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BACKGROUND/OBJECTIVES: Children’s biological age does not always correspond to their chronological age. In the case of BMI
trajectories, this can appear as phase variation, which can be seen as shift, stretch, or shrinking between trajectories. With
maturation thought of as a process moving towards the final state - adult BMI, we assessed whether children can be divided into
latent groups reflecting similar maturational age of BMI. The groups were characterised by early factors and time-related features of
the trajectories.

SUBJECTS/METHODS: We used data from two general population birth cohort studies, Northern Finland Birth Cohorts 1966 and
1986 (NFBC1966 and NFBC1986). Height (n = 6329) and weight (n = 6568) measurements were interpolated in 34 shared time
points using B-splines, and BMI values were calculated between 3 months to 16 years. Pairwise phase distances of 2999 females and
3163 males were used as a similarity measure in k-medoids clustering.

RESULTS: We identified three clusters of trajectories in females and males (Type 1: females, n = 1566, males, n = 1669; Type 2:
females, n = 1028, males, n = 973; Type 3: females, n = 405, males, n = 521). Similar distinct timing patterns were identified in males
and females. The clusters did not differ by sex, or early growth determinants studied.

CONCLUSIONS:: Trajectory cluster Type 1 reflected to the shape of what is typically illustrated as the childhood BMI trajectory in
literature. However, the other two have not been identified previously. Type 2 pattern was more common in the NFBC1966 suggesting

a generational shift in BMI maturational patterns.

International Journal of Obesity; https://doi.org/10.1038/541366-025-01714-8

INTRODUCTION
When studying trajectories of a longitudinal phenomenon in a
population, one often observes temporal variation between the
individual trajectories. Indeed, although the trajectories exhibit
similar shapes, they might seem slightly shifted, stretched, or
shrunk in relation to each other. This is called phase variation in
functional data analysis [1]. Phase variation related to the
description of biological phenotypes such as human growth has
received attention in the past, with height [2, 3] and leg growth
[4]. More recently also multivariate functional data have been
considered, with some examples related to growth [5, 6]. To date,
the approaches to model longitudinal changes of BMI in children
have not considered phase variation.

Previous studies have identified common inflection points in
the childhood BMI trajectory, namely the infancy peak [7] and
adiposity rebound point (AR) [8]. However, substantial variation is

reported in the timing of these inflection points across popula-
tions [9, 10] with average age at infancy peak ranging between 6.0
and 9.9 months [11, 12], and average age at AR between 3.0 and
8.7 years [13, 14]. This suggests that the biological meaning of
childhood BMI may differ between children of the same age with
different growth patterns in bone, muscle, and adipose tissues
[13]. Furthermore, in a British birth cohort study, over 30% of
adolescents that were categorised to be with overweight or
obesity according to sex and age adjusted BMI cut-offs, were
reclassified to a lower weight BMI category when biological
maturation was controlled for [15]. Therefore, it might be too
ambiguous to refer only to a chronological age when describing
children’s cross-sectional BMI.

Childhood height growth can be thought of as a process of
maturation towards the mature state, e.g., adult height [16]. The
same analogy could be used for BMI, if we assume that adult BMI
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is a stable phenotype that occurs after the pubertal processes
have ended. When assuming this, we must distinguish between
the chronological age and maturational age. Two children are at
the same maturational age regarding childhood BMI when they
are in the same phase of their BMI development, regardless of
their chronological age. More generally, the different time scales
are sometimes referred to as clock time and system time [1].

In the present study, we hypothesised that there are latent
groups with distinct childhood BMI timing patterns. To address
this, we (1) assessed whether children can be divided into latent
groups that reflect similar maturational age regarding BMI from
3 months to 16 years, and (2) characterised the groups by early
factors and time-related features of the trajectories. The difference
in maturational age was measured by phase distances of the BMI
trajectories, which quantify how well two curves are aligned with
one another. Clustering by phase distances without aligning does
not remove the phase variation but allows to identify latent
groups where the phase distances are more alike, i.e. the BMI
trajectories of the children are similar in respect to timing of BMI
maturation. It may also help to identify different shape patterns of
childhood BMI if such patterns exist in the data.

MATERIAL AND METHODS

Study participants

We used data from two longitudinal birth cohorts born in Northern Finland
twenty years apart.

Northern Finland Birth Cohort 1966. Northern Finland Birth Cohort 1966
(NFBC1966) [17] is a birth cohort of pregnant women and their offspring
from the Finnish provinces of Oulu and Lapland. The NFBC1966 targeted
all expected deliveries during a one-year period 1st of January 1966 to 31st
of December 1966. It comprised 96,3% of all deliveries in the area for this
time period, consisting of 12,055 mothers and 12,058 live born offsprings
[18]. The mothers were followed up in antenatal clinics by mid-wives and
completed three questionnaires in different phases of their pregnancy,
complemented with information on the childbirth. Information on the
offspring has since been gathered through postal questionnaires, clinical
examinations, and health records.

Northern Finland Birth Cohort 1986. The Northern Finland Birth Cohort
1986 (NFBC1986) [19] was initiated 20 years after the NFBC1966 in the
same two northernmost provinces of Finland. It included 99% of all
deliveries in the area, with a due date between 1st of July 1985 and 30th of
June 1986 [20, 21]. This corresponded to 9362 mothers and 9432 live
births. The mothers were followed up similar to NFBC1966 described
above and filled in questionnaires three times during the pregnancy.
Information on the offsprings has since been complemented through
postal questionnaires, clinical examinations, and health records.

Height and weight measurements

Information on height (cm) and weight (kg), was obtained by healthcare
professionals and linked to the data; first, from primary healthcare records
(regular health check-ups from birth until school age, i.e. 7 years) and
school health records afterwards. In addition, the participants of the
NFBC1986 were invited to a clinical examination at the age of 16 years
where height and weight were measured by research nurses. Up to 43
weight observations were available for 7865 participants in the NFBC1966
and up to 58 observations of 6942 participants in the NFBC1986. For
height, at most 42 observations were available for 7852 participants in the
NFBC1966 and 51 observations for 6941 participants in the NFBC1986.

Selection criteria of height and weight measurements
Subsequent analysis required common BMI timepoints between indivi-
duals, and therefore, we applied spline interpolation for measured values
of height and weight. To provide dense height and weight curves for
interpolation, we defined the selection criteria as follows:

1. Earliest measurement taken before 6 months of age (excluding birth
measures).
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2. Last measurement taken after 16 years.
3. Intervals between subsequent measurements less than 5 years.

Demographic variables

For characterisation of the study sample, the following maternal variables
were reported: age at delivery, cigarette smoking during pregnancy,
education level, pre-pregnancy BMI, parity, and place of residence. For the
participants, the following variables were reported: mode of delivery,
single or multiple birth, gestational age, prematurity, and birth weight.
Details of how the demographic variables were classified are available in
the Supplementary Text S1.1.

Statistical analyses

Pre-processing height and weight measurements. Pre-processing of height
and weight measurements is described in detail in Supplementary Text
S1.2. In brief, height and weight were interpolated in one cohort at a time
using B-splines to derive BMI estimates at desired timepoints. In all
trajectories, knot points were placed at the individual's minimum and
maximum ages as well as at 3, 12, 48, 96 and 144 months. Degrees of best
fitting splines within cohort were determined by visually inspecting
randomly selected individual’s curves, as well as by checking decreases of
1cm in height or 2 kg in weight within the trajectory. In the final fits, we
assessed all decreasing trajectories again, and excluded the participant
from further analysis where the spline fit seemed to produce anomalies in
the trajectory that were not observed from the height or weight
measurements. B-spline interpolation was carried out using the R package
fda [22]. R script for the analysis is provided in Supplementary script.

BMI estimates were then calculated as weight(kg)/height(m)2 from the
extracted height and weight measurements. A total of 34 data points of
6162 individuals were analysed with time points at 3, 6, 9 and 12 months,
and then every 6 months up to 16 years of age.

As a sensitivity analysis, to assess the stability of results regarding the
interpolation, we used linear interpolation [23] for pre-processing height
and weight measurements. The description of the procedure is presented
in the Supplementary Text S1.3.

Similarity distances. For estimating similarity distances, the two cohorts
were pooled and stratified by sex. Pooling was done as the preliminary
cohort specific analyses revealed similar clusters in both NFBC1966 and
NFBC1986.

Pairwise elastic phase distances [24] were computed between indivi-
duals in sex-specific datasets. In general terms, phase distance measures
how well two functions are aligned with one another. In this context, the
BMI trajectories are thought of as functions of time. Separating pairwise
amplitude and phase distances between functions f; and f, is based on
aligning the two functions. Technically, aligning f, to f; means finding a
warping function y such that the composition f,y is most similar to f1. The
phase distance between functions f; and f; is defined as the arc-length
between the square-root slope function (SRSF) of f; and the SRSF of the
warping function y on a unit sphere. For more details and full definition of
the SRSF, refer to previous works from Tucker et al. and Srivastava et al.
[24, 25].

Phase distances were calculated using the R function elastic.-
distance in the package fdasrvf [26].

Clustering. Phase distances were used in the dissimilarity matrix in
partitioning around medoids approach (PAM or k-medoids) with the
number of clusters k set between 2 and 10. Average silhouette widths were
used to determine the optimal value for k. The average silhouette width is
a popular metric for cluster quality, suggested to be used with PAM [27].
Clustering was done with the function pam in the R package cluster
[28]. A general description of the steps to perform phase clustering from
repeated height and weight measures is illustrated in the Supplementary
Fig. 1. R script for the corresponding process is given in Supplementary
Script.

Characteristics of the clusters. Of the previously mentioned demographic
variables, we reported means along with standard deviations for
continuous variables, and number of participants with the percentage of
the total sample for categorical variables in each of the identified clusters.
Cluster-specific medians as well as 1st and 3rd quartiles of BMI trajectories
were further reported regarding the following timing-related measures:
age at reaching the first peak (i.e., infancy peak), age at reaching the first
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Fig. 1 Cluster-wise ordered heatmaps of pairwise phase distances in females on the left and males on the right. Each row and column
represent an individual. Each intersection point displays the phase distance between the trajectories of the corresponding individuals as a
colour. The three BMI trajectory clusters appear as darker blocks, with blue indicating distance close to zero and yellow and red colours

indicating greater distance.

Table 1. Cluster sizes and proportions for females and males.

Cluster type Females n (%) Males n (%)
Type 1 1566 (52.2) 1669 (52.8)
Type 2 1028 (34.3) 973 (30.8)
Type 3 405 (13.5) 521 (16.5)
Total 2999 (100) 3163 (100)

valley (i.e., adiposity rebound point), the average rate of change in BMI
between the beginning of the estimated trajectory at three months and
the first peak, average rate of change in BMI between the first peak and the
next valley (i.e., between infancy peak and adiposity rebound point) as well
as the duration between the first peak and the first valley (i.e., from infancy
peak to adiposity rebound point).

To assess the cluster-specific average amplitude or level of BMI, we
performed additional analyses where trajectories were aligned to their
cluster centroid. Further reasoning, as well as the detailed description of
methods, is presented in the Supplementary Text S1.4.

All analyses were conducted in R [29] versions 4.2.3 and 4.3.1.

RESULTS

The number of participants included after each of the selection
criteria step in this study can be found in the flowchart
Supplementary Fig. 2. More details regarding attrition are available
in Supplementary Text S2.1 and Supplementary Table 1.

In cluster analysis of females, the maximum average silhouette
width was found with the number of clusters k=3 (average
silhouette width = 0.20). In males, the maximum average silhouette
width was found when k=2 (0.21), and a similar average
silhouette width with k=3 (0.20). Number of cluster k=3 was
chosen for both sexes for comparability of clusters. Supplementary
Table 2 provides details of average silhouette widths with different
number of clusters k. Cluster-wise ordered heatmaps of phase
distances showed good clusterability in both sexes (Fig. 1). The
identified clusters were named as “Type 1”7 (Nfemales=1566;
Nmates = 1669), “Type 2" (Nfemales=1028; Nmaes = 973) and “Type
3" (Nfermales=405; Nmales = 521), according to the decreasing order
of cluster sizes (Table 1).

Individuals from the two cohorts were not evenly distributed in
the discovered clusters (Table 2). Type 1 in both sexes and Type 3
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in females had more participants from the NFBC1986, and Type 2
in both sexes as well as Type 3 in males were more often from the
NFBC1966. Type 3 participants’ mothers had more often continued
smoking after the 2nd month of the pregnancy and had lower
educational level than mothers of the participants clustered to
Type 1 or Type 2. Although the sample size for multiple births was
relatively low, Type 2 individuals were less likely to be twins.

Females and males had comparable shapes in the cluster
centroids (Fig. 2) that seem to reflect the typical BMI trajectory
shapes within their clusters (Supplementary Fig. 3). Participants
within cluster Type 1 exhibited a shape with a clear peak observed
soon after birth, followed by a decrease until the adiposity
rebound point and then increasing again towards its final level.
Trajectories of the cluster Type 2 were characterised by an early
peak similar to Type 1, but they differed from the other clusters
with an intermediate rise in the BMI between the ages of four and
nine years.

The time-related BMI trajectory characteristics of the cluster
types are shown in Table 3. Median age at 1st peak of the
trajectory was at 0.75 years in all clusters and both sexes. Median
infancy slopes were steepest in Type 2 females and males,
indicating that individuals in this cluster had highest average rate
of change in BMI between the earliest point included in the
trajectories (3 months) and the first peak. Median childhood
slopes from first peak to the next valley were also the steepest in
trajectories of the cluster Type 2. The duration from which
childhood slope was measured was shortest in Type 2 and longest
in Type 1 trajectories.

In the vast majority (> 70% in females and males) of trajectories
in Type 1 the number of peak features was one (Table 4). The
number of peak features in Type 2 trajectories was most often two
(61% in females and 65% in males) or three (22% in both sexes).
Up to 81% of females’ and 71% of males’ Type 3 trajectories had in
total two BMI peaks (Table 4).

Cross-sectional average BMI trajectories accompanied by their
95% confidence intervals of aligned BMI trajectories are illustrated
in Supplementary Fig. 4. The mean trajectories cross several times,
indicating that having a higher average BMI than another cluster
at one time point does not mean that the average BMI level is
constantly higher than in another cluster.

SPRINGER NATURE
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Table 2.
categorical variables, n (%) reported.

Female BMI trajectory types

Characteristics of the studied population per BMI trajectory clusters. With continuous variables, mean (standard deviation, SD) and with

Male BMI trajectory types

Variable /levels Type 1 Type 2 Type 3 Type 1 Type 2 Type 3
Cohort

NFBC1966 663 (42.3) 597 (58.1) 193 (47.7) 678 (40.6) 645 (66.3) 288 (55.3)

NFBC1986 903 (57.7) 431 (41.9) 212 (52.3) 991 (59.4) 328 (33.7) 233 (44.7)

Average number of height measurements 22.8 (4.4) 22.7 (4.8) 22.7 (5.0) 22.7 (4.3) 22.5 (4.8) 21.9 (4.5)

Average number of weight measurements 24.3 (4.9) 24.0 (5.4) 24.4 (5.8) 24.2 (4.8) 23.5 (5.1) 23.2 (5.0)

Maternal age at birth, years 27.7 (5.8) 27.5 (5.8) 28.0 (6.3) 28.0 (5.7) 27.7 (5.9) 27.9 (5.8)
Maternal smoking during pregnancy

No 1210 (78.0) 841 (82.7) 300 (75.0) 1303 (79.0) 759 (79.6) 397 (76.9)

Yes, quitted 79 (5.1) 41 (4.0) 21 (5.2) 73 (4.4) 62 (6.5) 26 (5.0)

Yes 262 (16.9) 135 (13.3) 79 (19.8) 274 (16.6) 133 (13.9) 93 (18.0)
Maternal education

High 250 (17.0) 149 (15.2) 54 (14.0) 232 (15.0) 131 (14.0) 60 (12.0)

Medium 411 (27.9) 262 (26.8) 96 (24.8) 473 (30.5) 230 (24.7) 131 (27.5)

Low 811 (55.1) 568 (58.0) 237 (61.2) 845 (54.5) 572 (61.3) 286 (60.0)
Maternal pre-pregnancy BMI, kg/m? 22.7 (3.3) 223 (2.9) 23.2 (3.7) 22.7 (34) 224 (3.0 22.6 (3.0)
Mode of delivery

Non-instrumental vaginal delivery 889 (77.3) 526 (80.2) 237 (82.0) 970 (76.4) 445 (78.3) 274 (79.0)

C-section 170 (14.8) 87 (13.3) 37 (12.8) 170 (13.4) 68 (12.0) 45 (13.0)

Other (vacuum extraction, forceps) 90 (7.9) 43 (6.6) 15 (5.2) 130 (10.2) 55 (9.7) 28 (8.1)
Multiple birth

Singleton 1535 (98.0) 1016 (98.8) 395 (97.5) 1618 (96.9) 956 (98.3) 510 (97.9)

Twin 31 (2.0) 12 (1.2) 10 (2.5) 50 (3.0) 16 (1.6) 11 (2.1)

Triplet 0 (0.0) 0 (0.0) 0 (0.0) 1(0.1) 1(0.1) 0 (0.0)
Parity

No 542 (34.7) 360 (35.2) 151 (37.4) 580 (34.8) 353 (36.4) 203 (39.2)

Yes 1022 (65.3) 664 (64.8) 253 (62.6) 1087 (65.2) 618 (63.6) 315 (60.8)
Gestational age, weeks 39.9 (1.7) 40.0 (1.7) 40.0 (1.7) 39.8 (1.8) 40.0 (1.6) 39.9 (1.8)
Birth status

Term (= 37 weeks) 1474 (95.6) 979 (96.5) 384 (95.8) 1544 (93.7) 925 (97.2) 493 (96.7)

Preterm (< 37 weeks) 68 (4.4) 36 (3.5) 17 (4.2) 104 (6.3) 27 (2.8) 17 (3.3)
Birth weight, grams 3455 (500) 3457 (482) 3522 (537) 3573 (547) 3562 (522) 3594 (522)
Place of residence at birth

Town 685 (43.8) 445 (43.3) 185 (45.9) 684 (41.1) 462 (47.5) 209 (40.4)

Village centre 502 (32.1) 331 (32.2) 119 (29.5) 588 (35.3) 297 (30.6) 184 (35.6)

Remote village 378 (24.2) 251 (24.4) 99 (24.6) 392 (23.6) 213 (21.9) 124 (24.0)

Clustering results of the sensitivity analysis using linear
interpolation for height and weight curves agreed with the main
analysis using B-spline interpolation (Supplementary Text S2.2).
The overall cluster agreement was 58,5% between the main (using
B-splines for height and weight) and sensitivity analysis (using
linear interpolation for height and weight). More details of the
cluster agreement are presented in Supplementary Table 4. The
sensitivity analysis resulted visually similar clusters to the main
analysis (Supplementary Figs. 5, 6 and 7).

DISCUSSION

In the present study, we applied a new method to identify clusters
of childhood BMI trajectories based on the phase differences and
using repeated measures of height and weight from just after
birth until 16 years. We discriminated three clusters of children,
each exhibiting similar trajectories in both sexes. The trajectory

SPRINGER NATURE

cluster Type 1 was similar in shape to the commonly described BMI
trajectory [8, 30]. However, to our knowledge, the two additional
types of trajectories we observed have not been reported in the
literature.

Understanding changes in the trajectory of BMI during child-
hood has important biological and clinical implications. This
should contribute to better understand children’s growth during
childhood and to identify individuals deviating from the “healthy
reference” by any condition or health-related factor. So far, the
focus has mainly been on BMI level or studying critical periods
that are known to associate with later BMI or health status.

Clustering based on the timing of the BMI trajectory is
fundamentally different to the more traditional efforts to cluster
BMI trajectories, as typically, the focus has been on identifying
groups according to the level of BMI. This includes assessing
whether BMI is stable or unstable over time, and whether it is high
or low compared to the average in the population [31-34]. These

International Journal of Obesity
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Fig. 2 Medoid BMI trajectories of each cluster in females above and males below. A medoid is a representative trajectory from the cluster,
where the sum of pairwise phase distances between it and other trajectories within the cluster are at a minimum. In females, Type 1 includes
52.2% of the participants, Type 2 includes 34.3%, and Type 3 includes 13.5%. In males, Type 1 includes 53.8% of the participants, Type 2

includes 30.8%, and Type 3 includes 16.5%.

are relevant questions for better understanding the epidemic of
obesity, as it is shown that high BMI in childhood often persists
into adulthood [35, 36]. They do not, however, shed light into our
interest of timing of BMI maturation.

In the demographic characterisation of clusters, we did not find
differences in early factors that could explain where the growth
differences, seen as patterns in BMI trajectories, could arise from.
However, we observed that the clusters were not evenly
distributed between the two cohorts. This is an interesting finding
as the cohorts are from the same area in Finland but 20 years
apart. Individuals of the NFBC1966 were born to an industrialising
agrarian society whereas the NFBC1986 study participants were
born and grew up in a much more modern environment than
their counterparts two decades earlier. Several factors influencing
maternal and child health and care (and growth of the child)
advanced in between, including primary care procedures, social
security and support, as well as average quality of nutrition. For
instance, perinatal mortality decreased from 2.4% in NFBC166 to
0.9% in NFBC1986, and mothers of NFBC1986 were eligible for
paid maternity leave four weeks before the estimated birth date
[37]. Nedelec et al. have also discussed breastfeeding and how it

International Journal of Obesity

was promoted by healthcare personnel in Finland between the
decades covering the early stages of the two birth cohorts also
used in this study [32].

Time-related characteristics (age at first peak, infancy slope, age
at first valley, childhood slope and duration of BMI decrease in
childhood) are subject to the chosen time points, as the
trajectories are represented by the estimated BMI values in the
34 time points. For example, each cluster type has median age at
the 1st peak in the BMI at 0.75 years of age with almost identical
1st and 3rd quartile values. It is likely there would be more
variation in the ages if we had more than four time points (at 3, 6,
9, and 12 months) selected for the first year. Previous studies have
found differences in the age at adiposity peak between NFBC1966
and NFBC1986 [32, 38].

The trajectory cluster Type 2 adds another chapter to the
discussion around the adiposity rebound point. Since it was first
described [8], there has been discussion on what the AR reflects
and why it occurs [39-42], despite the evidence found that the
timing of AR predicts later life BMI and obesity [43-46]. The Type 2
trajectories typically have a trough, instead of a clear nadir,
following the rapid decrease in BMI directly after infancy peak, and

SPRINGER NATURE
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2 "infancy peak”; ® from 3 months to 1st peak; < “adiposity rebound point”; ¢ from 1st peak to 1st valley;  duration from 1st peak to 1st valley

before the BMI starts to rise towards the final state. Due to this
trough, it is unclear how AR should be defined for these
trajectories. Bornhorst et al. discussed that excluding children
with inestimable infancy peak or AR may introduce selection bias
and suggested using BMI at selected timepoints as a predictor for
later BMI [47]. Based on the results presented here, we cannot
warrant the maturational clusters’ predictability for later life BMI.
However, we argue, that rather than ignoring the timing aspect
and using BMI in one selected time point, it could be beneficial to
study the use of maturational clusters presented here due to their
longitudinal aspect.

Our sensitivity analysis using linear interpolation for height and
weight showed 58,5% cluster agreement with our main analysis
resulting in visually similar clusters. This may indicate that the BMI
trajectories appearing in matching clusters form the “core” of the
clusters, whereas those that change clusters are noisier and thus
do not have a perfectly fitting group for them. Noise in this
context may be induced by factors, such as nutrition, psycholo-
gical stress or adverse health conditions, that can either have
permanent or temporary effects on height or weight gain [48-52].

Although BMI as a measure of maturity has not been widely
explored, few studies have recognised an inverse association
between the age at AR and skeletal maturity [8, 53], and a positive
association with age at menarche in girls [54]. As the childhood
BMI is a dynamic trait that keeps evolving even after the AR, we
again argue, that a longitudinal assessment in the timing could be
more beneficial. Alternatively, a measure of phase distance could
be used to differentiate longitudinal timing of different trajec-
tories, where applicable.

In addition to the large sample size and long follow-up period,
the Northern Finland Birth Cohort studies have relatively dense
sampling and coverage improving the quality of height and
weight modelling, which can be accounted as a strength of the
study. The three trajectory clusters are a solid finding in our
investigations. As well as being present in both sexes, similar
clusters were also found in the sensitivity analysis, indicating that
the pre-processing steps for obtaining height and weight
estimates from exactly same time points did not steer the results
of the clustering. Furthermore, we found similar clusters in females
and males also when analysing the NFBC1966 and
NFBC1986 separately in preliminary analysis.

We also acknowledge certain limitations to this study. Our
inclusion criteria on the measurement density reduced the sample
size substantially. The excluded sample had on average, 15 height
and 16 weight observations per participant, but either their follow-
up period was not long enough or had large gaps between
consecutive measurements. In both cohorts, the density of height
and weight observations were high especially in the first year but
reduced after reaching school age. In addition to the reduction of
sample size, poorly fitting height and weight trajectories were
assessed manually, and decisions regarding model fitness were
somewhat subjective. Although the data set is rich in growth
measurements, information on lifestyle factors that could affect
growth is mostly available around birth and adolescence missing
out the mid-childhood.

There have been recent developments in characterising
subtypes of obesity beyond BMI according to the pathophysio-
logical mechanisms [55] and cardiometabolic risk profiles [56, 57].
Less work has been done to determine whether similar or
comparable categories exist in children [58] and whether they
could be explained by differential patterns of growth. We may
speculate that the subtypes of adult obesity could start exhibiting
differences in other factors (e.g. timing) as well as BMI levels in
their early developmental trajectories.

We propose multiple steps to validate these results to ensure
that the observed clustering, and possible new ones, could be
translated into a better understanding of BMI maturation and
ultimately more personalised clinical applications. To validate our
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Table 4. Number (%) of peak features within trajectories in BMI phase clusters in females and males.

Females
Number of peaks Type 1 Type 2
Nill 59 (3.8) 9 (0.9)
One 1151 (73.5) 164 (16.0)
Two 345 (22.0) 631 (61.4)
Three 11 (0.7) 224 (21.8)

results, the clustering should be replicated with other birth
cohorts, ideally from diverse population samples considering
among other factors ethnicities, geographical background and
generations. Besides replication in other settings, more research is
required to ascertain clinical relevance and implications to later
life health outcomes associated with the different BMI patterns, as
well as underlying causes of these differences. Furthermore,
comparisons of different measures of biological maturation could
provide insight and help validate the maturational properties of
the identified clusters. Skeletal maturity (i.e, bone age) or
percentage of attained adult height, for instance, would be
meaningful at any age in contrast to measures that reflect
pubertal stage [59].

The present findings highlight that possible mismatch between
chronological age and maturational age should be given more
attention in the literature. Furthermore, it is important to
recognise that assuming only one BMI pattern might be
insufficient for instance when modelling longitudinal BMI. In the
clinical setting, our results suggest that caution should be taken
when using the BMI as a sole measure of children’s weight status,
especially around the extremes of early and late biological
maturation. This adds to previous studies including a detailed
study by Cunningham et al. showing that a large proportion (32%)
of adolescents who lived with obesity were with overweight at the
age of 5 years [60]. However, they also warned that a substantial
part of the adolescents with obesity (7.9%) were of normal weight
as 5-year-olds. This was also confirmed in other populations [61],
including one of the cohorts studied in the present report [62],
showing that the patterns of BMI through the life course are
associated with the risk of type 2 diabetes.

CONCLUSION

In addition to the more frequently represented changes in BMI
where the first peak (adiposity peak in infancy) is reached at
around 9 months of age followed by a valley by the age of 5-6
years in so-called adiposity rebound point, our method discrimi-
nated two additional patterns of growth in two generations of
children born in Finland in 1966 and 1985-86. The proportion of
children per growth pattern did not differ by sex or any early
determinants used, but Type 2 pattern was less represented in the
population of children born in 1985-86 suggesting a possible
generational difference between the cohorts. This approach could
be adapted to other longitudinal phenomena, including different
developmental processes, with time-dependent fluctuation to
assess patterns in their timing. Furthermore, it could guide
improved identification of BMI patterns that may influence long
term health including obesity and its comorbidities in the clinical
settings.
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Males
Type 3 Type 1 Type 2 Type 3
2 (0.5) 63 (3.8) 7 (0.7) 6 (1.2)
34 (8.4) 1298 (77.8) 122 (12.5) 110 (21.1)
328 (81.0) 300 (18.0) 628 (64.5) 370 (71.0)
41 (10.1) 8 (0.5) 216 (22.2) 35 (6.7)
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