at-most-one-change” model fi = 𝜇 + 𝛿1(i > k∗) + 𝜖i is the indicator 1
(

k∗1 < i ≤ k∗2
)
.

Fully-functional and dimension-reduction elastic approaches for detecting this type of changepoint and for estimating
k∗1 (when the change period begins) and k∗2 (when the change period ends) follow naturally from the test statistics and
results in Aston and Kirch (2012) and Section 2. We present results for the epidemic model in Figure 9. While fewer
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F I G U R E 8 MERRA-2 stratospheric score-based results. (a) Estimated change years ̂k
∗

with p-values less than 0.05 using elastic
approach (left) and cross-sectional approach (right). (b) Averaged estimated change ∫ 1

0
̂
𝛿(t)dt with p-values less than 0.05 for elastic approach

(left) and cross-sectional approach (right).

F I G U R E 9 Fully-functional epidemic results. (a) Estimated change years ̂k
∗
1 with p-values less than 0.05 using elastic approach (left) and

cross-sectional approach (right) (b) the same as (a) with ̂k
∗
2 (c) averaged estimated change ∫ 1

0
̂
𝛿(t)dt for locations with p-values less than 0.05.



16 of 18 TUCKER and YARGER

F I G U R E 10 Fully-functional results from the at-most-one-change model with a Benjamini–Hochberg p-value correction. Estimated
change years ̂k

∗
with Benjamini–Hochberg p-values less than 0.05 using elastic approach (left) and cross-sectional approach (right).

changepoints are detected compared to the at-most-one-change model, the beginning of the changepoints k∗1 are estimated
earlier in the tropics, and these changes are associated with an increase in temperature rather than a decrease.

Finally, we evaluate the sensitivity of the detected changepoints to multiple testing correction. In Figure 10, we plot
results with Benjamini–Hochberg corrected p-values for the fully-functional test statistics analogous to Figure 7. We see
that very few changepoints are detected, but the elastic approach detects substantially more changepoints after p-value
adjustment.

4 CONCLUSION

We have proposed a new flexible elastic approach to functional changepoint detection that handles phase and amplitude
variability in the data accordingly. We have demonstrated its advantages over the state-of-the-art methods in the functional
changepoint literature using both simulated and real datasets. Unlike the current cross-sectional methods, the elastic
method accurately estimates the mean of the underlying data-generating mechanism and also handles phase as a nuisance
or as information suggesting a potential changepoint in the functional data. Correctly estimating the underlying mean
before and after the change can have large impacts on interpretability of the data and implementation of downstream
analysis.

In a simulation study, the procedures correctly detect a changepoint and estimate its time when there is either
an amplitude or phase changepoint in the functional time series. In contrast, cross-sectional approaches miss detect-
ing changepoints when there is a change in the mean amplitude, and the time of changepoint is not estimated well.
In an analysis of stratospheric temperature, both the cross-sectional approaches and our introduced test statistics
detect changes is the tropics after the eruption of Mt. Pinatubo. However, the test statistics that take into
account phase variability result in a less noisy estimate of the change function, increasing its interpretability and
smoothness.

For future work, we look to extend the method to the multiple change-point problem. This extension will not be
trivial as scalability is a problem as shown in Harris et al. (2022). Multiple changepoints can be detected in Sn,k if using
a multiple peak detection scheme, but determining the p-value is not straightforward, and the test statistics will have to
be defined carefully. Another interesting question is the performance of the test statistics in the presence of outliers. For
example, an analysis of aerosol optical depth, which immediately increases after a volcanic eruption and returns to lower
levels relatively quickly, would be illustrative. Other work has proposed robustified fully-functional statistics (Wegner
& Wendler, 2022), and application of their test statistics to our setting would be relatively straightforward. In addition,
while we have treated each location individually, comprehensively studying the spatial or multivariate problem of how
functional time series at different locations relate to each other would be a fruitful direction for future research that the
authors are currently studying. Paynabar et al. (2016), Wang et al. (2022), and Moradi et al. (2023) approach this problem
in three different ways. Such an approach will also lend itself more to the multiple testing problem. Additionally, we
can extend this from curves to trajectories that lie on Riemannian manifolds. In this case, one has to account for the
non-zero curvature of the space and in particular, the calculation of the gradient in the Fisher Rao metric and computation
of the required statistics.
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