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Elastic Bayesian Model Calibration\ast 
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Abstract. Functional data are ubiquitous in scientific modeling. For instance, quantities of interest are modeled
as functions of time, space, energy, density, etc. Uncertainty quantification methods for computer
models with functional response have resulted in tools for emulation, sensitivity analysis, and cali-
bration that are widely used. However, many of these tools do not perform well when the computer
model's parameters control both the amplitude variation of the functional output and its alignment
(or phase variation). This paper introduces a framework for Bayesian model calibration when the
model responses are misaligned functional data. The approach generates two types of data out of
the misaligned functional responses: (1) aligned functions so that the amplitude variation is isolated
and (2) warping functions that isolate the phase variation. These two types of data are created for
the computer simulation data (both of which may be emulated) and the experimental data. The
calibration approach uses both types so that it seeks to match both the amplitude and phase of
the experimental data. The framework is careful to respect constraints that arise, especially when
modeling phase variation, and is framed in a way that it can be done with readily available calibra-
tion software. We demonstrate the techniques on two simulated data examples and on two dynamic
material science problems: a strength model calibration using flyer plate experiments and an equa-
tion of state model calibration using experiments performed on the Sandia National Laboratories'
Z-machine.

Key words. amplitude/phase variability, Bayesian model calibration, functional data analysis, material strength
calibration
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1. Introduction. In domains of science and engineering where modeling is an important
part of investigation and discovery, quantifying uncertainty in model inferences and predictions
can be essential in order for model performance to be trusted. When a model has uncertain
parameters (or inputs), model calibration is the act of tuning the parameters so that the
model produces a desired response. Most often, models are calibrated to experimental or
observational measurements, so that calibration seeks to make the model response reflect

\ast Received by the editors March 5, 2024; accepted for publication September 20, 2024; published electronically
February 18, 2025.

https://doi.org/10.1137/24M1644092
Funding: This paper describes objective technical results and analysis. Any subjective views or opinions that

might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United
States Government. This work was supported by the NA-22 program, the Advanced Simulation and Computing
program, and Laboratory Directed Research and Development program at Los Alamos National Laboratory and
Sandia National Laboratories. Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International,
Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

\dagger Los Alamos National Laboratory, Los Alamos, NM 87545 USA (dfrancom@lanl.gov).
\ddagger Sandia National Laboratories, Albuquerque, NM 87015 USA (jdtuck@sandia.gov, jghuert@sandia.gov, kwshule@

sandia.gov, dries@sandia.gov).

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

195

D
ow

nl
oa

de
d 

02
/1

9/
25

 to
 1

98
.1

02
.1

51
.2

43
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/24M1644092
mailto:dfrancom@lanl.gov
mailto:jdtuck@sandia.gov
mailto:jghuert@sandia.gov
mailto:kwshule@sandia.gov
mailto:kwshule@sandia.gov
mailto:dries@sandia.gov


196 D. FRANCOM, J. D. TUCKER, G. HUERTA, K. SHULER, AND D. RIES

reality. Model calibration (sometimes known as inversion) is often a poorly identified problem,
where multiple combinations of inputs produce equally valid solutions. Kennedy and O'Hagan
(2001) proposed Bayesian model calibration as a systematic approach to calibrating a model
in the face of all of the sources of uncertainty so that calibration uncertainty is quantified.
These sources of uncertainty are parameter uncertainty, measurement uncertainty, emulation
or surrogate model uncertainty (an emulator is a fast surrogate for a more expensive model),
and model form error (i.e., simulation model misspecification, discrepancy, or bias).

Often, computer model outputs are functional in nature, producing an output measured
over space and/or time, for example. The majority of calibration work on these types of
outputs has been done on features extracted from the outputs such as peak points or criti-
cal values (Walters et al., 2018). However, the process for extracting these features can be
tedious and prone to error and is problem specific. Other calibration approaches have been
developed for use with multivariate or functional response (Bayarri et al., 2007a; Francom
et al., 2019; Higdon et al., 2008), although they are prone to problems when presented with
functional response data that are misaligned. Our goal is to extend functional emulation and
calibration methods for use when the response is misaligned, and to do so without human-
intensive feature engineering.

There has been considerable effort in statistics to develop methods that can analyze func-
tional data objects without loss of information. Such methodology is known as functional
data analysis and has a rich history. An excellent introduction to this field is given in several
books, including Ramsay and Silverman (2005), Horvath and Kokoszka (2012), and Srivas-
tava and Klassen (2016). An interesting aspect of most functional data is that the underlying
variability can be ascribed to two sources. These two sources are termed the amplitude (y or
vertical) variability and the phase (x or horizontal or warping) variability. Capturing these
two sources of variability is crucial when modeling functional data and can greatly affect the
construction of statistics (e.g., averages, tolerance bounds). In this work, we refer to methods
that handle both amplitude and phase variability in functional data as elastic. This important
concept is illustrated in Figure 1 through a simulated example.

In Figure 1, we have two functions that contain both a peak and a trough. Each of the
functions contains variability in the height of the peak and valley and large variability in its
placement. The relative heights of the peaks can be attributed to the amplitude variability,
while the different locations of the peaks constitute the phase variability.

The phase variability can be accounted for by first aligning the functions. As an example,
the right panel shows time-aligned functions. The alignment involves a transformation of
the horizontal axis via the warping function shown in the middle panel. The aligned function
(f1(\gamma (t))) captures the amplitude variability while the warping function (\gamma ) captures the phase
variability. The Bayesian model calibration method introduced in this paper considers the
shape of the data by accounting for both directions of variability.

While standard calibration solutions can be applied to misaligned functions, especially
when emulation is unnecessary, we demonstrate that using functional metrics that consider
the misaligned nature of the data can produce more accurate calibration solutions and more
practical model formulations. In our methodology, we use elastic functional data analysis
methods (Marron et al., 2015; Srivastava and Klassen, 2016; Tucker et al., 2013) to construct
a metric to measure the distance between functions and to specify a likelihood. We do this by
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ELASTIC BAYESIAN MODEL CALIBRATION 197

Figure 1. Demonstration of amplitude and phase variability in functional data. Left: original functions.
Middle: warping function (``phase variability""). Right: aligned functions (``amplitude variability"").

decomposing our functional responses into aligned functions and warping functions, as shown
in Figure 1. For expensive models, we can then build an emulator or surrogate for the aligned
functional responses and, under a suitable transformation, an emulator for the warping func-
tions. These two emulators can be used to calibrate in such a way that a proper distance is
used. The strengths of this approach are that (1) emulation is likely to be more accurate when
applied to aligned data instead of misaligned data (Francom et al., 2022), (2) discrepancy and
measurement error modeling can be done in such a way that it is isolated to the phase or
the amplitude part of the model, and (3) the alignment procedure ensures that the isome-
try property holds, and therefore, that the calibration is performed using a proper distance
(i.e., Euclidean distance in the transformed space properly reflects distance between warping
functions). Hence, this work overtly connects the two well-established fields of Bayesian model
calibration and functional data analysis that have historically had limited connection. This
enables better emulation, more identifiable discrepancy modeling, and hence, more accurate
(likely smaller) calibration uncertainty. Furthermore, we do this in such a way that it is ac-
cessible using established tools, not requiring new and specialized or expensive approaches to
posterior sampling. The misalignment problem has not been adequately addressed (or even
identified) in the Bayesian model calibration literature, and our method produces significantly
better results than approaches that ignore the misalignment or only partially deal with it. Re-
lated work includes Kleiber et al. (2014), which proposed a functional calibration approach
using a deformation that relies on the \BbbL 2 metric in the standard function space. However,
this metric can exhibit a ``pinching effect"" degeneracy, which the elastic methods do not have,
as demonstrated in Srivastava and Klassen (2016). Recent work by Guan et al. (2019) per-
formed Bayesian model calibration utilizing phase variability; however the emulation was done
on the likelihood, limiting extension to the richer class of calibration models that we consider
(e.g., including discrepancy and measurement error). We demonstrate our approach on two
dynamic material science applications described in the following subsections.
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198 D. FRANCOM, J. D. TUCKER, G. HUERTA, K. SHULER, AND D. RIES

Figure 2. From Brown et al. (2014) and Brown and Hund (2018). Left: example of experiments at the
Z-machine. Right: velocity response functions from nine experiments. LiF, lithium fluoride.

1.1. Equation of state exploration using Z-machine experiments. This problem is mo-
tivated by data from Brown et al. (2014), which conducted dynamic materials experiments
on tantalum (Ta) generated with pulsed magnetic fields using Sandia National Laboratories'
Z-machine (Savage et al., 2007). A basic version of the experiments performed at the Z-
machine can be seen in Figure 2 (left). The Z-machine delivers electrical currents along an
aluminum (Al) panel creating massive pressure driving an impulse into a Ta sample. Stress
waves flow through the Ta, and the experiment results in measurements of velocity on the far
side of the sample as a function of time. More details on the execution of the experiment can
be found in Brown et al. (2014) and Lemke et al. (2005). Figure 2 (right) shows the functional
response of nine experiments.

The computer model input parameters consist of calibration parameters of key interest to
an equation of state (EoS) of Ta and experiment-specific parameters that are not completely
known. More details about these input parameters appear in 5.1.

1.2. Material strength exploration using gas gun experiments. Boteler and Dandekar
(2006) performed a series of experiments where a flyer was shot from a gas gun into a plate
and the velocity of the opposite surface of the plate was measured (as a function of time) as
the resultant shock wave moved through it. This experiment has similarities to the Z-machine
example above, except that the shock waves that propagate through the plate are driven by
the flyer's impact instead of the more continuous electrical current drive. Figure 3 shows three
velocimetry curves measured during three of these flyer plate gas gun experiments. Walters
et al. (2018) used these experiments to parameterize a strength model for Al. Also similar
to the Z-machine computer model, flyer plate impact simulations include both inputs to be
calibrated (strength model parameters) and experiment-specific parameters that are uncertain
(e.g., the exact velocity of the flyer).

The structure of the rest of this paper is as follows. Section 2 gives a high-level overview
of model calibration based on the Kennedy and O'Hagan (2001) framework and functional
response extensions. Section 3.1 describes the types of variability for functional output, func-
tional alignment with a proper distance metric, and how to measure the amount of variability
in amplitude and phase space. Section 3.2 describes how to use the measures of variation in
our elastic Bayesian model calibration method, and various modeling choices are described in
section 3.3. Section 4 gives two simulated examples comparing the proposed elastic functional
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ELASTIC BAYESIAN MODEL CALIBRATION 199

Figure 3. From Walters et al. (2018), the response from three gas gun experiments where both flyer and
plate were Al alloys.

calibration method with functional response calibration that does not account for misalign-
ment. Section 5 applies the proposed method to the two material model calibration problems
detailed above. Lastly, section 6 provides general conclusions and considerations on future
work. Supplementary material (Supplement.pdf [local/web 1.65MB]) includes an additional
simulated example.

2. Bayesian model calibration.

2.1. Univariate response. The traditional approach to Bayesian model calibration, in-
troduced by Kennedy and O'Hagan (2001) and expanded in Higdon et al. (2004), seeks to
calibrate parameters of a model using observations. Let y(\bfitx ,\bfitu ) denote the model where \bfitx 
denotes conditions that are certain, often fixed conditions of an experiment and \bfitu denotes
uncertain parameters in need of calibration. Let z(\bfitx ) denote an observation. In these ap-
proaches, \bfitx could include functional variables such as space or time and/or conditions at which
an experiment was performed. Let n be the number of observations or experimental conditions
measured so that our observed data are z(\bfitx 1), . . . , z(\bfitx n). Then, the calibration model is

z(\bfitx i) = y(\bfitx i,\bfittheta ) + \delta (\bfitx i) + \epsilon (\bfitx i), \epsilon (\bfitx i)\sim \scrN (0, \sigma 2\epsilon ),(2.1)

where \bfittheta denotes the best set of calibration parameters for \bfitu , \delta denotes (latent) error in the
form of the model (often called model discrepancy), and \epsilon denotes measurement or observa-
tion error in z. The Gaussian likelihood specified here assumes that measurement errors are
independent and identically distributed, but other measurement error structures can be used.
The unknowns in this model are the calibration parameters \bfittheta , the measurement error variance
\sigma 2\epsilon , and the form of the discrepancy function. In order for this model to be identifiable, priors
for each of the unknowns need to be chosen carefully. If n is small, the prior for \sigma 2\epsilon will be
influential. Additionally, there is a natural tradeoff between the calibration parameters and
the model discrepancy, so at least one of these needs to be well constrained by the prior. For
instance, we could use a Gaussian process prior for the discrepancy function \delta in such a way
that we prefer small-valued smooth functions (Higdon et al., 2004), or we could try to specify
priors that prefer positive values or monotone functions (Brynjarsd\'ottir and O'Hagan, 2014).
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In many realistic scenarios, the model y is expensive to evaluate, requiring powerful com-
puting and nontrivial amounts of time. This slows down the evaluation of the likelihood and
makes inference impractical. In these scenarios, we build a surrogate model (or emulator)
to use in place of y, which is trained using a (relatively) small number of model evaluations,
\{ y(\bfitx j ,\bfitu j)\} Nsim

j=1 (Sacks et al., 1989). The full Bayesian approach to inference then seeks to learn
all the unknowns (calibration parameters, model discrepancy, measurement error, and emula-
tor parameters) conditional on all of the data (n observations and Nsim model runs). Higdon
et al. (2004) use this approach with a Gaussian process emulator, while Kennedy and O'Hagan
(2001) fix some of the Gaussian process emulator and/or discrepancy parameters in advance
for computational and identifiability reasons. More generally, Liu et al. (2009) describe cases
where modularization (or cutting feedback from parts of the model that lead to identifiability
issues or poor Markov chain Monte Carlo (MCMC) mixing) will result in better posterior
inference. Many modern practitioners use modularized approaches either for philosophical or
computational reasons.

2.2. Functional response. Various research efforts have extended the Bayesian model
calibration approach above to be more explicitly suited to functional response. This can vastly
increase the training data size, but Gaussian processes with Kronecker covariance structures
can help produce scalable models (Williams et al., 2006). A somewhat different approach is
used by Gu and Berger (2016), which involves fitting a Gaussian process for each output while
sharing some parameters across processes and, with a suitable discrepancy model, obtaining
the calibration. Perhaps the most common approach is to project the functional response
onto basis functions and build functional models for calibration in the reduced-dimension basis
coefficient space (Bayarri et al., 2007a; Francom et al., 2019; Higdon et al., 2008). Let t denote
the functional variable (e.g., time), and let z(t,\bfitx i) denote an experimental measurement from
the ith experiment at functional variable t. Similarly, let y(t,\bfitx i,\bfitu ) denote a simulation of the
ith experiment at the functional variable t with input parameters \bfitu . Then, an approach to
Bayesian model calibration with functional response specifies that

z(t,\bfitx i) = y(t,\bfitx i,\bfittheta ) + \delta (t,\bfitx i) + \epsilon (t,\bfitx i), \epsilon (t,\bfitx i)\sim \scrN (0, \sigma 2\epsilon ).(2.2)

The typical approach to inference is to discretize t onto a grid t1, . . . , tNT
, which generates

NT -dimensional vectors \bfitz (\bfitx i), \bfity (\bfitx i,\bfittheta ), and \bfitdelta (\bfitx i) of the respective functions evaluated on the
discretized grid, which simplifies the model to a multivariate representation:

\bfitz (\bfitx i) = \bfity (\bfitx i,\bfittheta ) + \bfitdelta (\bfitx i) + \bfitepsilon (\bfitx i), \bfitepsilon (\bfitx i)\sim N(\bfzero , \sigma 2\epsilon \bfitI ).(2.3)

As in the univariate case, when y(t,\bfitx ,\bfittheta ) is expensive to evaluate, we will require an emulator
or surrogate model in order to evaluate the likelihood function quickly. Higdon et al. (2008)
project the model runs onto functional principal components and project the discrepancy
onto a separate flexible basis, and inference is carried out in the resulting low-dimensional
space. Bayarri et al. (2007b) project the model runs and discrepancy onto a wavelet basis and
carry out the inference in the low-dimensional space. Francom et al. (2019) project the model
runs onto functional principal components, allow the discrepancy to be full-dimensional, and
fit the emulator in a modular fashion by keeping aspects of the emulator separate from the
full Bayesian analysis.
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ELASTIC BAYESIAN MODEL CALIBRATION 201

All of these calibration approaches can be applied to misaligned functional data, but all will
have difficulty with emulation and the specification of model discrepancy because they will only
deal explicitly with amplitude variation. Additionally, distances computed between the differ-
ent functions will not be proper distances since they would not account for the phase variability.

3. Elastic Bayesian model calibration. In this section, we will review elastic functional
data analysis, introduce our elastic approach to calibration, and suggest various modeling
choices and practical considerations.

3.1. Elastic functional data analysis.

3.1.1. Types of variability in functional outputs. When model outputs are functional,
we must consider two types of variability in the functional outputs: amplitude and phase vari-
ability. Amplitude variability is variability in the output for a fixed time (t), or, more simply,
y-axis variation. Phase variability is variability in time, or, more simply, x-axis variability.

For computer model applications, input variables can induce both phase and amplitude
variability in the computer model outputs, resulting in fundamentally different shapes over
the range of plausible inputs. Additionally, model discrepancy can result in an imperfect
match between the computer model prediction and observed data at the correct value of the
model inputs. With misaligned functional data, we must consider model discrepancy in both
phase and amplitude variability to accurately represent discrepancy-induced shape distortions
in the functional predictions.

When functional response variability is not solely driven by amplitude variability, point-
wise (nonelastic) calibration (as in section 2.2) will produce estimates of the calibration pa-
rameters that may not agree with the true physical values, when these exist. Even when
phase variability is taken into account, there exists a problem with the \BbbL 2 metric known as
the pinching problem (Ramsay and Li, 1998). Specifically, if we have two functions, f1 and
f2 and the range(f1) is entirely above the range(f2), the \BbbL 2 metric becomes degenerate and
pinches the warped function. To address this problem, Srivastava et al. (2011) introduced
a mapping for functional data called the square-root velocity function, or SRVF, that im-
proves functional alignment and provides fundamental mathematical equalities that lead to
the formal development of this topic. Moreover, the metric used in the alignment is a proper
distance and avoids the pinching effects of the standard \BbbL 2 metric in function space without
the use of a penalty. We propose functional calibration metrics that account for both phase
and amplitude variation while properly measuring the distance between functions.

3.1.2. Functional alignment. To explain metrics for comparing functional data in a cal-
ibration setting, we consider the comparison of two functions of t: z(t,\bfitx i) and y(t,\bfitx i,\bfittheta ).
Varying \bfittheta will change the shape of y(t,\bfitx i,\bfittheta ), so we seek to find \bfittheta such that z(t,\bfitx i) and
y(t,\bfitx i,\bfittheta ) are optimally matched, where the optimality criterion considers the distance be-
tween the functions in both amplitude and phase. For notational convenience and to em-
phasize that we are comparing these functions for a fixed \bfitx i and \bfittheta , we rewrite z(t,\bfitx i) and
y(t,\bfitx i,\bfittheta ) as z(t) and y(t) for the rest of this subsection. To measure the distance between z(t)
and y(t), we use elastic functional data analysis (EFDA) (Srivastava and Klassen, 2016). The
main premise behind EFDA is to construct a proper distance metric between the computa-
tional prediction y(t) and the experimental data z(t). To construct this metric, a continuous
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202 D. FRANCOM, J. D. TUCKER, G. HUERTA, K. SHULER, AND D. RIES

mapping \gamma y\rightarrow z(t) : [0,1] \rightarrow [0,1] between y(t) and the experimental data z(t) is constructed
such that \gamma is a diffeomorphism. The function \gamma y\rightarrow z(t) is referred to as a warping function,
as it measures phase distortions in y(t) such that y \circ \gamma y\rightarrow z(t) = y(\gamma y\rightarrow z(t)) aligns with z(t).
Srivastava et al. (2011) and Tucker et al. (2013) show that, by applying a specific transforma-
tion to the original functions z(t) and y(t), there exist simple expressions for the amplitude
and phase distance between functions. We now describe how to construct this transformation
and how to define the distance metrics on the transformed data.

The functions z(t) and y(t) are transformed to their SRVFs. That is, we define the SRVF
of f(t) as

q(t) = sgn( \.f(t))

\sqrt{} 
| \.f(t)| ,(3.1)

where \.f denotes the time derivative of f . The SRVF is a bijective mapping up to a translation;
that is, f(t) can be uniquely determined from q(t) and a single point on the curve f(t).

Let qz(t) and qy(t) denote the SRVFs of z(t) and y(t), respectively. The warping function
that aligns y to z, denoted \gamma y\rightarrow z, can be estimated solving the optimization problem via
dynamic programming (Tucker et al., 2013),

\gamma y\rightarrow z = arg inf
\gamma \in \Gamma 

| | qz  - (qy \circ \gamma )
\sqrt{} 

\.\gamma | | 2,(3.2)

or using a Bayesian approach (Cheng et al., 2016; Lu et al., 2017). We utilize the same group
structure as (Tucker et al., 2013), where \Gamma is the set of orientation-preserving diffeomorphisms
of the unit interval [0,1]: \Gamma = \{ \gamma : [0,1] \rightarrow [0,1]| \gamma (0) = 0, \gamma (1) = 1, \gamma is a diffeomorphism\} .
The properties of the diffeomorphisms are what allow the bending and stretching described
above and why we use the term elastic, and the norm is the standard \BbbL 2 norm on the space
of SRVFs.

An advantage of this approach to warping function estimation is that the analyst does not
have to specify landmarks for function alignment; the estimation of \gamma is achieved by using the
group structure of \Gamma . When we use the optimization in (3.2) in later sections, we will refer
to this as a decomposition (specifically, the warping decomposition) because it decomposes a
misaligned function into an aligned function and a warping function.

Given a warping function \gamma (t) and aligned SRVF (qy \circ \gamma 
\surd 
\.\gamma )(t), we can construct measures

of phase and amplitude variability. Specifically, amplitude variability is measured as

da(qz, qy) = | | qz  - (qy \circ \gamma y\rightarrow z)
\sqrt{} 

\.\gamma y\rightarrow z| | 2.(3.3)

Srivastava et al. (2011) show that this \BbbL 2 distance on the transformed and aligned SRVF
functions is a proper distance metric for amplitude.

3.1.3. Measuring phase distance. Defining a measure of phase variability is more diffi-
cult than for amplitude variability because the space of warping functions, \Gamma , is an infinite-
dimensional nonlinear manifold and therefore cannot be treated as a standard Hilbert space.
Since we would like to exploit Riemannian-geometric structure when making inferences about
the warping functions, we again apply a specific transformation to the warping functions such
that we can use a standard distance metric (the \BbbL 2 norm) to measure distance. Specifically,

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/1

9/
25

 to
 1

98
.1

02
.1

51
.2

43
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



ELASTIC BAYESIAN MODEL CALIBRATION 203

we represent an element \gamma \in \Gamma by the square root of its derivative \psi =
\surd 
\.\gamma . Note that this

is the same as the SRVF defined earlier and takes this simpler form because \.\gamma > 0. The
identity \gamma z\rightarrow z maps to a constant function with value \psi z\rightarrow z(t) = 1, which corresponds to no
warping. Since \gamma (0) = 0, the mapping from \gamma to \psi is a bijection, and one can reconstruct \gamma 
from \psi using \gamma (t) =

\int t
0 \psi (s)

2ds. An important advantage of this transformation is that, since

\| \psi \| 2 =
\int 1
0 \psi (t)

2dt=
\int 1
0 \.\gamma (t)dt= \gamma (1) - \gamma (0) = 1, the set of all such \psi 's is the positive orthant

of the Hilbert sphere \Psi = \BbbS +\infty (i.e., a unit sphere in the Hilbert space \BbbL 2). In other words,
the square-root representation simplifies the complicated geometry of \Gamma to a unit sphere. The
distance between any two warping functions (i.e., the phase distance) is exactly the arc-length
between their corresponding SRVFs on the unit sphere \BbbS \infty :

dp(\gamma 1, \gamma 2) = d\psi (\psi 1,\psi 2)\equiv cos - 1

\biggl( \int 1

0
\psi 1(t)\psi 2(t)dt

\biggr) 
.

While the geometry of \Psi \subset \BbbS \infty is more tractable, it is still a nonlinear manifold, and
computing distances remains difficult. Instead, we use a tangent (vector) space at a certain
fixed point for further analysis. The tangent space at any point \psi \in \Psi is given by T\psi (\Psi ) =

\{ v \in \BbbL 2| 
\int 1
0 v(t)\psi (t)dt= 0\} . To map between the representation space \Psi and tangent spaces,

one requires the exponential and inverse-exponential mappings. The exponential map at a
point \psi \in \Psi , denoted by exp\psi : T\psi (\Psi ) \mapsto \rightarrow \Psi , is defined as

exp\psi (v) = cos(\| v\| )\psi + sin(\| v\| ) v

\| v\| 
,(3.4)

where v \in T\psi (\Psi ). Thus, exp\psi (v) maps points from the tangent space at \psi to the representation

space \Psi . Similarly, the inverse-exponential map, denoted by exp - 1
\psi : \Psi \mapsto \rightarrow T\psi (\Psi ), is defined as

exp - 1
\psi (\psi 1) =

\kappa 

sin(\kappa )
(\psi 1  - cos(\kappa )\psi ),(3.5)

where \kappa = dp(\gamma 1, \gamma ). This mapping takes points from the representation space to the tangent
space at \psi .

The tangent space representation v is sometimes referred to as a shooting vector. As dis-
cussed previously, it can be sensible to warp simulations to the observations in this calibration
framework, which corresponds to defining the tangent space relative to the observations z,
which we denote as \psi z\rightarrow z. The identity warping is defined as \gamma z\rightarrow z(t) = t, which results in
\psi z\rightarrow z(t) = 1 and exp - 1

\psi z\rightarrow z
(\psi z\rightarrow z(t)) = 0. In this case, deviations in v from 0 represent deviations

in phase from the experimental data.
In practice, there are situations when warping to the experiment presents difficulties, which

we discuss in a later section. In these cases, we warp model runs and experiments to a common
``template"" function (e.g., one of the model runs that has all the peaks/valleys/characteristics
of interest, possibly selected by subscreening the model runs visually). We then define distance
between a model run and the experiment by considering their distances to the template. This
is effectively changing the origin in the distance calculation. Just as changing the origin when
calculating Euclidean distances does not change the distance between two points because the
metric defined above is a proper distance metric, mathematical distance between misaligned
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curves is unaffected by the choice of template. In practice, there can be differences, which
leads us to introduce elastic Bayesian model calibration in the next section using an arbitrary
template y\ast , typically taken to be the experiment or one of the model runs. Hence, discussion
of warping in the next section will involve warping experiment and simulations to the template
to get quantities like \gamma y\rightarrow y\ast and \gamma z\rightarrow y\ast instead of the quantities used above, \gamma y\rightarrow z and \gamma z\rightarrow z.

3.2. Using EFDA within Bayesian model calibration. With the metrics for distance
defined in the previous section, we are ready to detail how to do Bayesian model calibration
with misaligned functional responses, which we call elastic Bayesian model calibration.

We decompose the observations from experiment i into aligned functions and warping
functions (each specific to experiment i) so that

z(t,\bfitx i) = \~z(t,\bfitx i) \circ t \gamma z\rightarrow y\ast (t,\bfitx i),(3.6)

where \circ t emphasizes that the composition is only in t such that f(a, b)\circ a g(a, b) = f(g(a, b), b).
If the template y\ast is taken to be the observations z, this is the identity warping, and nothing
happens in this step. We similarly decompose each simulation (e.g., simulation j) with

y(t,\bfitx j ,\bfitu j) = \~y(t,\bfitx j ,\bfitu j) \circ t \gamma y\rightarrow y\ast (t,\bfitx j ,\bfitu j)(3.7)

using the warping decomposition of (3.2). To facilitate modeling with proper distance metrics,
we transform the warping functions into shooting vector space with

\bfitv z\rightarrow y\ast (\bfitx i) = exp - 1
\psi z\rightarrow y\ast 

\biggl( \sqrt{} 
\.\gamma z\rightarrow y\ast (\bfitx i)

\biggr) 
,(3.8)

\bfitv y\rightarrow y\ast (\bfitx j ,\bfitu j) = exp - 1
\psi y\rightarrow y\ast 

\biggl( \sqrt{} 
\.\gamma y\rightarrow y\ast (\bfitx j ,\bfitu j)

\biggr) 
.(3.9)

We can then use these aligned model runs and associated shooting vectors for emulator
building, if desired.

3.2.1. Calibration when emulation is unnecessary. Our calibration model using the
aligned data and shooting vectors is specified with

\~z(t,\bfitx i) = \~y(t,\bfitx i,\bfittheta ) + \delta \~y(t,\bfitx i) + \epsilon \~z(t,\bfitx i), \epsilon \~z(t,\bfitx i)\sim \scrN (0, \sigma 2\~z),(3.10)

\bfitv z\rightarrow y\ast (\bfitx i) = \bfitv y\rightarrow y\ast (\bfitx i,\bfittheta ) + \bfitdelta v(\bfitx i) + \bfitepsilon v(\bfitx i), \bfitepsilon v(\bfitx i)\sim \scrN (0, \sigma 2v\bfitI ).(3.11)

Notice the similarity of (3.10) and (2.2). Equation (3.10) is merely doing the functional
response Bayesian model calibration of (2.2) with aligned functions. Equation (3.11) is a
standard multivariate response calibration of the shooting vectors. Doing one or the other
of these calibrations will either calibrate to the shapes of curves or their timing, while using
both ensures we match the shape and timing. This framework also allows us to separately
specify the discrepancy in the aligned functional responses or their warping functions, which
is a key benefit. For instance, if the discrepancy is a timing shift, that can be modeled directly
through \bfitdelta v(\bfitx i). A discrepancy that would add a shape characteristic to the curves could be
modeled directly through \delta \~y(t,\bfitx i). Furthermore, these two types of discrepancy could be used
at the same time, making for a very practical discrepancy modeling framework.
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ELASTIC BAYESIAN MODEL CALIBRATION 205

In order to produce inferences with this model, we discretize t so that (3.10) can be
rewritten in a vector form, \~\bfitz (\bfitx i) = \~\bfity (\bfitx i,\bfittheta ) + \bfitdelta \~y(\bfitx i) + \bfitepsilon \~z(\bfitx i), and the joint likelihood can
then be written as

f
\bigl( 
\~\bfitz (\bfitx 1), . . . , \~\bfitz (\bfitx n),\bfitv z\rightarrow y\ast (\bfitx 1), . . . ,\bfitv z\rightarrow y\ast (\bfitx n) | \bfittheta , \sigma 2\~z , \sigma 2v ,\bfitbeta \~y,\bfitbeta v

\bigr) 
=

n\prod 
i=1

\bigl[ 
\scrN 
\bigl( 
\~\bfitz (\bfitx i) | \~\bfity (\bfitx i,\bfittheta ) + \bfitdelta \~y(\bfitx i), \sigma 

2
\~z\bfitI 
\bigr) 
\scrN 
\bigl( 
\bfitv z\rightarrow y\ast (\bfitx i) | \bfitv y\rightarrow y\ast (\bfitx i,\bfittheta ) + \bfitdelta v(\bfitx i), \sigma 

2
v\bfitI 
\bigr) \bigr] 
,

where \bfitbeta \~y and \bfitbeta v parameterize the discrepancy terms of \~y and v, respectively. With a prior
specified for \bfittheta , \sigma 2\~z , \sigma 

2
v , \bfitbeta \~y, and \bfitbeta v, the posterior

\pi 
\bigl( 
\bfittheta , \sigma 2\~z , \sigma 

2
v ,\bfitbeta \~y,\bfitbeta v | \~\bfitz (\bfitx 1), . . . , \~\bfitz (\bfitx n),\bfitv z\rightarrow y\ast (\bfitx 1), . . . ,\bfitv z\rightarrow y\ast (\bfitx n)

\bigr) 
is proportional to likelihood multiplied by priors and can be sampled with MCMC. Note that
this approach requires the warping decomposition (and computer model) to be called for each
likelihood evaluation. Even though this is just the decomposition of a single curve and fairly
fast, this expense can make emulation more desirable.

3.2.2. Calibration when emulation is necessary. Assume that the set of Nsim model runs
is decomposed into aligned functions and warping functions. We can then use separate or joint
emulators with training inputs \{ \bfitx j ,\bfitu j\} Nsim

j=1 and outputs \{ \~\bfity (\bfitx j ,\bfitu j), vy\rightarrow y\ast (\bfitx j ,\bfitu j)\} Nsim

j=1 . A full
Bayesian approach to emulation and calibration results in a joint likelihood of the observation
data and model runs, while a modular Bayesian approach fits the emulator first and then
uses the emulator to perform the calibration. Because these models result in likelihoods and
posteriors that are not vastly different from the likelihood without an emulator, we omit
the explicit likelihood here. For Gaussian process emulators, the likelihood under the full
Bayesian functional calibration model (in basis space) can be seen in Higdon et al. (2008). In
fact, we have purposefully designed this model so that the inference could be carried out using
practical frameworks such as the ones in Bayarri et al. (2007b), Francom et al. (2019), Gu
and Wang (2018), Higdon et al. (2008), and Williams et al. (2006). Each of these approaches
can be applied by merely replacing their use of the original functional responses z and y with
aligned responses (\~z and \~y) and shooting vectors (vz\rightarrow y\ast and vy\rightarrow y\ast ). That being said, there
are a number of modeling choices and practical considerations that can make this approach
successful that we discuss in the next section.

Figure 4 shows a schematic of what the different parts of the elastic Bayesian calibration
model are (Figure 4(b)) compared to the standard approach to calibration with functional
response (Figure 4(a)). The warping decomposition is a preprocessing step that results in two
datasets, after which standard functional response calibration can be applied using the two
datasets. This is a simple approach, but we will demonstrate that it can result in calibration
that is significantly more accurate.

3.3. Modeling choices and practical considerations. To this point, we have discussed
how using standard functional response calibration tools with misaligned functional responses
is possible but prone to problems. We also mentioned that emulation techniques for functional
response do not perform well when applied to misaligned functional responses, as demonstrated
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Functional response 

simulations

Functional response observations

Emulator

Forward model

= + +

Discrepancy Error

Standard Calibration

𝑧(𝑡) 𝑦(𝑡, 𝜃) 𝛿(𝑡) 𝜖(𝑡)

(a) The standard approach to Bayesian model calibration with functional response models only ampli-
tude variation with z(t) = y(t, \theta ) + \delta (t) + \epsilon (t).

=
+ +

Discrepancy Error

Functional response observations

Functional Response 

Simulations

Forward model

Emulator

Elastic Calibration

Warping 

decomposition Warping 

decomposition

𝑧(𝑡)
𝑦(𝑡, 𝜃)

𝛿 ෤𝑦(𝑡) 𝜖 ෤𝑧(𝑡)
ǁ𝑧(𝑡)

𝑣𝑧→𝑦∗ 𝛿𝑣

𝑣𝑦→𝑦∗(𝜃)

෤𝑦(𝑡, 𝜃)

𝜖𝑣

𝛾𝑧→𝑦∗

𝛾𝑦→𝑦∗𝑦∗

(b) The elastic approach to Bayesian model calibration with functional response models amplitude
variation with \~z(t) = \~y(t,\bfittheta ) + \delta \~y(t) + \epsilon \~z(t) and phase variation with \bfitv z\rightarrow y\ast = \bfitv y\rightarrow y\ast (\bfittheta ) + \bfitdelta v + \bfitepsilon v.

Figure 4. The standard approach to Bayesian model calibration with functional response (a) compared to
the elastic approach (b). The elastic approach first isolates phase and amplitude variation as a preprocessing
step, and then uses the same techniques used to do inference under the standard approach.

in Francom et al. (2022). We then showed how EFDA methods use proper distance metrics
by aligning functions in the SRVF space and using (1) the distance between aligned functions
and (2) the distance between shooting vectors (transformed warping functions). Then, we
introduced how to frame functional response computer model calibration such that it uses
these proper elastic metrics. Simply put, we use the warping decomposition to separate our
misaligned functional responses into aligned functional responses and shooting vectors, and
we use these two new datasets instead of the original data when calibrating.
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Below, we discuss additional modeling choices and practical considerations for using this
methodology.

3.3.1. Warping decomposition. Uncertainty: Because we are using an optimization
technique to obtain the warping functions, we are fixing a part of the model that could
be considered uncertain. This is a modeling choice, similar to the choice of Kennedy and
O'Hagan (2001) to fix some emulator parameters at maximum likelihood values or to the
choice of Higdon et al. (2008) to not allow for uncertainty in the basis representation of
the functional response (i.e., the functional principal components are fixed). As with these
other modeling choices, a potential consequence is that uncertainty is underestimated. If the
warping functions were to be inferred jointly with all of the other unknowns in a Bayesian
framework, this would lead to a much greater computational burden and would require much
more specialized calibration software. Similar to emulation, a possible shortcut could be
to use modular Bayes techniques to propagate uncertainty from the warping decomposition
to calibration uncertainty while cutting the feedback from the calibration to the warping
decomposition (Liu et al., 2009; Plummer, 2015).
Regularization: Another practical consideration is for the family of warping functions al-
lowed in the warping decomposition, \Gamma . If these functions are not smooth or regularized, their
variation can be difficult to predict using the parameters, resulting in emulators with large
residual variance. However, if they are overregularized, they may not align the functional
responses enough. In case one wants to control the amount of warping or elasticity, this can
be done as described in Wu and Srivastava (2011) using a penalty on (3.2). In the examples
and applications below, we arrive at regularization choices by trial and error, where we are
satisfied with a level of regularization when it results in nicely aligned functional responses
with relatively smooth warping functions.
Choice of alignment reference: This decomposition can occur by either aligning the
model to the experiment or by aligning to some other common element (e.g., one of the model
runs). Alignment to the experiment is natural in many cases, but there are a few reasons why
aligning to one of the model runs could be useful. First, the model runs have no discrepancy
or noise, which means that warping to them can be more stable. Second, exploration of the
computer model is often of interest even if there is no calibration data, in which case emulation
is frequently used and can be performed more accurately when accounting for misalignment.
Modeling transformed aligned curves: Recall that we use the SRVF transformation of
the original curves to obtain the warping decomposition. However, we opt not to build the
model for the aligned data in the SRVF space (i.e., we model z and y instead of qz and qy).
We do this because modeling in derivative space means that, when models are transformed
back to the native space (e.g., to make predictions), errors are integrated and unrealistic
heteroskedasticity arises. Using \BbbL 2 distance between the aligned curves (rather than their
SRVFs) still results in a proper metric, as long as the SRVFs were used for the alignment.
Note that we do not experience heteroskedasticity issues when transforming from shooting
vectors to warping functions because of the highly constrained shape of the warping functions.

3.3.2. Emulation. Francom et al. (2022) showed that taking alignment into account can
improve emulator accuracy and efficiency, although their approach relied on a model for
landmarks (rather than shooting vectors) to build warping functions. They found that, in
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many cases, training separate emulators for aligned functions and warping functions is more
desirable than training a single emulator for both. This is because the warping function
model will often have larger unexplained variation (i.e., larger residual variance than the
aligned data model, even under appropriate standardization) due to the latent nature of the
warping functions. Subtle variations in the warping function regularization level can result in
fairly significant variations in the shooting vectors, and while this variation is less pronounced
when transforming back into warping function space, the larger variation can ``corrupt"" (Liu
et al., 2009) the modeling of the aligned data unless careful precautions are taken. The easiest
precaution is to merely create the two emulators independently. This works well in practice.

3.3.3. Discrepancy models. The decomposition of misaligned data into aligned data and
shooting vectors not only facilitates better emulation and calibration likelihood via proper
distance metrics, it also facilitates more realistic discrepancy modeling. For instance, if the
discrepancy is a time shift, that can be expressed through the shooting vector discrepancy
model \bfitdelta v. If the discrepancy is a change to one feature of the curves, that can be handled
directly through the aligned data discrepancy model \bfitdelta \~y. The specification of \bfitdelta \~y can be
reasoned about in a natural way (compared to trying to specify discrepancy in the misaligned
space); for instance, a set of basis functions could be used as in Higdon et al. (2008). However,
the specification of \bfitdelta v is more nuanced because it is in a transformed space. For instance,
adding a constant in that space (e.g., \bfitdelta v(\bfitx i) = \bfone ) has no effect because the shooting vectors
are scaled by their norm in the exponential map that transforms them back to an SRVF
on the unit sphere. Hence, a constant time shift discrepancy is not achieved by adding a
constant to the shooting vectors. In the simulated example with discrepancy in section 4.2,
we demonstrate modeling \bfitdelta \~y and \bfitdelta v with B-spline basis functions and compare to the case
where the discrepancy is only defined in the standard way. In the flyer plane analysis below,
we use a piecewise linear basis for \bfitdelta v to capture time shifts. In all basis expansions for \bfitdelta v, we
exclude any intercept term because constant shifts in shooting vectors are not useful.

3.3.4. Residual error models. We will typically assume independence between \bfitepsilon \~z and
\bfitepsilon v, but this can be relaxed. Of greater interest is the assumption of independence within \bfitepsilon \~z
and \bfitepsilon v. We note here that adding a correlation structure to the residual model still results
in appropriate distance metrics in the likelihood calculation. This can be done explicitly to
avoid the problems identified in Brown and Hund (2018).

3.4. Identifiability. There are multiple places where identifiability is important to con-
sider in Bayesian model calibration. In a full Bayesian approach, there are identifiability
concerns between estimating the parameters, discrepancy, emulator, and measurement error.
Modularization can improve parts of this; for example, modularizing the emulator removes it
as a contributor to the lack of identifiability (Liu et al., 2009). By separating amplitude and
phase variability, allowing us to separately emulate them and separately include discrepancy
and measurement error models, we improve identifiability. For example, if the discrepancy
is a time shift (which is common), the only way to specify that in the standard calibration
approach is to allow flexible discrepancy across amplitude space. Of course, that does not
put the discrepancy model explicitly in the time domain, which will lead to a less constrained
(and hence less identifiable) discrepancy in the amplitude domain. Our approach allows for
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ELASTIC BAYESIAN MODEL CALIBRATION 209

specifying discrepancy limited to the time domain (or amplitude domain, or both), which im-
proves identifiability. It should be noted that decomposing a curve into phase and amplitude
variation is not necessarily identifiable (and is separate from all the sources of identifiability
mentioned above). However, regularizing the warping functions makes the system identifiable.
When used appropriately, any decrease in identifiability because of the warping transformation
is easily offset by the better identified calibration model it enables.

3.4.1. Using standard functional calibration tools for elastic calibration. Our formu-
lation results in a Gaussian-likelihood pointwise calibration using the aligned responses and
the shooting vectors instead of the original misaligned functional responses. The likelihood
function for the elastic calibration is formed by combining vector versions of (3.10) and (3.11).
This means that the same tools that were discussed in section 2.2 can be used for elastic cali-
bration, making the application of our proposed methods very practical. For instance, SEPIA
(Simulation-Enabled Prediction, Inference, and Analysis) (Gattiker et al., 2023) implements
the model of Higdon et al. (2008), and Francom et al. (2023) implements a similar model but
allows for modularization of the emulator as in Francom et al. (2019) with an MCMC algo-
rithm that handles posterior multimodality via tempering. Both of these tools can be used
to do elastic calibration, and the warping decomposition can be achieved using the fdasrsf
R-package or equivalent python package fdasrsf (Tucker, 2023).

Further, there are several choices available to emulate computer model runs with func-
tional response as described in Francom et al. (2022), Hutchings et al. (2023), and Collins
et al. (2024). In the examples that follow, we use a Bayesian multivariate adaptive regres-
sion spline (BMARS) (Francom et al., 2018) emulator for both the aligned simulated curves
and their corresponding shooting vectors, paired with the calibration approach in Francom
et al. (2023). We chose the BMARS due to its performance and the ability to scale to a large
number of training points, which we have in our EoS and material strength data examples,
although the methods are agnostic to emulator choice.

4. Simulated examples.

4.1. Example with comparison. To illustrate the intuition behind this method, we simu-
late an example problem with three parameters to calibrate and misaligned functional response
and no discrepancy (a similar example with discrepancy is included in the supplemental ma-
terial (Supplement.pdf [local/web 1.65MB])). The example is constructed using the following
model to generate misaligned functional responses, where each function is a Gaussian pdf and
the parameters control the location and height of the peak:

y(t,\bfitu ) =
u1

0.05
\surd 
2\pi 

exp

\Biggl( 
 - 1

2

\biggl( 
t - (sin(2\pi u20)/4 - u0/10 + 0.5)

0.05

\biggr) 2
\Biggr) 
+ 0u2.

The calibration parameters are \bfitu = [u0, u1, u2], although the functions only depend on the first
two of these parameters. There are no experimental parameters, so we omit \bfitx from the model
specification used in the previous sections. We generated a set of 100 functions (model runs)
using \bfitu 1, . . . ,\bfitu 100, where each \bfitu j was sampled uniformly within the unit cube. The `experi-
mental data' z(t) were generated using the parameter values \bfittheta = [0.1028,0.5930,0] and adding
Gaussian noise with standard deviation 0.05, but without systematic bias (discrepancy).
Figure 5 presents the simulated model runs in gray and the experimental data shown in black.
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Figure 5. Simulated curves y(t,\bfitu 1), . . . , y(t,\bfitu 100) and experiment data z(t) for the simulated example.

We separated the phase and amplitude by aligning the simulated curves to one of the
model runs utilizing the elastic methodology from section 3.1. Figure 6(a) shows the aligned
model runs (gray) and the experimental data (black), while Figure 6(b) presents the corre-
sponding warping functions of both the simulated curves (\gamma y\rightarrow z(t,\bfitu j) for j = 1, . . . ,100) and
the experimental data (\gamma z\rightarrow z(t) = t). Figure 6(c) presents the corresponding shooting vectors
for the simulation (\bfitv y\rightarrow z(\bfitu j)) and the experimental data (\bfitv z\rightarrow z).

We built separate BMARS emulators for the aligned curves and the shooting vectors and
performed a (modular) elastic Bayesian model calibration as described in section 3.2 to infer
the posterior distribution of \bfittheta along with posterior predictions of the curves.

Figure 6 presents some posterior predictive samples after calibration of the aligned curves
and the corresponding warping functions and shooting vectors (in blue) with their simulations
(in gray) and for the experimental data (in black). Similarly, Figure 6(d) presents some pos-
terior predictive samples in the original data space (in blue) with the simulated curves/model
runs (in gray) and the experimental data (in black). The predictive samples cover the exper-
imental data with small uncertainty, showing good predictive performance. A pairwise plot
summarizing the posterior samples of \bfittheta (marginal and bivariate) is shown in Figure 7. The
true value of \bfittheta is represented by the mark (x) in the lower triangular panels and the vertical
line on the diagonal panels. The true parameter values are covered by high-density regions of
the posterior distribution, indicating that they are recovered well by the model calibration.
Additionally, the posterior distribution of the nuisance parameter \theta 2 resembles a uniform dis-
tribution (prior) and does not affect the calibration. We note that the construction of the test
function results in a bimodal posterior for \theta 0.

To compare our elastic Bayesian calibration method to a standard functional Bayesian cal-
ibration approach, we fitted a BMARS emulator on the original simulated curves and directly
performed a modular Bayesian model calibration with no alignment. Figure 8 presents the
posterior predictive samples after calibration of the simulated data in the original data space,
and Figure 9 shows the corresponding parameter samples. We observe that the predictive
samples do not resemble the experimental data well and have more than one mode/valley and
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ELASTIC BAYESIAN MODEL CALIBRATION 211

Figure 6. Posterior predictive samples after calibration of the simulated data for Example 1.

large uncertainty, given that phase variability is not taken into account. The primary reason
for the improved performance of the elastic calibration in this simulation is the improved em-
ulator accuracy. The elastic emulator root mean squared error (RMSE) on test data is 0.082
versus the standard emulator RMSE of 0.562 on the same test data.

Beyond comparing to the standard functional Bayesian calibration approach, we also com-
pare to calibration using features, calibration only using the aligned data, and calibration
where the emulator is for the likelihood instead of the forward model. The results of these
approaches are compared in Figure 10, which shows the samples of \theta 0 and \theta 1 under each
method (the samples of \theta 2 are uniform in each case and are omitted from the figure) in the
lower left. The true setting of \theta 0 and \theta 1 is denoted with a red x. The top left and bottom
right plots show the marginal posterior density for \theta 0 and \theta 1, respectively. The top right
shows the 95\% contour of the joint samples. There are many insights from this figure. When
emulating the likelihood, we evaluated the mean squared error between the training sample
aligned curves and the experiment aligned curve, repeated the same for the shooting vectors,
built a joint BMARS emulator for the two mean squared errors, and calibrated to the zero
vector. There are various ways to explore this further, but they are not the focus of this paper.
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Figure 7. Pairs plot of parameters after calibration to simulated example data with the `true' parameter
combination shown by the x and vertical lines.

Figure 8. Calibrated predictions under the Bayesian calibration that does not account for misalignment.

This emulator fits well, but clearly not well enough to capture all of the information that the
elastic approach does. The calibration that only uses aligned data is good at capturing \theta 1,
but loses most information about \theta 0. The standard and elastic approaches are those shown in
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ELASTIC BAYESIAN MODEL CALIBRATION 213

Figure 9. Pairs plot of the posterior samples of the parameters after standard calibration for the simulated
example, where the true value is marked by the x and vertical line. The emulator was fitted directly on the
original data. Note that the axis limits are different from Figure 7.

Figures 9 and 7, respectively, but put on the same axes, we see that the standard approach
loses much information about \theta 1. For the feature-based approach, we selected two features: the
maximum of each curve and the timing of the maximum. Given the form of the functions, this
should communicate all of the information about \theta 0 and \theta 1. However, because the observations
were noisy, the features for the observed curve were slightly biased, and this biased the calibra-
tion. In practice, features are usually not easy to select, are frequently noisy, and usually do
not capture all of the information in the model, so the feature-based calibration could be biased
and lose information. To summarize this comparison, all five approaches started with the same
data, but the elastic approach resulted in the smallest uncertainty that still captured the truth.

4.2. Example with discrepancy. In this example, we demonstrate the kind of discrepancy
modeling that can be included in elastic Bayesian model calibration. We use the function

y(t,\bfitu ) = exp
\bigl\{ 
 - 2(t - 0.5u0  - 1.5)2/(u1 + 0.1)

\bigr\} 
 - u0 exp

\bigl\{ 
 - 10(t - 4)2

\bigr\} 
,

which consists of two bumps: a positive bump with shifted location and a negative bump
with shifted scale. There is no x variable here for simplicity, although the examples in the
next section include x variables. We generate 200 model runs using values of \bfitu from the unit
square. We treat as our true function

z(t) = 1.1exp
\bigl\{ 
 - 2(t - 0.5(0.6) - 1.5)2/(0.3 + 0.1)

\bigr\} 
 - 0.6exp

\bigl\{ 
 - 10(t - 4.2)2

\bigr\} 
,

which is the simulator evaluated at u0 = 0.6, u1 = 0.3 with two forms of discrepancy; the true
function has a larger first bump and shifted second bump. We include no measurement error.
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Figure 10. Comparison of the elastic calibration posterior samples with the posterior samples from four
other approaches on the simulated example.

The model runs and true function are shown in Figure 11. The discrepancy is such that the
parameters cannot replicate the behavior of the true function. The challenge of discrepancy
modeling will be to do it in such a way that our parameter inference is not biased. Because
of the timing discrepancy in the second bump, traditional functional response calibration will
struggle because an amplitude-only discrepancy will essentially lead to us losing information
from the second bump. We use basis expansions for each discrepancy model so that \bfitdelta \~y =\bfitD \~y\bfitbeta \~y

and \bfitdelta v = \bfitD v\bfitbeta v. If our discrepancy was indexed by variable \bfitx in this problem, we would
use \beta \~y(\bfitx ) and \beta v(\bfitx ) in place of \bfitbeta \~y and \bfitbeta v. For both \bfitD \~y and \bfitD v we use B-spline basis
functions shown in Figure 12. The first panel in Figure 12 shows that we limit our discrepancy
basis functions to the part of t that corresponds to the first bump because we know that is
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ELASTIC BAYESIAN MODEL CALIBRATION 215

Figure 11. Simulated curves y(t,\bfitu 1), . . . , y(t,\bfitu 200) and experiment data z(t) for the second simulated example.

Figure 12. Basis functions defining \bfitD \~y (left) and \bfitD v (middle) and basis functions used for standard cali-
bration (right).

where the amplitude discrepancy is. The second panel in Figure 12 shows that we limit
our phase discrepancy to the timing of the second bump because we know there is a phase
discrepancy there. When we perform calibration with these discrepancy models, we are able
to recover the settings of \bfittheta that generated the data, as shown in Figure 13, while standard
calibration is more likely to get biased parameter inference. Figure 14 shows the posterior
predictions of our aligned data, shooting vectors, warping functions, and misaligned data when
discrepancies are included and excluded. Figure 15 shows the inferred discrepancy under the
elastic and standard approaches. Under the standard approach, the timing shift is captured
by a sinusoidal discrepancy in amplitude, which limits the amount of information this part of
the calibration can provide. On the other hand, the elastic approach finds a timing shift of
0.2 (the correct amount).

5. Dynamic material model calibration. We demonstrate the application of the elastic
functional Bayesian calibration method to two real world applications, a Ta EoS calibration
and an Al material strength calibration.
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216 D. FRANCOM, J. D. TUCKER, G. HUERTA, K. SHULER, AND D. RIES

Figure 13. Comparison of elastic and standard inference of the calibration parameters. The points are pos-
terior samples, while the lines are the 95\% contour for each posterior. Properly including the phase discrepancy
in the elastic model allows us to get more accurate calibration than the standard approach, which only includes
amplitude discrepancy.

5.1. Ta Z-machine. In this application, we seek to calibrate the EoS of Ta with data
generated from pulsed magnetic fields (Brown et al., 2014). We are seeking to estimate
parameters describing the compressibility (relationship between pressure and density) to un-
derstand better how materials compress to extreme pressures. Ta is an ideal material for this
study because it is able to remain in its initial crystal structure to pressures up to 10 million
times standard atmospheric pressure (Soderlind and Moriarty, 1998). A description of the Ta
experiments is shown in Figure 2. The experiments were conducted using Sandia National
Laboratories' Z-machine, which is a pulsed power drive that can deliver massive electric cur-
rents over short time scales. These currents were forced to flow along an Al panel, producing
a large magnetic pressure that drives a time-dependent stress wave (impulse) into the system.
Ta samples and transparent LiF windows were glued to the panel such that the stress wave
propagates sequentially through each of these materials.

The material properties are modeled using a physically motivated form given by Vinet
et al. (1989). This form describes the pressure-density (P  - \rho ) response as

P (\rho ) = 3B0

\biggl( 
1 - \eta 

\eta 2

\biggr) 
exp

\biggl( 
3

2
(B\prime 

0  - 1)(1 - \eta )

\biggr) 
,

where \eta = 3
\sqrt{} 
\rho 0/\rho , \rho 0 is the initial density and B0 and B\prime 

0 are the bulk modulus and its
pressure derivative at ambient conditions. From the computer experiment perspective, we
will work with 6 inputs (3 EoS parameters (\rho ,B0,B

\prime 
0) and 3 experiment-specific parame-

ters) and output velocity curves on a grid of 100 equidistant time points. As described in
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ELASTIC BAYESIAN MODEL CALIBRATION 217

(a) Calibrated aligned curves. (b) Calibrated warping functions.

(c) Calibrated shooting vectors. (d) Calibrated misaligned predictions.

Figure 14. Posterior predictive samples after calibration of the simulated data for Example 2.

(a) Amplitude discrepancy under the standard
model and the elastic model. (b) Phase discrepancy using elastic calibration.

Figure 15. Comparison of standard and elastic discrepancy modeling for simulated example.
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Figure 16. (Left) Experiment velocities of Ta shown in black compared with 95\% prediction intervals from
the elastic functional Bayesian calibration. (Right) Corresponding color-coded residuals (difference between
experiment and calibration mean) for each experiment.

(Brown et al., 2014), the main goal is to provide inferences on the 3 EoS parameters with
uncertainty quantification and to propagate these inferences to the Vinet model.

As was done in the simulated example, the computer model output was aligned to the
experimental data, and an emulator was fitted to the aligned computer model and the corre-
sponding shooting vectors. We then performed a modular elastic Bayesian model calibration.
There are a total of 9 experiments.

Figure 16 presents the elastic Bayesian model calibration results for the Ta experiments.
The black curves shown in the figure correspond to the experimental velocity curves for the 9
experiments. The shaded colored regions are the 95\% prediction intervals that result from the
elastic functional Bayesian calibration. The prediction intervals exhibit good agreement with
each experimental curve. The residuals, defined as the difference between the experimental
data and the calibrated predicted mean, are shown in the right panel of Figure 16. Each of
the residuals are color coded to the corresponding experiment from the left panel. The full
functional approach has tighter coverage of the experimental curves and smaller residual values
compared to the resulting predictions and residuals that stem from the approach of Brown
and Hund (2018).

Furthermore, Figure 17 presents a pairwise plot of the samples from the posterior dis-
tribution of the calibrated EoS parameters for Ta with the elastic approach. The posterior
distributions are well concentrated within the parameter space, and the corresponding poste-
rior medians compare to those found in Brown and Hund (2018) with a reduced uncertainty
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Figure 17. Pairs plot of the posterior densities of EoS parameters for Ta.
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Figure 18. Calibrated Ta material response to the Vinet model compared with the analytic results in Brown
et al. (2014) and the theoretical calculations in Greeff et al. (2009).

around the same parameter values. It should be remarked that the elastic FDA calibration
approach does not involve any likelihood scaling as in Brown and Hund (2018). To assess the
calibration further, we compared the posterior estimates of the EoS to those reported in the
literature for the Vinet model. Figure 18 presents a plot of the pressure versus density Vinet
curve with a 95\% credible interval generated from the elastic calibration shown in red. The
blue curve corresponds to the loading path determined analytically by using the standard
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220 D. FRANCOM, J. D. TUCKER, G. HUERTA, K. SHULER, AND D. RIES

techniques in the dynamic materials community as described in Brown et al. (2014). The
dashed curve is the state-of-the-art theoretical calculation given by Greeff et al. (2009), which
has been used to simulate these types of Ta experiments. The posterior estimate of the curve
from the elastic calibration lies just above the theoretical calculation and below the analyti-
cal result, which corresponds with what is expected when using the analytic analysis (Kraus
et al., 2016). The estimates of the physical parameters resulting from the elastic Bayesian
model calibration are similar to those from previous work.

5.2. Flyer plate impact. Material strength characterizes how a material temporarily or
permanently deforms as it experiences pressure. This is of interest in various areas of science
and engineering, with applications in the aerospace, medical, and automotive industries (Gray
et al., 2005). When experimentation is difficult, material strength models are an important
tool for predicting how a material will react to pressure. One such model is the Johnson--
Cook strength model (Johnson and Cook, 1983), for which the model behavior is dictated by
a relatively small collection of material-specific physical parameters. To set these parameters,
scientists and engineers rely on experimentation, hence calibrating the material strength model
parameters to experimental measurements.

In this application, we consider the calibration of the Johnson--Cook material strength
model for an Al alloy using a set of plate impact experiments. Walters et al. (2018) performed
a Bayesian model calibration using plate impact experiments by reducing the velocimetry
curves to a small set of features considered to be important to strength. We show how elastic
Bayesian model calibration relies on the entire curve without using human-intensive feature
engineering. Plate impact experiments achieve high pressure on a material sample by shooting
a flyer at high velocity into the sample (plate). Lasers measure how the free surface of the
sample moves as the shock wave moves through it. The result is a trace of the velocity of
the free surface of the sample over time, called a velocimetry curve. From the computer
experiment perspective, we will work with 11 inputs: 5 Johnson--Cook parameters plus 6
experiment-specific parameters (2 for each experiment) and the output velocimetry curves
on a grid of 200 time points. Figure 19(a) shows measured velocimetry curves along with
1000 simulated velocimetry curves using different settings of the Johnson--Cook model and
for 3 experiments. To obtain these simulations, the Johnson--Cook model is used within a
larger hydrodynamics code that is expensive to evaluate. In this example, we do not use the
observations as the alignment reference and instead use the first model run. Figure 19(b)
shows the aligned functions, Figure 19(c) shows warping functions, and Figure 19(d) shows
the shooting vectors corresponding to the measured and simulated curves. The misalignment
of the experimental curves to the simulated is clear for the second and third experiments. The
2 right plots of Figure 19(a) show the experimental data to the right of all of the simulations.
This is reflected in the warping functions in the 2 right plots of Figure 19(c), which push the
experimental timings later than any of the simulations. In the shooting vectors of Figure 19(d),
this is reflected with large positive values early in the vector and large negative values later
in the vector, with varying patterns in the middle of the vector.

We use the aligned data and shooting vectors from the 1000 simulations to build an emu-
lator and perform the elastic calibration. To allow for a time shift discrepancy for experiments
2 and 3, we use three piecewise constant and one piecewise linear basis functions in shooting
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ELASTIC BAYESIAN MODEL CALIBRATION 221

Figure 19. Posterior predictions from the elastic Bayesian model calibration for the flyer data example for
the original data, the aligned curves, the warping functions, and the shooting vectors.
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Figure 20. Basis functions used to capture a time shift discrepancy in shooting vector space for the flyer
plate example.

vector space, as shown in Figure 20. More specifically, we parameterize \bfitdelta v(\bfitx i) = \bfitD \bfitbeta (\bfitx i),
where \bfitD is the 200\times 4 matrix of basis functions and \bfitbeta (\bfitx i) is a vector of 4 basis coefficients
that can vary by experiment. In the approach of Higdon et al. (2008), \beta k(\cdot ) would be assigned
a Gaussian process prior so that the discrepancy could be predicted for a new experiment with
settings \bfitx \ast . In our case, we are not interested in predicting the discrepancy at new experi-
mental settings, so we specify a standard normal prior for each \beta k(\bfitx i). This indicates that
we want to allow for a time shift but would prefer to make \beta k(\bfitx i) = 0 if possible. The prior
variance of \beta k(\bfitx i) can be modified in order to favor more or less discrepancy. The form of the
basis functions in Figure 20 is carefully chosen to be constant in domains where the aligned
data are roughly constant and a linear function in the region where the aligned data are most
active. Specifically, we think of the aligned curves as having three parts: (1) a nearly constant
region at the beginning; (2) a quick jump in velocity, a plateau, and another quick jump; and
(3) a final plateau. We choose our basis functions such that we allow for constant discrepancy
shifts in the shooting vectors in the (1) and (3) regions and linear shifts in the (2) region.
We largely arrived at this combination by trial and error made sensible in hindsight. Recall
that the transformation of shooting vector to warping function involves the exponential map
and an integral. Portions of the shooting vector that are positive indicate faster-than-identity
warping, while negative values indicate slower-than-identity warping. The warping functions
are constrained to start at 0 and end at 1, so the constant shifts in shooting vectors at the
first and last plateaus allow for more extreme change in timing there, where it does not have
much effect, to compensate for the linear portion of the shooting vector discrepancy, which
has the more noticeable effect.

Figure 19 presents the posterior predictive samples of the velocimetry curves after calibra-
tion shown in blue. In a similar way, Figure 19(b), (c), and (d) show the posterior predictive
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Figure 21. Pairwise plot and marginal densities for the posterior distribution of the 11 calibrated parameters
for the flyer plate experiment.

samples of the aligned curves, warping functions, and shooting vectors, respectively. In all of
these cases, the predictive samples cover the experimental data well. Furthermore, Figure 21
presents a pairs plot of the posterior distribution of the 11 calibrated parameters with di-
agonal elements representing marginal distributions while the lower diagonal shows bivariate
contours and the upper diagonal shows pair plots of the samples. Compared to Walters et al.
(2018), we are able to use the entirety of the functional data, while their approach used a few
hand-selected features.
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(a) Discrepancy in shooting vector space.
(b) Discrepancy (additive) in warping function
space.

Figure 22. Estimated posterior discrepancy per experiment for the Flyer plate impact calibration.

Figure 22(a) shows the posterior distribution of \bfitdelta v(\bfitx 1), \bfitdelta v(\bfitx 2), and \bfitdelta v(\bfitx 3), the shooting
vector discrepancies. Figure 22(b) shows the difference between two sets of warping functions---
those that include the discrepancy in Figure 22(a) and those that do not---which illustrates
the type of shift that these discrepancies induce.

The code to reproduce this analysis is available at https://github.com/lanl/impala/blob/
master/examples/shpb-flyer-Al5083 pooled.py.

6. Conclusion. Model calibration for functional responses is typically more difficult than
in more traditional settings. Adjusting input parameters and discrepancy so that model
output matches experimental output is seldom trivial, but can be even more challenging for
functional data when altering input parameters results in amplitude and phase variability
in the responses. Traditional methods ignore these aspects, which are unique to models
with functional responses, putting them at risk for higher levels of bias and lower levels
of efficiency. In this paper, we develop methods to handle amplitude and phase variability
in a systematic way, resulting in more efficient and more accurate estimates of the model
parameters. The improvements in these estimators are achieved through better handling of
the functional responses as opposed to collecting more data.

The elastic Bayesian model calibration procedure presented here uses information from
both the amplitude and phase space to calibrate the parameters, in contrast with more com-
mon calibration methods, which would only look at the amplitude space. The benefits of this
approach are demonstrated on a toy problem where amplitude and phase variability are pres-
ent. The toy problem shows that the elastic Bayesian model calibration approach results in
superior estimation of the model parameters and predicted functional responses. Information
about the amount of warping necessary to align the functions provides an additional indi-
rect benefit because it provides valuable insight into the model's input parameters. Standard
methods, which do not handle the phase and amplitude variability separately, may result in
predicted functional responses that do not fit the data well and suggest much larger uncer-
tainty in calibration parameters. These results make a strong case for the elastic modeling
approach because most functional data have some misalignment and phase discrepancy.
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Applying the method to the Z-machine data and flyer-plate data generated similar results
to previous studies without the need of likelihood scaling as in Brown and Hund (2018) or
feature selection as in Walters et al. (2018). The elastic Bayesian calibration model yields
credible intervals with good agreement of the experimental data using a principled approach.
From a theoretical perspective, the elastic Bayesian calibration approach is satisfying in that
it treats the model's output as functional throughout the calibration procedure.

Potential future work may investigate some of the additional modeling assumptions made
in the elastic calibration approach, such as the independence assumptions in the likelihood
and the treatment of the warping decomposition uncertainty.
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