
Faster classification using compression analytics
Christina Ting∗, Nicholas Johnson†, Uzoma Onunkwo‡, and J. Derek Tucker§

Sandia National Laboratories
Albuquerque, NM 87123

Email: ∗clting@sandia.gov, †nicjohn@sandia.gov, ‡uonunkw@sandia.gov, §jdtuck@sandia.gov

Abstract—Compression analytics have gained recent interest
for application in malware classification and digital forensics.
This interest is due to the fact that compression analytics rely on
measured similarity between byte sequences in datasets without
requiring prior feature extraction; in other words, these methods
are featureless. Being featureless makes compression analytics
particularly appealing for computer security applications, where
good static features are either unknown or easy to circumvent by
adversaries. However, previous classification methods based on
compression analytics relied on algorithms that scaled with the
size of each labeled class and the number of classes. In this work,
we introduce an approach that, in addition to being featureless,
can perform fast and accurate inference that is independent of
the size of each labeled class. Our method is based on calculating
a representative sample, the Fréchet mean, for each labeled class
and using it at inference time. We introduce a greedy algorithm
for calculating the Fréchet mean and evaluate its utility for
classification across a variety of computer security applications,
including authorship attribution of source code, file fragment
type detection, and malware classification.

I. INTRODUCTION

Machine learning continues to enjoy success in an ever-
growing range of disciplines, from bioinformatics to computer
security. Traditionally, machine learning requires the extraction
of data features, which are used to create decision boundaries
for classification of data. As an example, prototype methods
such as k-nearest-neighbors (k-NN) are a class of machine
learning methods that label unknown data items according to
proximity to known (labeled) items. These methods can be
very effective and are often among the best performers on real
data problems [1]. However, the performance of these methods
depends critically on the metric used to define proximity
between items; a standard metric choice is the Euclidean
distance over the data features [2].

In computer security applications such as malware classifi-
cation and digital forensics, selecting adequate features can be
daunting and ambiguous even when excellent domain knowl-
edge of features exists. For instance, in malware classification,
adversaries are highly motivated to change their approach
over time so as to reduce the chances of detection [3]–[6];
in digital forensics [7]–[9], features such as byte frequency
distribution often change as file formats evolve. If the relation-
ships between data features change, a previously appropriate
metric may no longer yield high quality decision boundaries.
Thus, extracting a useful feature set is paramount but can be
particularly challenging in computer security applications.

Alternatively, rather than defining metrics over data fea-
tures, featureless metrics operate directly on the data items

themselves. In particular, the normalized information distance
(NID) is a distance metric1 for any two data items because
it measures the minimum quantity of information sufficient
to translate between them [10]. However, the NID is not
computable [11]. Therefore, practical applications of the NID
are based on the normalized compression distance (NCD),
which relies on compression algorithms. The NCD between
two items, a and b, is defined by [12]

NCD(a, b) =
|C(ab)| −min{|C(a)|, |C(b)|}

max{|C(a)|, |C(b)|}
, (1)

where |C(a)| denotes the compressed size of a after applying
a compression algorithm C, and ab denotes the concatenation
of item a followed by item b. If C satisfies the properties of
a normal compressor, then the NCD satisfies the properties
of a metric (see [13], which also includes the definition of a
normal compressor).

The generality of real world compression algorithms in
Eq. (1) has led to the success of the NCD in a variety
of applications. Examples include authorship attribution [14],
image registration [15], evolutionary history inference [12],
and cybersecurity applications [16]–[21]. However, even with
the previous successes of NCD, there are several shortcomings
that should be mentioned. In practice, C in Eq. (1) rarely
satisfies the conditions for a normal compressor [13]. For this
reason, the NCD is not a metric. Furthermore, the overhead
of the full compression algorithm in Eq. (1) renders the NCD
impractical for application on large datasets.

Fortunately, recent results have shown that the computa-
tional complexity of approximating the NID can be signifi-
cantly reduced by operating directly on the underlying dictio-
naries constructed by the compression algorithms [22]–[26].
In [25], Raff and Nicholas introduced the Lempel-Ziv Jaccard
Distance (LZJD) as an alternative to approximating the NID
that has several advantages over the NCD. Specifically, the
LZJD is a metric [27]; is orders of magnitude faster than
the NCD because it only generates a dictionary instead of
compressing the input; and demonstrates comparable and even
superior performance to NCD for certain applications.

However, to the best of our knowledge, current prototype
implementations using the LZJD for making predictions still
require computing the distances between the new unlabeled
item and all labeled items in the training set, which is highly

1A metric must satisfy the identity, symmetry, and triangle inequality
properties.

Fig. 1. A prototype method based on distances to observed data items.
Schematic of a binary classification problem for unknown item x.

undesirable for most applications. In the standard machine
learning train and deploy setting, one trains a model on
available labeled data then deploys it to makes predictions
on unlabeled data that vastly outnumber the labeled data.
The train-deploy paradigm also means that more powerful
computers can be employed during training than inference
so that the requirements at each stage do not have to be
equal. Furthermore, with the rise of the internet of things, pro-
gressively more devices are attempting to perform inference
at the edge (performing predictions where data is collected
rather than sending data back to a central computer to perform
predictions). In these scenarios, it is worthwhile to trade slower
training for faster inference.

In this work, we introduce a prototype implementation
using the LZJD that can perform accurate inference while
ensuring a constant-time dependence with respect to the size
of each labeled class. The method is based on computing
the representative Fréchet mean of each class in the training
set. Inference then requires only a single distance calculation
against the Fréchet mean for each class. Providing the ability
to make predictions more quickly and simply, with minimal
compromises on performance, expands the scale of problems
to be addressed. Our main contributions are as follows:

1) We develop a greedy algorithm for approximating the
Fréchet mean in the LZJD metric space.

2) We integrate the Fréchet mean as the representative item
in prototype methods for efficient inference using the
LZJD.

3) We demonstrate, on a variety of datasets, comparable
accuracies and superior inference times with the Fréchet
mean, compared with predictions requiring the full train-
ing set, e.g., k-NN.

In the remainder of this document, we formally discuss
prototype methods and describe the Fréchet mean along with
an efficient method for approximating it in Section II. In Sec-
tion III, we describe the variety of datasets that we used in our
experiments to evaluate the performance of our approximated
Fréchet mean in prototype methods. The results from our
experiments are presented in Section IV. We conclude our
work and propose areas for future work in Section V.

Fig. 2. A prototype method based on distances to representative data items.
Schematic of a binary classification problem for unknown item x.

II. METHODS

Consider a training set of n labeled data items belonging to
m classes, m� n. The training set is represented by the pairs
X = {(x1, y1), . . . , (xn, yn)}, where each yi is a class label
that can take values j ∈ {0, . . . ,m− 1}. Let Xj ⊂ X be the
subset of X whose items xi have corresponding class label
yi = j. Prototype methods represent the training set as points
in feature space and classify a new data item x by considering
the classes of the nearby items, where nearby is defined in
terms of a distance metric d (we use the Jaccard distance
throughout the paper). The nearby items considered are termed
prototypes and traditionally consist of the n observed data
items.

Examples of prototype methods using observed data items
include k-nearest neighbors (k-NN) [28] and average dis-
tance [29]. In the average distance classifier, predictions are
made by assigning the unknown item, x, to the class that
produces, on average, the minimum distance between its items
Xj and x, that is,

ŷ = argminj=0,...,m−1

 1

|Xj |
∑

xi∈Xj

d(xi, x)

 , (2)

where d is the distance metric and ŷ is the predicted label of
item x. Figure 1 shows a schematic of a prototype method
based on distances (dashed lines) to observed data items.

As described in Section I, there are two challenges with
prototype methods based on distances to observed data items.
First, choosing an appropriate d for applications with an
unknown or changing feature space is not straightforward.
Section II-A describes the LZJD, an approximation to the NID
that bypasses the need for feature selection and has shown
success on previous classification tasks [25]. Second, prototype
methods based on distances to all observed data items, Xj ,
j = 0, ...,m − 1, can be quite expensive in the computation
time during inference and memory cost overall. Prototype
methods based on distances to the representative item, x̄j , for
observed Xj have a significant advantage. Specifically, instead
of n comparisons, one only needs to make m comparisons:

ŷ = argminj=0,...,m−1d(x̄j , x), (3)

where m � n. Section II-B introduces the Fréchet mean in
the Jaccard distance metric space as a proposed representative

item. Figure 2 shows a schematic of a prototype method based
on distances (dashed lines) to representative data items. In this
work, we only consider the notion of a single representative
item per class, but it is certainly possible to consider other
fixed number of representative items per class that is still much
less than the average number of observed items per class.

A. Lempel-Ziv Jaccard Distance (LZJD)

Dictionary-based methods for approximating the NID are
inspired by the Lempel-Ziv (LZ) algorithm [30], [31] for
creating a dictionary of previously seen subsequences. These
methods [22]–[26] recognize that it is not necessary to obtain
the actual compressed output of the data items. Therefore it is
advantageous to skip the technical details required for effective
compression and to focus on the dictionary creation.

The Lempel-Ziv Jaccard Distance (LZJD) is a measure of
distance defined over the aforementioned dictionaries. The
dictionaries are obtained from transformations using a method
that relies on a simplified version of the LZ77 [30] algorithm
(c.f. Algorithm 1 in [25]) and consistently converts a data
item a into a dictionary of sub-sequences L(a) = A. In this
document, we will refer to A and B as the LZSets of the
data items a and b respectively. The LZJD between two data
items a and b is then defined by the Jaccard distance on their
LZSets, that is,

d(A,B) =

{
1− |A∩B||A∪B| if A ∪B 6= ∅,
1 otherwise.

(4)

It is known that sets along with the Jaccard distance function
form a metric space [27], which is a requirement for the
Fréchet mean [32].

For large datasets, computing the pairwise LZJD may be
expensive and fast approximations based on the LZJD over
hashed LZSets can be used [25], [33]. In this work, we focus
on the exact definition of the LZJD over LZSets.

B. The Fréchet mean in the Jaccard distance metric space

Here, we define the Fréchet mean and introduce a greedy
algorithm for approximating it. Consider the cost function,
J(M), defined in terms of squared LZJD over a list of
observed LZSets X1, . . . , Xn, that is,

J(M) =

n∑
i=1

d2(M,Xi)

=

n∑
i=1

(
1− |M ∩Xi|
|M ∪Xi|

)2

(5)

where M is a set in the domain of the observed LZSets. Then,
the Fréchet mean µ of these observed LZSets X1, . . . , Xn, is
the set that minimizes the cost function, J(M):

µ = arg min
M⊂S

J(M)

= arg min
M⊂S

n∑
i=1

(
1− |M ∩Xi|
|M ∪Xi|

)2

(6)

where S is the universal set over the domain of the observed
LZSets, that is, S contains not only the observed sets, but also
the unobserved sets in the problem domain.2

To constrain the search space, we note that µ is a superset
of the intersection (I = ∩iXi) and a subset of the union (U =
∪iXi) of the observed LZSets. That is, I ⊆ µ ⊆ U . To show
that µ is a superset of I , note that adding an element (e 6∈M)
to the candidate set from I strictly decreases the cost function
we aim to minimize in Eq. (6) since

1− |M ∩Xi|+ 1

|M ∪Xi|
< 1− |M ∩Xi|

|M ∪Xi|
.

Additionally, removing an element from the candidate set that
is contained in I strictly increases our cost since

1− |M ∩Xi| − 1

|M ∪Xi|
> 1− |M ∩Xi|

|M ∪Xi|
.

Similar reasoning can be used to show that µ is a subset of
U .

Even so, |U | is, in general, large and a brute-force search is
inefficient with a runtime complexity of O(2|U |). Therefore,
we introduce a greedy algorithm for approximating the Fréchet
mean that further reduces the search space to O(|U |). Our
greedy algorithm is as follows:

1) Identify elements in U , the union of observed LZSets:
{e1, . . . , e|U |} = ∪iXi.

2) Sort the elements in order of their increasing sum of
squared Jaccard distance to observed LZSets, defined by

r(eq) =

n∑
i=1

d({eq}, Xi)
2, (7)

so that r(e′1) ≤ r(e′2) . . . ≤ r(e′|U |).
3) Define M (1) = {e′1}. Incrementally add the next sorted

element to the set

M (q+1) = M (q) ∪ {e′q+1}

to obtain

M (1), . . . ,M (|U |) = {e′1}, . . . , {e′1, e′2, . . . , e′|U |}.

Note that |M (q)| = q.
4) The set, {M (1), . . . ,M (|U |)}, becomes our new search

space in Eq. (6) so that the constraint, M ⊂ S, becomes
M ∈ {M (1), . . . ,M (|U |)}. The minimizing candidate,
M∗, becomes our greedy approximation to the Fréchet
mean, µ.

While it is possible to further reduce the search space for
M∗ by starting with M (|I|), the candidate mean containing
elements of the intersection, we do not find that it significantly
improves computational performance in practice.

To apply the approximate Fréchet mean as the representative
item x̄j , j = 0, . . . ,m− 1, in the prediction function defined
by Eq. (3), we note that the observed LZSets in Eq. (6) may be
defined to be LZSets belonging to class j. Prior publications
have considered alternative notions of a representative set for

2The Fréchet mean set is currently not constrained to be a proper LZSet.

a collection of observed sets based on the Jaccard distance
[34]–[36]. The focus of our work, however, is not to obtain an
exact representative set, as defined by the set which minimizes
Eq. (5) or some other cost function. Instead, our objective is
to obtain a representative set for making predictions according
to Eq. (3). We will show that our greedy algorithm is both
computationally efficient and produces a representative set that
yields good prediction accuracies on a variety of datasets,
which we describe next.

III. DATA

We first describe a toy dataset used to validate the greedy
approximation of the Fréchet mean described in Section II.
We then describe datasets used to test the performance of
the Fréchet mean for classification on authorship attribution
of source code, file fragment type detection, and malware
classification. The variety of datasets is meant to demonstrate
the generality of our featureless approach on a range of
computer security applications.

A. Toy dataset

The toy dataset consists of sequences constructed from a
discrete random variable c ∈ {1, . . . , r} with specified entropy,
h in bits, where h is defined by

h(c) = −
r∑

i=1

Pr(c = i) log2 Pr(c = i). (8)

Thus, for a specified h, we numerically solve for the corre-
sponding probability law of the r-valued random variable c,
where the number of states is given by r = d2he. We note
that the solution is non-unique.

B. Java source code

The single-author open-source dataset described by Yang et
al. in Ref. [37] is available online at [38]. The dataset contains
3,022 Java files ranging from 16 lines to 11,418 lines, with an
average line length of about 99. Each Java file is attributed to
one of forty authors; the minimum and maximum number of
files contributed by the authors were 11 and 712, respectively.

C. File fragments

The Govdocs1 dataset of 1 million documents was collected
with the goal of providing a more standardized dataset for
digital forensics research [39]. Our file fragment dataset is
derived from about 20% of the Govdocs1 files. Although there
were many more file extensions and file sizes, we only used
files with extensions of .doc, .gif, .html, .jpg, and .pdf and
with size of at least 1 kilobyte. From this subset of files,
we constructed one file fragment per file. Each file fragment
consists of 512 contiguous bytes, chosen at random file offsets,
where the offsets are at least 512 bytes from the end of the
files.

D. Microsoft malware

The Microsoft Malware Classification Challenge [40] was
developed as a Kaggle competition with the objective of
classifying malware samples into one of nine families. Since
2015, it has been cited in more than 70 papers. The dataset
contains approximately 10,000 labeled samples and approxi-
mately 10,000 unlabeled samples. For every sample the binary
contents were represented as both a hexadecimal string and as
the output from the IDA disassembler. In our study, we focus
on the hexadecimal representation of the binary contents.

E. Drebin malware

The Drebin malware dataset consists of Android Package
(Android APK) malware saved from August 2010 to October
2012. This dataset is publicly available and has become very
popular in malware studies, having been cited over 1,500 times
in publications. The dataset consists of 5,560 labeled samples
belonging to 180 classes of malware. In our study, much like
the original work studying this dataset [41], [42], we limit
our study to the top-20 classes of malware, which amounts to
4,664 labeled samples (about 84% of the data). The reason for
this downsampling is that many of the other classes had too
few samples to learn enough for class-type inference. While
the Android APK files are extended from the JAR file format
and can hence be untarred, we limit our study to the original
(APK) form of the data.

IV. RESULTS

We first present results on the greedy approximation to
the Fréchet mean. We then apply the approximated Fréchet
mean for inference on the datasets described in Section III.
Our method is compared with other prototype methods using
the LZJD metric and, where possible, previously reported
methods on the same datasets. We find that the Fréchet mean
demonstrates comparable prediction accuracy and superior
prediction efficiency across multiple applications considered,
with none of the feature engineering overhead required by
more traditional methods.

All experiments were executed on a 24-core Intel(R)
Xeon(R) CPU E5-2695 clocked at 2.4 GHz with 768 GB of
memory. The software used to perform these experiments were
written in python3.

A. Greedy approximation to the Fréchet mean

To better understand the approximation of the greedy al-
gorithm, we look at the shape of the cost defined in Eq. (5)
as a function of M (q), for q = 1, . . . , |U |. The toy dataset
described in Section III-A is used to generate input sequences
x = x1, . . . , x10 with specified source entropy h. Each input
sequence in x has identical length of 10 and identical h.

Figure 3 shows the cost of the rank-ordered candidate
means; different curves correspond to different entropies for
the input sequences. In all cases, the cost function appears
quasiconvex and the global minimum corresponding to the
approximate Fréchet mean, M∗, is indicated by the marker.
With increasing entropy, several observations can be made. In

Fig. 3. Cost of the candidate mean M(q) as a function of its index q
obtained using the greedy algorithm. Toy dataset consists of input sequences
x generated using a random source with specified entropy h.

general, the overall cost function shifts towards higher costs,
indicating a trend towards increased distances between the
candidate means and the input sets; the maximum value for
q increases, indicating that the size of the search space also
increases; and finally, the cost and size of M∗ also increases.

Fig. 4. Comparing the representative sets with the true Fréchet mean
calculated from brute-force; see Section IV-A for a definition of the exactness
probability and the Jaccard similarity. Toy dataset consists of input sequences
generated using a random source with specified entropy h. Mean and standard
deviation are calculated over 100 runs.

Next, using the same toy dataset as described for Fig. 3,
we investigate how close M∗ is to the true Fréchet mean, µ.
We consider a brute-force search for µ in Eq. (6) over the
sets that are both superset of the intersection and subset of
the union. Due to the computational cost of the brute-force
calculation for µ, only entropies h ≤ 2 are considered. To
quantify the closeness of M∗ to µ, we calculate the exactness
probability, or the empirical probability that M∗ matches µ,
and the average Jaccard similarity, defined by |M∗∩µ|/|M∗∪
µ|, across 100 different runs.

Figure 4 shows the exactness probability (top) and the
Jaccard similarity (bottom) as a function of the source entropy.
Here, in addition to M∗, we introduce the union and the

medoid as alternative representative sets to compare with µ.
The medoid is similar in concept to the Fréchet mean, but
is restricted to be a member of the observed data items.
According to both measures, the greedy Fréchet mean M∗ is
a very good approximation of µ for all entropies considered.
However, the same is not true for the union or the medoid.

Fig. 5. Accuracy of binary classification using the representative sets. Toy
dataset consists of input sequences generated using a random source with
specified entropy h = 2 (top) and h = 4 (bottom). Mean and standard
deviation are calculated over 100 runs, where each run performs predictions
on 10 items selected per class.

Having quantified how close the different representative sets
are to the true Fréchet mean µ, it remains to apply them in a
classification problem using the LZJD metric. We consider a
simple binary classification problem using the same toy dataset
with specified source entropy h. To differentiate between the
two classes, we control the overlap in the alphabet between the
two sources. Overlap is defined as the ratio of the cardinalities
of the intersection to the alphabet set (|A1 ∩ A2|/|A1| and
|A1| = |A2|). For an overlap of 0.0, the alphabets for the two
classes are disjoint and the classification task is trivial; for an
overlap of 1.0, the alphabets for the two classes are identical
and the classification task is expected to perform random.

Figure 5 shows the accuracy as a function of source overlap
for h = 2 (top) and h = 4 (bottom). In general, accuracy
decreases with increasing overlap and with increasing entropy.
Although we have provided a simple example involving a toy
dataset, it can be seen that how close a representative set is
to the true Fréchet mean µ does not always determine how
good it performs at a given classification task. In particular,
note that the union outperforms both M∗ and the medoid at
classification in Fig. 5, but is the farthest from µ, as quantified
by both the exactness probability and the Jaccard similarity in
Fig. 4. However, on the real datasets considered in this study,
we will see that M∗ consistently outperforms both the union
and the medoid.

B. Authorship attribution

Authorship attribution refers to the task of attributing a piece
of text to a predefined set of authors. Authorship attribution

Method Accuracy (%) Balanced Accuracy (%) total ttrain, (s) per item tpred, (s)

Greedy Fréchet mean 90.4 (2.1) 87.7 (2.3) 5.5× 101 (6.9× 10−1) 5.1× 10−3 (1.8× 10−4)
Union 11.8 (2.2) 72.6 (6.5) 6.3× 10−1 (1.2× 10−2) 2.6× 10−2 (2.6× 10−4)
Medoid 83.0 (1.4) 75.8 (2.2) 3.3× 101 (8.4× 10−1) 3.5× 10−3 (1.2× 10−4)
Average distance 87.7 (1.9) 84.4 (2.6) 1.3× 10−3 (1.6× 10−4) 1.3× 10−1 (2.4× 10−3)
1-NN 96.4 (0.9) 94.2 (1.9) 1.2× 10−3 (1.4× 10−4) 1.3× 10−1 (2.6× 10−3)

Table I. Authorship attribution of source code. Italicized methods are based on representative sets. Entries show mean and standard deviation (in
parentheses) over a 10-fold cross-validation experiment, where we train on large fold.

of source code has several useful applications, including
detecting plagiarism, resolving authorship disputes, tracking
malicious code, and software forensics. The most successful
demonstrations of author attribution of source code have
largely relied on derived feature sets; see [43] for an overview.
Herein we demonstrate successful authorship attribution using
the featureless LZJD metric.

Table I shows prediction and timing performance results
for authorship attribution. Here, and in all subsequent experi-
ments, we first extracted the LZSets for each data item. Since
all prototype methods based on the LZJD metric depend on
LZSets, we do not include LZSet creation time in either the
training or prediction times. Italicized methods are based on
distances to representative sets. Similar to [44], we show the
accuracy, defined by

accuracy =
1

n

n∑
i=1

1(ŷi = yi),

on a 10-fold cross-validation experiment, where we train on
the large fold. However, due to significant class imbalance, we
also present the balanced accuracy, defined as

balanced accuracy =
1

m

m∑
j=1

 1

|Xj |
∑

xi∈Xj

1(ŷi = j)

 .
In this expression, recall that Xj ⊂ X is the subset of X
whose items xi have corresponding label yi = j. Note that
the balanced accuracy is equivalent to the average recall on
each class.

The 1-NN classifier achieved both the highest accuracy
(96.4%) and balanced accuracy (94.2%). Larger number of
neighbors (k) were also tried, but resulted in poorer classifica-
tion performance, likely due to the significant class imbalance.
The accuracy of the 1-NN classifier was followed by our
greedy approximation to the Fréchet mean, and, in decreasing
(balanced) accuracy, the average distance, medoid, and union
classifiers. Although our goal is not to outperform previous
methods in classification accuracy, per se, it is still impressive
that the top performer using the LZJD metric is comparable
to the path-based methods described by [44], which are, to the
best of our knowledge, the highest performers on this dataset.

Timing results indicate that the methods based on represen-
tative sets (italicized) are 1–2 orders of magnitude faster at
inference, with the union requiring slightly more time due to
the growth in the size of the union set. Note, however, that the
improved inference time comes at a cost. The time required to

compute the Fréchet mean or medoid from the observed data
items increases their training time considerably, as compared
with the methods based on observed sets. Specifically, training
for the methods based on observed sets essentially consists
of creating the classes of (precalculated) LZSets so that
the difference in time can be attributed to calculating the
representative set. Although the union does not have the same
upfront increase in training time compared with the other
representative sets, we note that it has the lowest (balanced)
accuracy across all methods considered.

Fig. 6. Authorship attribution of source code. Timing results on the training
and prediction steps, as a function of the number of items in the training set.

Figure 6 shows the total training times and per item predict
times as a function of the number of items in the training
set. The number of items in the training set is dictated by the
number of folds in the cross fold validation experiment; 2-,
4-, 6-, 8-, and 10-fold cross-validation results are presented.
Since we train on the large fold, the size of the training set
increases with the number of folds. Note that timing results
for the 10-fold cross-validation are also presented in Table I.
Although calculation of the greedy Fréchet mean and the
medoid requires upfront compute time that increases with the
size of the training set (Fig. 6, top), it can be seen that their per
item predict times are independent of the size of the training
set (Fig. 6, bottom).

C. File fragment classification

The fragmentation of files poses a significant challenge for
data recovery. File carving refers to the task of reconstructing
complete files from the content of file fragments. A key task in
file carving is file fragment classification, where the objective

Method Accuracy (%) total ttrain, (s) per item tpred, (s)

Greedy Fréchet mean 59.1 (0.9) 6.1× 101 (5.5× 10−1) 2.2× 10−1 (8.3× 10−6)
Union 35.3 (1.2) 1.8× 10−1 (6.2× 10−3) 7.9 (2.1× 10−4)
Medoid 50.1 (1.6) 1.6× 101 (4.4× 10−1) 2.0× 10−1 (2.9× 10−6)
Average distance 52.0 (2.3) 1.1× 10−3 (7.9× 10−5) 3.2× 101 (8.6× 10−4)
1-NN 58.7 (1.2) 1.3× 10−3 (1.5× 10−4) 3.2× 101 (5.1× 10−4)
9-NN 60.8 (1.3) 1.1× 10−3 (1.8× 10−4) 3.1× 101 (4.5× 10−4)

Table II. File fragment classification. Italicized methods are based on representative sets. Entries show mean and standard deviation (in parentheses) obtained
over 10 runs.

Predicted

DOC GIF HTML JPG PDF

DOC 56.6 18.5 21.2 3.7 0.1
GIF 0.4 97.3 0.0 2.2 0.1

Actual HTML 0.4 0.0 99.6 0.0 0.0
JPG 1.3 58.3 1.2 39.0 0.2
PDF 0.7 76.9 14.3 5.3 2.8

Predicted

DOC GIF HTML JPG PDF

DOC 77.6 2.4 2.6 11.9 5.5
GIF 0.8 16.7 0.0 56.1 26.3

Actual HTML 8.7 0.0 90.3 0.0 0.9
JPG 1.1 5.9 0.2 71.6 21.2
PDF 0.4 6.4 1.0 44.3 47.8

Table III. File fragment classification. Normalized confusion matrices of greedy Fréchet mean (left) and 9-NN (right) classifiers. Entries correspond to
mean values over 10 runs.

is to determine the type of file a fragment belongs to based
on its content. Prior work in file fragment classification has
primarily relied on hand-crafted features. In [45], Wang et
al. propose an automated method for feature extraction based
on sparse coding, or sparse dictionary learning; the extracted
features contained in the dictionary are based on how well
those features can be used to reconstruct the original data. The
sparse dictionary is conceptually similar to the lookup table
of a compression dictionary: when a new token is observed, a
search through the dictionary for the best match that is sparse,
i.e., compressible, is made.

Table II presents prediction and timing performance results
for the different prototype methods. Once again, italicized
methods are based on representative sets. Similar to [45],
our experiments use a balanced 450 training to 300 testing
ratio per class, and results are averaged over 10 independent
runs. Because we use a balanced dataset of file fragments, we
only show the total accuracy. The k-NN and greedy Fréchet
mean classifiers yield the highest accuracies, near 60% and
within one standard deviation of each other. With comparable
prediction accuracies to the highest performers, the greedy
Fréchet mean is also two orders of magnitude faster during
inference. Precisely how much faster will depend on the
number and size of the file fragments in the training set. As
before, faster inference comes at the cost of slower training
necessary for computing the Fréchet mean.

To better understand the source of the observed accuracies,
Table III shows the normalized confusion matrix for the
greedy Fréchet mean and the 9-NN classifiers. Although it
is difficult to make a direct comparison with [45], we observe
a similar behavior in the file types that are most often and least
often misclassified. That is, file types that contain identifying
patterns, such as open and closed brackets in HTML, are the
most easily classified. At the other end, file types that have
some compression in their encoding (JPG, GIF), or file types

that contain other files (PDF) are more difficult to classify. In
particular, the greedy Fréchet mean classifier tends to classify
GIF, JPG, and PDF as all GIF, whereas the 9-NN tends to
classify them as either JPG or PDF.

D. Malware

For both malware classification problems, the objective is to
identify which class of malware a particular file belongs to. In
the Microsoft malware dataset, these are executables designed
for Microsoft systems with the PE File Headers removed and
the classes are one of nine identified families. In the Drebin
malware dataset, these are Android APKs and the classes are
the twenty most common families of malware in the dataset.
Both datasets have been studied with a variety of different
classification techniques; here we compare the Fréchet mean
against the 1-NN and average distance classifiers.

Microsoft malware: The sequences of malware files some-
times exceed two million bytes in length, so for the sake
of computational time we selected a random 2% and 10%
subset of the data. Additionally, since all methods required
calculating LZSets from the input data, we performed that
operation once per experiment and did not include those
timings in the tables. For reference, it took 1,100 (7,100)
seconds to create LZSets for 2 (10)% of the data.

We capture accuracy, balanced accuracy, and timing per-
formance in Tables IV and V for the 2% and 10% subsets,
respectively. In order to compare our prediction accuracies
to [25] we ran 10-fold cross-validation on each of the two
subsets. The greedy Fréchet mean algorithm yields the best
accuracy on both subsets of the data, but does not perform as
well as the 1-NN algorithm in class balanced accuracy. The
greedy Fréchet mean cannot provide as complex of a decision
boundary as a 1-NN algorithm. Furthermore, since this dataset
has a large class imbalance, the ability to generate an appro-
priate representative set for all classes may be hindered. Even

Method Accuracy (%) Balanced Accuracy (%) total ttrain, (s) total tpred, (s)

Greedy Fréchet mean 73.0 (13.3) 67.1 (13.7) 2.0× 103 (8.4× 101) 5.0 (4.0× 10−1)
Average distance 59.5 (11.3) 60.8 (12.1) 3.8× 10−4 (3.6× 10−5) 2.9× 101 (3.0)

1-NN 61.5 (9.2) 72.1 (6.2) 2.7× 10−4 (1.8× 10−5) 3.0× 101 (3.2)

Table IV. Microsoft malware family classification on 2% of data. 10-fold cross-validation.

Method Accuracy (%) Balanced Accuracy (%) total ttrain, (s) total tpred, (s)

Greedy Fréchet mean 79.5 (7.2) 76.1 (9.6) 1.5× 104 (1.2× 103) 3.0× 101 (2.5)
Average distance 27.9 (4.3) 36.2 (5.6) 8.4× 10−4 (3.9× 10−5) 7.3× 102 (9.1× 101)

1-NN 77.5 (6.2) 85.9 (3.8) 7.7× 10−4 (6.5× 10−5) 7.2× 102 (8.8× 101)

Table V. Microsoft malware family classification on 10% of data. 10-fold cross-validation.

so, the class balanced accuracy of the greedy Fréchet mean
is within one standard deviation of the 1-NN algorithm. For
reference, using the 1-NN classifier on 10% of the data, [25]
observed 58.1% class balanced accuracy for NCD and 98.2%
for LZJD; we could not determine which data subset yielded
those results.

We can see from the tables that the greedy Fréchet mean
is significantly faster during inference than the prototype
methods that require comparisons to all observed LZSets. This
comes with the penalty of computing the Fréchet mean during
training. For the average distance and 1-NN classifiers, the
reported training time corresponds to creating the classes of
(precalculated) LZSets so that the difference in training time
is essentially the time required to compute the Fréchet mean
using our greedy algorithm.

Drebin malware: Similar to the Microsoft malware, results
for the Drebin malware dataset were generated by offline com-
putation of the LZSets followed by 10-fold cross-validation
over 2% and 10% of the dataset. The results for the Fréchet
mean along with the 1-NN and average distance classifiers
are presented in Table VI and Table VII for the 2% and 10%
subsets, respectively.

For the Drebin dataset, the 1-NN had better accuracy when
compared to the approximate Fréchet mean. This is possibly
due to the smaller dataset, which makes it more difficult to
compute a good representative set because some classes have
very few observed items. In particular, 11 of the 20 malware
classes had a total of 734 observed items as compared to
925 of the modal class. This means that for the experiment
on 2% of the data, we expect worse performance for the
representative set as many classes have too few observed items
to use in approximating the Fréchet mean (Table VI). On the
other hand, as we increased to 10% of the data, we gained
better approximations for the less frequent malware classes
and hence better classification accuracy (Table VII). We note
that results for the 1-NN were also presented in [25] as the
“Drebin APK” LZJD. Our results for the 1-NN differ, but that
is likely due to different random choices of sequences.

As shown in the tables, besides the computation of the
LZSets, the additional training times for the 1-NN and av-
erage distance methods were almost zero. This is because the

training is simply saving the observed LZSets in memory. The
creation of the LZSets, which was done offline, took about
94 seconds for 2% of the data and 567 seconds for 10% of
the data. Contrary to the training period, during inference, the
Fréchet mean method mostly outperformed in running time.
This is because the comparisons for inference only used one
item, the representative Fréchet mean, per class. On the other
hand, the inference for the 1-NN and average distance methods
required comparisons per observed item per class. When the
experiment was on 2% of the data, we suspect that the size of
the Fréchet mean was large enough to still be slightly slower
than when comparing with the relatively few samples per class
as shown in Table VI.

V. CONCLUSIONS

Compression analytics are a class of featureless machine
learning methods that have demonstrated promise in computer
security applications. We have presented a method that, in
addition to being featureless, performs fast and accurate in-
ference that is independent of the size of each labeled class.
This is achieved by calculating a representative sample, the
greedy Fréchet mean, for each labeled class and applying it
at prediction time. We have demonstrated, across a variety of
applications, that our method is generally faster and provides
similar classification performance when compared with pre-
vious methods that require the full training set at inference,
e.g., k-NN. Fast featureless classification algorithms such as
that presented here allow researchers and analysts to address
a wider range of problems on a wider variety of devices than
previously possible.

Although the objective of this work was faster prediction,
faster training is still of interest. As mentioned at the end of
Section II-A, it is possible to use hashed LZSets to improve
the speed of every algorithm considered here, particularly the
calculation of the greedy Fréchet mean. Furthermore, our im-
plementations of all the algorithms are fairly naive and many
are embarrassingly parallel. These, and other implementation
improvements, will be the subject of future work.

ACKNOWLEDGMENT

The authors thank Rich Field for providing the code used
to generate the toy dataset; and Erin Acquesta and Rich

Method Accuracy (%) Balanced Accuracy (%) total ttrain, (s) total tpred, (s)

Greedy Fréchet mean 40.9 (14.2) 38.5 (13.7) 1.5× 103 (4.6× 101) 1.2× 101 (1.3)
Average distance 32.1 (11.1) 32.4 (12.7) 4.6× 10−4 (4.5× 10−5) 8.7 (1.0)

1-NN 66.4 (16.8) 62.5 (18.7) 3.4× 10−4 (2.2× 10−5) 8.5 (8.9× 10−1)

Table VI. Drebin malware family classification on 2% of data. 10-fold cross-validation.

Method Accuracy (%) Balanced Accuracy (%) total ttrain, (s) total tpred, (s)

Greedy Fréchet mean 57.7 (7.5) 52.2 (10.1) 7.3× 103 (9.9× 101) 9.2× 101 (5.8)
Average distance 40.1 (9.5) 43.5 (10.9) 6.9× 10−4 (1.7× 10−5) 2.6× 102 (1.3× 101)

1-NN 78.7 (8.3) 73.8 (10.4) 5.7× 10−4 (2.9× 10−5) 2.7× 102 (1.3× 101)

Table VII. Drebin malware family classification on 10% of data. 10-fold cross-validation.

Field of Sandia National Labs for reviewing this paper and
providing helpful feedback for improving our presentation
of this work. The authors also acknowledge Travis Bauer
of Sandia National Labs, who helped inspire this work with
useful initial discussions on this topic. This paper describes
objective technical results and analysis. Any subjective views
or opinions that might be expressed in the paper do not
necessarily represent the views of the U.S. Department of
Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Hon-
eywell International Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-
NA0003525. SAND2020-xxxx.

REFERENCES

[1] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical
learning. Springer series in statistics New York, 2001, vol. 1, no. 10.

[2] L. Yang and R. Jin, “Distance metric learning: A comprehensive survey,”
Michigan State Universiy, vol. 2, no. 2, p. 4, 2006.

[3] I. Kirillov, D. Beck, P. Chase, and R. Martin, “Malware attribute
enumeration and characterization,” The MITRE Corporation [online,
accessed Apr. 8, 2019], 2011.

[4] A. Singh, A. Walenstein, and A. Lakhotia, “Tracking concept drift in
malware families,” in Proceedings of the 5th ACM workshop on Security
and artificial intelligence, 2012, pp. 81–92.

[5] W. P. Kegelmeyer, K. Chiang, and J. Ingram, “Streaming malware clas-
sification in the presence of concept drift and class imbalance,” in 2013
12th International Conference on Machine Learning and Applications,
vol. 2. IEEE, 2013, pp. 48–53.

[6] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouretdinov,
and L. Cavallaro, “Transcend: Detecting concept drift in malware clas-
sification models,” in 26th {USENIX} Security Symposium ({USENIX}
Security 17), 2017, pp. 625–642.

[7] O. De Vel, A. Anderson, M. Corney, and G. Mohay, “Mining e-mail
content for author identification forensics,” ACM Sigmod Record, vol. 30,
no. 4, pp. 55–64, 2001.

[8] D. Ariu, G. Giacinto, and F. Roli, “Machine learning in computer
forensics (and the lessons learned from machine learning in computer
security),” in Proceedings of the 4th ACM workshop on Security and
artificial intelligence, 2011, pp. 99–104.

[9] V. Roussev and S. L. Garfinkel, “File fragment classification-the case for
specialized approaches,” in 2009 Fourth international IEEE workshop
on systematic approaches to digital forensic engineering. IEEE, 2009,
pp. 3–14.

[10] P. M. Vitányi, F. J. Balbach, R. L. Cilibrasi, and M. Li, “Normalized
information distance,” in Information theory and statistical learning.
Springer, 2009, pp. 45–82.

[11] M. Li, P. Vitányi et al., An introduction to Kolmogorov complexity and
its applications. Springer, 2008, vol. 3.

[12] M. Li, X. Chen, X. Li, B. Ma, and P. M. Vitányi, “The similarity metric,”
IEEE transactions on Information Theory, vol. 50, no. 12, pp. 3250–
3264, 2004.

[13] R. Cilibrasi and P. M. Vitányi, “Clustering by compression,” IEEE
Transactions on Information theory, vol. 51, no. 4, pp. 1523–1545, 2005.

[14] E. Stamatatos, “A survey of modern authorship attribution methods,”
Journal of the American Society for information Science and Technology,
vol. 60, no. 3, pp. 538–556, 2009.

[15] A. Bardera, M. Feixas, I. Boada, and M. Sbert, “Compression-based im-
age registration,” in 2006 IEEE International Symposium on Information
Theory. IEEE, 2006, pp. 436–440.

[16] S. Wehner, “Analyzing worms and network traffic using compression,”
Journal of Computer Security, vol. 15, no. 3, pp. 303–320, 2007.

[17] C. Ting, R. Field, A. Fisher, and T. Bauer, “Compression analytics for
classification and anomaly detection within network communication,”
IEEE Transactions on Information Forensics and Security, vol. 14, no. 5,
pp. 1366–1376, 2018.

[18] J. S Resende, R. Martins, and L. Antunes, “A survey on using Kol-
mogorov complexity in cybersecurity,” Entropy, vol. 21, no. 12, p. 1196,
2019.

[19] A. Paturi, M. Cherukuri, J. Donahue, and S. Mukkamala, “Mobile
malware visual analytics and similarities of attack toolkits (malware
gene analysis),” in 2013 International Conference on Collaboration
Technologies and Systems (CTS). IEEE, 2013, pp. 149–154.

[20] R. S. Borbely, “On normalized compression distance and large malware,”
Journal of Computer Virology and Hacking Techniques, vol. 12, no. 4,
pp. 235–242, 2016.

[21] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and
J. Nazario, “Automated classification and analysis of internet malware,”
in International Workshop on Recent Advances in Intrusion Detection.
Springer, 2007, pp. 178–197.

[22] A. Macedonas, D. Besiris, G. Economou, and S. Fotopoulos, “Dictionary
based color image retrieval,” Journal of Visual Communication and
Image Representation, vol. 19, no. 7, pp. 464–470, 2008.

[23] D. Cerra and M. Datcu, “A fast compression-based similarity measure
with applications to content-based image retrieval,” Journal of Visual
Communication and Image Representation, vol. 23, no. 2, pp. 293–302,
2012.

[24] H. Koga, Y. Nakajima, and T. Toda, “Effective construction of
compression-based feature space,” in 2016 International Symposium on
Information Theory and Its Applications (ISITA). IEEE, 2016, pp. 116–
120.

[25] E. Raff and C. Nicholas, “An alternative to NCD for large sequences,
Lempel-Ziv Jaccard distance,” in Proceedings of the 23rd ACM SIGKDD
international conference on knowledge discovery and data mining, 2017,
pp. 1007–1015.

[26] C. Ting, R. Field, T.-T. Quach, and T. Bauer, “Generalized boundary de-
tection using compression-based analytics,” in ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2019, pp. 3522–3526.

[27] S. Kosub, “A note on the triangle inequality for the Jaccard distance,”
Pattern Recognition Letters, vol. 120, pp. 36–38, 2019.

[28] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
transactions on information theory, vol. 13, no. 1, pp. 21–27, 1967.

[29] B. Gunsel, A. K. Jain, A. M. Tekalp, and B. Sankur, Multimedia Content
Representation, Classification and Security: International Workshop,
MRCS 2006, Istanbul, Turkey, September 11-13, 2006, Proceedings.
Springer, 2006, vol. 4105.

[30] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transactions on information theory, vol. 23, no. 3,
pp. 337–343, 1977.

[31] ——, “Compression of individual sequences via variable-rate coding,”
IEEE transactions on Information Theory, vol. 24, no. 5, pp. 530–536,
1978.

[32] F. Nielsen and R. Bhatia, Matrix Information Geometry. Springer, 2013.
[33] E. Raff and C. Nicholas, “Lempel-Ziv Jaccard distance, an effective

alternative to ssdeep and sdhash,” Digital Investigation, vol. 24, pp. 34–
49, 2018.

[34] H. Späth, “The minisum location problem for the Jaccard metric,”
Operations-Research-Spektrum, vol. 3, no. 2, pp. 91–94, 1981.

[35] F. Chierichetti, R. Kumar, S. Pandey, and S. Vassilvitskii, “Finding the
Jaccard median,” in Proceedings of the twenty-first annual ACM-SIAM
symposium on Discrete Algorithms. SIAM, 2010, pp. 293–311.

[36] M. Bury and C. Schwiegelshohn, “On finding the Jaccard center,” in 44th
International Colloquium on Automata, Languages, and Programming
(ICALP 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

[37] X. Yang, G. Xu, Q. Li, Y. Guo, and M. Zhang, “Authorship attribution of
source code by using back propagation neural network based on particle

swarm optimization,” PloS one, vol. 12, no. 11, p. e0187204, 2017.
[38] “40 authors java source code dataset,” https://github.com/xinyu1118/

authorship attribution, accessed: 2020-07-22.
[39] “Digital corpora govdocs1 dataset,” https://digitalcorpora.org/corpora/

files, accessed: 2018-08-17.
[40] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ahmadi, “Mi-

crosoft malware classification challenge,” CoRR, vol. abs/1802.10135,
2018.

[41] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket.” in NDSS, vol. 14, 2014, pp. 23–26.

[42] S. Michael, E. Florian, S. Thomas, C. F. Felix, and J. Hoffmann, “Mo-
bilesandbox: Looking deeper into android applications,” in Proceedings
of the 28th International ACM Symposium on Applied Computing (SAC),
2013.

[43] V. Kalgutkar, R. Kaur, H. Gonzalez, N. Stakhanova, and A. Matyukhina,
“Code authorship attribution: Methods and challenges,” ACM Computing
Surveys (CSUR), vol. 52, no. 1, pp. 1–36, 2019.

[44] E. Bogomolov, V. Kovalenko, A. Bacchelli, and T. Bryksin, “Authorship
attribution of source code: A language-agnostic approach and applica-
bility in software engineering,” arXiv preprint arXiv:2001.11593, 2020.

[45] F. Wang, T.-T. Quach, J. Wheeler, J. B. Aimone, and C. D. James,
“Sparse coding for n-gram feature extraction and training for file
fragment classification,” IEEE Transactions on Information Forensics
and Security, vol. 13, no. 10, pp. 2553–2562, 2018.

https://github.com/xinyu1118/authorship_attribution
https://github.com/xinyu1118/authorship_attribution
https://digitalcorpora.org/corpora/files
https://digitalcorpora.org/corpora/files

	Introduction
	Methods
	Lempel-Ziv Jaccard Distance (LZJD)
	The Fréchet mean in the Jaccard distance metric space

	Data
	Toy dataset
	Java source code
	File fragments
	Microsoft malware
	Drebin malware

	Results
	Greedy approximation to the Fréchet mean
	Authorship attribution
	File fragment classification
	Malware

	Conclusions
	References

