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ABSTRACT

Dynamic shockless compression experiments provide the ability to explore material behavior at extreme pressures but relatively low temper-
atures. Typically, the data from these types of experiments are interpreted through an analytic method called Lagrangian analysis. In this
work, alternative analysis methods are explored using modern statistical methods. Specifically, Bayesian model calibration is applied to a
new set of platinum data shocklessly compressed to 570 GPa. Several platinum equation-of-state models are evaluated, including traditional
parametric forms as well as a novel non-parametric model concept. The results are compared to those in Paper I obtained by inverse
Lagrangian analysis. The comparisons suggest that Bayesian calibration is not only a viable framework for precise quantification of the com-
pression path, but also reveals insights pertaining to trade-offs surrounding model form selection, sensitivities of the relevant experimental
uncertainties, and assumptions and limitations within Lagrangian analysis. The non-parametric model method, in particular, is found to
give precise unbiased results and is expected to be useful over a wide range of applications. The calibration results in estimates of the plati-
num principal isentrope over the full range of experimental pressures to a standard error of 1.6%, which extends the results from Paper I
while maintaining the high precision required for the platinum pressure standard.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0173652

I. INTRODUCTION

As highlighted in Paper I,1 dynamic ramp compression experi-
ments enable exploration of how a material compresses to pressures
of 100 s of gigapascals with only modest increases in temperature.
Advances in the analytic analysis method used to interpret the data
from these experiments have enabled high-precision measurements
of the room temperature pressure–density response for a variety of
metals, such as copper, gold, and platinum.2,3 This method is
broadly referred to as inverse Lagrangian analysis (ILA) here for
simplicity but contains several steps to reduce the measured com-
pression path to an isotherm.1–3 While ILA has been found to be
suitable for these relatively simple metals, there are inherent
approximations within ILA that may not make it broadly applicable
for all materials. Of particular concern, path and/or time-
dependent material response that can arise from a number of
factors, such as loading conditions, material strength, and phase
transformations, may result in systematic errors in ILA.
Additionally, ILA is the only method widely accepted that is

capable of making quantitative inferences about the loading path
from the velocity–time histories typically measured in ramp com-
pression experiments. Thus, it is of interest to explore different
analysis methods that operate under different approximations for
cross-validation of the solutions and to build confidence in the
interpretation of the experiments as the community moves to ever
more complex experiments and materials.

As a test case for a new analysis method, we examine the
pulsed-power driven platinum (Pt) experiments detailed in Paper I.1

The configuration for these is, by design, conducive to computa-
tional modeling of the experimental observables. This is to say that
the framework for establishing a validated computational model for
the magneto-hydrodynamics describing the wave propagation
within these experiments is well established.4–6 At a high level, this
model takes inputs in the form of the material models and the
experimental parameters, such as the boundary condition and
material thicknesses, and outputs a simulated velocity–time history
that can be directly compared to the experimental measurement.
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If one assumes that everything in the computational model is well
constrained except for the sample’s equation of state (EOS), then it
is possible to optimize on the EOS such that a best match between
simulation and experiment is obtained. Indeed, the very nature of
these experiments is to maximize sensitivity of the measured veloc-
ity waveforms to the EOS of interest making this is a well-posed
inverse problem.

There are a plethora of optimization methods well-suited to
solving our inverse problem. However, most of them are determin-
istic. It is relatively straightforward to define an optimization
metric, such as an L2 norm, describing the difference between the
experimental and simulated velocity and optimize on the EOS to
give a single-valued solution. The problem with this type of deter-
ministic approach is that there is no uncertainty quantification
(UQ), and UQ is germane to these experiments and their ability to
establish high-precision standards. UQ approaches generally fall
into two approaches: frequentist and Bayesian. There are pros and
cons of each approach, but we choose to pursue a Bayesian
approach here as there are many advantages that make it attractive
for our application. First, Bayesian model calibration (BMC) has
uncertainty quantification embedded within the very fabric of its
framework, and it is capable of incorporating every relevant source
of uncertainty of interest. Second, BMC is a common approach
within the physical sciences to calibrate computational models
against experimental measurements. Thus, we can leverage the vast
amount of work on this topic that provides the mathematical rigor
justifying the quantitative inferences. We do not provide an exhaus-
tive list of references here but refer the reader to Kennedy and
O’Hagan’s seminal paper on BMC7 and the direct adaptation of
this approach to Z ramp compression experiments.8,9 Third,
Bayesian methods can incorporate prior knowledge. It is relatively
easy to make precise measurements of the sample’s ambient prop-
erties, such as its initial density and bulk modulus. BMC can natu-
rally integrate these types of additional measurements and their
uncertainties into the calibration to provide important constraints
and improve the overall inferences. Fourth, many BMC frameworks
allow for inference of model discrepancy.7,10 Our computational
model will never be perfect, and it contains many complexities
beyond the sample material model; Bayesian methods that account
for model discrepancy reflect this fact. Finally, and perhaps most
importantly, BMC integrates with complex simulations and mate-
rial models giving it the potential to provide a viable analysis
approach in situations where ILA may break down. Referring back
to the example about materials undergoing phase transformations:
in one of the most well-studied of dynamic phase transformations,
the α ! ε transition in iron has been observed under ramp com-
pression to exhibit significant dependence on loading rate in the
ILA result.11 It is not clear to what level time-dependence violates
the approximations in ILA and the magnitude of systematic errors
it induces, but BMC offers an alternative analysis pathway that may
prove useful in better understanding the experiments.

The rest of the article is organized as follows. Section II details
the computational model, data integration, and platinum models
considered for calibration. Of particular note, the platinum EOS
models considered include both fixed functional descriptions as
well as a novel non-functional form, the latter of which is found to
provide both high accuracy and high precision over the full range

of the measurements. Section III describes the BMC and sensitivity
study methodologies along with the subsequent results and com-
parisons to ILA. Some advantages and disadvantages of the BMC
method as it compares to ILA and general recommendations are
given in the conclusions in Sec. IV.

II. TIES BETWEEN SIMULATION AND EXPERIMENT

A. Computational model

The experimental configuration, detailed in Paper I,1 is
designed to be accurately modeled through the 1D magnetohydro-
dynamic (MHD) simulation domain shown in Fig. 1. The platinum
(Pt) sample of interest is bonded between a copper (Cu) electrode
and an optically transparent [100] lithium fluoride (LiF) crystalline
window. The time history of the magnetic field, which is deter-
mined through the corresponding drive measurements1 (not
shown) and the optimization process described elsewhere,1,4 acts as
the boundary condition driving the left side of the electrode. The
magnetic field generates a time-dependent stress wave through the
Lorentz force that propagates ahead of the magnetic diffusion
front, and the experiment is designed such that the stress wave will
traverse through the Pt sample before the magnetic field diffuses
through the electrode. The quantity measured in the experiment
(through standard velocimetry techniques12) is the velocity of the
Pt/LiF interface. This same quantity is easily tracked through the
MHD simulation, which allows for direct comparisons between the
experiment and simulation.

Simulations were performed using the Laslo 1D Lagrangian
MHD research code,13 which solves the same equations and contains
the same materials library as the ALEGRA multiphysics code.14 The
computational domain consists of the measured Cu, Pt, and LiF
thicknesses stacked together. Glue bonds, measured to be less than
4 μm for all experiments, are neglected. The Lagrangian mesh con-
sists of 1 μm cell size at the driving end of the Cu and is graded line-
arly to 2 μm at the Cu/Pt interface. The 2 μm cell size is maintained
through the Pt sample and is then linearly graded from 2 to 20 μm
between the Pt/LiF interface and the rear surface of the window. This
mesh scheme provides good convergence with respect to the simu-
lated velocity of interest while keeping the computational cost

FIG. 1. Schematic of the 1D model of the experiments. A magnetic field boun-
dary condition drives a shockless compression wave through the copper elec-
trode and into the platinum sample. A thick optically transparent LiF window
tamps the sample to keep it at an elevated pressure, while velocimetry is used
to measure the interface velocity. This time-dependent velocity is the experimen-
tal observable and the metric of interest extracted from the simulations.
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relatively low, which is important for the statistical methods
described in Sec. III. Given the shockless nature of the simulations,
artificial viscosity does not play a significant role and was set to as
low a value as possible while still ensuring numerical stability. The
Cu electrode and the LiF window are treated as standards with
known material models, which are described in detail in Paper I.1

Thus, the only assumed unknown in the computational model is the
constitutive model for the Pt. The parameterization and subsequent
calibration of the Pt response, with an emphasis on the EOS, is the
primary topic of the rest of this article.

B. Experimental data and uncertainties

The measured Pt/LiF velocity data, denoted u(t), are shown in
Fig. 2 and consist of 11 unique profiles collected over 5 different
experiments. The velocities scale with pressure such that the lowest
pressure experiment (Z3112) reached �170 GPa, while the highest
pressure experiment (Z3064) reached �570 GPa. The uncertainties
associated with these velocities are given by

δu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Ucon)

2 þ (uUlin)
2

q
, (1)

where Ucon and Ulin depend on the diagnostic configuration15 and
are summarized in Table I. Also shown are the Cu electrode thick-
nesses, XCu, and Pt sample thicknesses, XPt, for which uncertainties
of 3 μm are estimated for both. The LiF thicknesses of 4–6 mm
were effectively infinitely thick with respect to the wave propagation
so that their uncertainties are irrelevant and not included in
Table I. The relative timing uncertainty between the measured and
simulated Pt/LiF interface velocities is estimated to be 200 ps.1 The
uncertainty in the magnetic field boundary condition, B, is approx-
imated to be a function of the drive velocity uncertainty and is
described in detail in Appendix A, resulting in the form

δB2 ¼ [(0:134þ 44:35B�1:178)Ucon]
2 þ [(2:008þ 0:113B1:273)Ulin]

2
,

(2)

where the units of B are in Tesla, Ulin represents a unitless linear
scaling term, and Ucon relates to a constant offset in units of m/s.
The coefficients in Eq. (2) effectively represent the impedance
matching between Cu and LiF to estimate the magnetic pressure in
the Cu as a function of the measured Pt/LiF interface velocity.
Since the velocity error coefficients are well-known, this provides a
convenient way to approximate the corresponding uncertainty in
the boundary condition.

C. Platinum models

As described in Sec. II A, the only unknown in the computa-
tional model is assumed to be the constitutive model for the Pt
sample. Within the framework of our hydrocode, this consists of
an EOS model to describe the hydrodynamic response combined
with a strength model to describe the deviatoric behavior. Since
these experiments were not designed to be particularly sensitive to
the material strength (quantified in Sec. III A), the strength model
and parameter distributions in Ref. 16 are used. Briefly summariz-
ing those results, an extremely simplistic strength model form was
used,

Y ¼ Y0 1þ A Pξð Þ, (3)

where P is the pressure, ξ ¼ ρ0=ρð Þ1=3 is the linear isotropic exten-
sion, ρ is the density, and the following independent normal distri-
butions for the two strength parameters were obtained:
Y0 ¼ 0:44+ 0:17 GPa and A ¼ 4:7+ 7:5 TPa�1. Of note, the
peak stress for the data used to calibrate these distributions was
300 GPa so that the model will be extrapolating nearly a factor of 2
to the 570 GPa peak pressures reached by the data shown in Fig. 2.
While this magnitude of an extrapolation is not ideal, the simple
nature of Eq. (3) is well-behaved and honors Thomas–Fermi pres-
sure scaling limits.17 Coupled with the relative lack of sensitivity,
the extrapolation in this application is believed to be a reasonable
approach in the absence of any other strength information.

As summarized in Paper I,1 we also have information
pertaining to the ambient state of the Pt. This includes the initial

FIG. 2. Summary of the 11 velocity profiles measured in 5 different experi-
ments. Velocities with the same color were from the same experiment and rep-
resent different sample thicknesses. Arbitrary time offsets are applied for clarity.

TABLE I. Velocity uncertainties and thicknesses from Table 1 in Paper I1 relevant to
the computational model. Not shown, the uncertainties associated with both XCu and
XPt are 3 μm, the timing uncertainty Δt is 200 ps, and the uncertainty in the mag-
netic field boundary condition is given by Eq. (2).

Experiment Ucon (m/s) Ulin (%) XCu (mm) XPt (mm)

Z2765-2 5.0 0.90 2.001 1.494
Z2766-2 4.5 0.82 2.001 1.373
Z3604-1 5.4 0.15 1.997 1.208
Z3604-2 5.4 0.15 1.997 1.404
Z3604-3 5.4 0.15 1.998 1.304
Z3604-4 5.4 0.15 1.998 1.507
Z3112-1 6.0 0.21 1.745 1.797
Z3112-2 8.7 0.49 1.746 2.000
Z3112-3 6.0 0.21 1.749 2.200
Z3561-1 6.9 0.14 1.498 1.003
Z3561-2 6.4 0.15 1.498 1.155
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density and thermoelastic properties. Of particular relevance to
the BMC, the ambient density is ρ0 ¼ 21:421+ 0:043 g=cm3,
and the ambient bulk isentropic sound speed is
c0 ¼ 3:617+ 0:055mm=μs. This leaves the remaining focus of this
article on the model form and parameterization for the high-
pressure compressibility.

All of the experimental data under consideration here repre-
sent shockless compression of the sample; therefore, increases in
temperature are modest3 and the isentrope is the most relevant
thermodynamic reference curve. As such, we approximate the EOS
through the Mie–Grüneisen approximation with the principal isen-
trope as the reference curve. The Grüneisen parameter, Γ, is
assumed to have a linear dependence on the density,

Γ ¼ Γ0
ρ

ρ0
, (4)

where Γ0 ¼ 2:64. To enable efficient hydrocode simulations, a
limited-range Sesame tabular EOS is used in place of an analytic
implementation. The Sesame table is generated using the method
in Ref. 5 where a constant specific heat of cv ¼ 130:1 J=(kg K) is
used to complete the thermal description. This approach and the
values used are effectively identical to what is used in ILA,18 and
therefore, the thermal approximations are consistent. Not shown, a
perturbation of the sensitivity analysis described in Sec. III A was
run to include Γ0 and cv with standard deviations of 30% each.
This sensitivity analysis resulted in no appreciable sensitivities to
these two thermal parameters; therefore, only fixed values are used
herein for computational efficiency.

Three models for the reference isentrope are examined:
Vinet,19 third-order Birch–Murnaghan (BM),20 and a novel
method, which does not have an explicit form and so it is referred
to as the non-parametric (NP) model. The philosophy behind
examining different model forms is to (1) ascertain if the calibra-
tions are sensitive to a model form, (2) determine if model form
errors can be identified, and (3) determine best practices for the
use of BMC in future applications.

The Vinet model is represented by

P ¼ 3K0
1� ξ

ξ2
e
3
2(K

0
0�1)(1�ξ), (5)

where K0 is the ambient isentropic bulk modulus and K 0
0 is its pres-

sure derivative. The BM model contains the same three parameters
(ρ0, K0, K 0

0) but with a very different functional form,

P ¼ 3
2
K0 ξ�7 � ξ�5� �

1þ 3
4
(K 0

0 � 4) ξ�2 � 1
� �� �

: (6)

The NP model is fully motivated later in Sec. III A where
there is a clear need for a model form that provides localized cau-
sality between the reference isentrope of interest and the measured
velocity over the full range of the data. The idea behind this model
is summarized in Fig. 3, where a series of knots are used in con-
junction with a spline interpolation to provide the flexibility to
produce a completely arbitrary reference curve that is not bound by
a parametric model form. The space to define this reference curve
is somewhat arbitrary, but the most intuitive choice would be to

match the BM and Vinet functional forms: pressure as a function
of compression. Unfortunately, we found this form presented sig-
nificant challenges in running the hydrocode simulations since
small perturbations can result in large changes to dP=dρ (i.e., the
sound speed squared), which caused robustness issues in getting
the simulations to run to completion. Subsequently, this led to a
search for spaces where the thermodynamic derivatives can be used
instead. The space chosen to be ideal in this work is the Eulerian
sound speed, CE, as a function of strain. Several choices were con-
sidered, such as Lagrangian sound seed (CL ¼ CE

ρ
ρ0
) as a function

of particle velocity, CL uð Þ, to mimic ILA1 and bulk modulus as a
function of pressure, K Pð Þ, as an intuitive choice for what is gained
from these experiments: the compressibility as a function of pres-
sure. While the results from these choices were the same to within
the uncertainties in the final inferred pressure–density response,
there are subtle differences in correlations between the variables
that lead to differences in the uncertainties in other spaces.
Calibrations with the bulk modulus (K ¼ ρC2

E) or the Lagrangian
sound speed, for example, introduce correlation with the initial
density that manifests as an increase in uncertainty in these vari-
ables. Furthermore, as discussed in Ref. 1, the particle velocity is
not a thermodynamic state variable, and therefore, it is avoided in
this framework for clarity. This naturally leads to a desire to isolate
CE as the dependent variable, and since deformation mechanics
(such as in a hydrocode) are typically expressed as a function of
strain, we choose the volumetric strain as our independent variable.
Using strain also has the convenience of normalizing the initial
density, which makes it trivial to use a fixed grid of reference
points; attempts to use a fixed grid of density points, on the other
hand, created numerical difficulties in accommodating uncertainty
in the initial density.

Once the knots are determined, the reference curve is given by
interpolation. We found that the nature of the interpolating
function is an important consideration. As will be discussed in
Sec. III B, the number of knots plays into a bias–variance tradeoff

FIG. 3. The non-parametric (NP) model form consists of a series of knots at
fixed pre-determined strains and variable Eulerian bulk sound speeds. Each
instance of the knot magnitudes is interpolated by a spline to create an instanti-
ation of the reference isentrope curve.
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where a greater number of knots allows for greater fidelity in the
mean at the expense of increased correlation between the knots
and, thus, greater variance in posterior probability distributions.
Thus, it is desirable to have an interpolating function that will accu-
rately describe the curve of interest with the minimum number of
knots. In our testing of a variety of interpolation methods, includ-
ing the linear, cubic, and piecewise cubic hermite interpolating
polynomial (PCHIP),21 we found that the PCHIP method could
most accurately interpolate over the known response from ILA
using the smallest number of points. The differences between the
methods only manifest for sparse numbers of points, but in those
cases, the lack of continuity in the derivatives with the linear inter-
polant and the overshoots characteristic of cubic splines becomes
apparent. As such, the PCHIP method was used to interpolate on
each instantiation of the knots to form the isentrope reference
curve for all results presented herein. However, this was not an
exhaustive search of all interpolating methods available in the liter-
ature, and future work is planned for a more comprehensive exami-
nation of options.

III. STATISTICAL ANALYSES

Two statistical methods are used to interpret the data, the
complete details of which are summarized elsewhere.8,9 First, global
variance-based sensitivity analysis22 is a way to examine how much
an uncertain parameter in the simulation contributes to the uncer-
tainty in our metric of interest: the Pt/LiF interface velocity. This is
particularly useful for understanding how much each of the param-
eters in the models described in Sec. II C influences specific
regions of the velocity profile. Conversely, in solutions of an
inverse problem through methods, such as calibration, the sensitiv-
ity analysis illustrates which regions of the velocity profile will con-
strain the calibration of which parameters.

The second statistical method and primary focus of this article
is Bayesian model calibration (BMC). BMC results in probability
distributions and correlations for each of the uncertain variables in
the simulation. The distributions for the Pt model parameters can
then be propagated through their respective models to determine
curves of interest, such as pressure–strain, with well quantified
uncertainties. The primary goal of this work is to understand the
viability, advantages and disadvantages, and best practices associ-
ated with using BMC to infer the Pt material properties over the
range of conditions sampled in the experiments.

BMC is a well established method within the physical sci-
ences7 which has been adapted specifically to the types of Z experi-
ments of interest here.8,9 The primary challenge with calibrations
over velocimetry-based ramp compression data is the functional
nature of the velocity–time histories. The original adaptation in
Ref. 8 dealt with this functional data issue by treating each point
along the velocity–time waveform as independent and then scaling
the likelihood function to account for the autocorrelation between
the points. As with the original work on tantalum8 we found this
scaling approach worked well for the Pt calibrations over the para-
metric models. However, applying this method to the non-
parametric model was found to exhibit significant overfitting and
subsequent under-estimation of the errors. As such, the improved
framework of Francom et al.9 was used for all calibrations shown

herein. This newer framework is fully functional throughout,
meaning it incorporates the entire velocity–time history into the
surrogate model and the likelihood function without approxima-
tion. This also means that the surrogate model error is quantified
and incorporated into the analysis, which was not possible in the
original adaptation due to computational constraints.8

Additionally, a novel procedure is used to align the simulations to
the data not only in amplitude (velocity) but also in phase (time),
which can provide dramatic improvements for data that include
shocks.9 We find this improved framework does not appreciably
alter the BMC results for the parametric models,9 but dramatically
improves the quality of the non-parametric calibrations. Moreover,
the emulators that are generated from the training data can be used
directly for sensitivity studies,23 meaning the posterior distributions
from the BMC can be post-processed through the sensitivity analy-
sis for even better consistency and further insights into the
calibrations.

A. Global sensitivity analysis

Variance-based global sensitivity analysis22 was performed for
each experiment and for each Pt model of interest using the
method described by Francom et al.23 The method is intrinsically
tied to the calibrations discussed later in Sec. III B but is discussed
first as it provides useful insights into the differences between the
parametric and non-parametric models. In practice, this sensitivity
analysis effectively acts as a post-processing step to the BMC as the
posterior distributions are implemented directly in a closed form
solution to generate the Sobol sensitivity indices.23 This provides
perfect continuity between the BMC and sensitivity studies such
that the sensitivity analysis accurately reflects the probability distri-
butions and correlations of interest. The downside of this method
is that it utilizes complex posteriors so that it is difficult to suc-
cinctly summarize all of the distributions used in the analysis. The
priors for these distributions are summarized in Tables I and II,
while a subset of the posteriors are summarized in the BMC results
in Table III and Figs. 10 and 11. Further details, such as summaries
of all of the posterior distributions, are not provided since the sen-
sitivity analysis is ultimately only used for qualitative insights.
Furthermore, we find that while the sensitivities vary with each
experiment, they are reasonably bound by the lowest pressure
(Z3112-1) and the highest pressure (Z3064-4) experiments. As
such, only the results from these two experiments are given in the

TABLE II. Prior distributions for the Pt model parameters used to generate the train-
ing data. BMC proceeds by taking the range of the sampled training data as a
uniform prior.

Initial density ρ0 ¼ N (21:42, 0:04) g/cm3

Strength16 Y0 ¼ N (0:44, 0:17) GPa A ¼ N (47, 8) TPa-1

EOS—Vinet K0 ¼ N (260, 10) GPa K 0
0 ¼ N (5:8, 0:3)

EOS—BM K0 ¼ N (279, 10) GPa K 0
0 ¼ N (5:1, 0:3)

EOS—NPa N (Sesame 3732 isentrope, 15% knot magnitude)

aFixed strains are five equally spaced points on the interval [0,0.415].
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main text for brevity. However, a comprehensive set of results can
be found in Figs. 13–15 of Appendix B.

1. Parametric models

The distributions of the majority of the uncertain parameters
across the sensitivity studies were similar, with the obvious excep-
tion of the Pt model form. For the parametric models, Vinet and
BM, there are only three physical parameters of interest: ρ0,

24 K0,
and K 0

0. The results for the Vinet model are shown in Fig. 4. The
BM model results are not shown here because they are extremely
similar and exhibit the same trends of interest; again, we refer the
interested reader to Appendix B for the complete set of results.

Figure 4 summarizes the results from the Vinet sensitivity
analysis for the lowest pressure (Z3112-1) and the highest pressure
(Z3064-4) experiments. The time-dependent proportion variation

represents the cumulative first-order sensitivity index such that the
unexplained variance, labeled other, represents the amount of vari-
ance due to correlations. The strong sensitivities of the Vinet
parameters of interest, ρ0, K0, and, K 0

0, coupled with the relatively
low sensitivities of the other experimental and material model
(strength) uncertainties suggest that they are highly identifiable,
and therefore, their calibration will be to high confidence. The
time-dependent nature of the Vinet parameters’ proportion vari-
ance is largely intuitive, although slightly different between the two
experiments. In Z3112, ρ0 is relatively constant but is not the
biggest lever arm, while K0 dominates at lower velocities and K 0

0 is
the primary sensitivity at higher pressures. This is exactly what is
expected based on the nature of the parametric models since ρ0
permeates the functional form in Eq. (5), while K0 dictates the
ambient sound speed and K 0

0 is the lone term associated with the
higher pressure states. Z3064 exhibits similar trends but contains
lower overall sensitivities to K0 and K 0

0, which is consistent with
expectations since at higher pressures, the increased sound speed
results in decreased transit time (i.e., less sensitivity). There is also
an increase in ρ0 coupled with a re-emergence of K0 near 3.35 μs
that is associated with the reflection of the low-pressure portion of
the wave backward off the window interface interacting with the
electrode interface (i.e., reverberation). Usually, reverberation vio-
lates Lagrangian analysis, and so this is the time at which the analy-
sis has traditionally been terminated. The present ILA contains a

TABLE III. BMC posterior distributions for the parametric models. The distributions
are well approximated by a multivariate normal distribution.

Model ρ0 (g/cm
3) K0 (GPa) K0

0 Corr(K0, K0
0)

Vinet 21.56±10.1 270.96±1.75 5.75±0.05 −0.47
BM 21.25±0.08 268.83±1.92 5.42±0.08 0.27

FIG. 4. Sensitivity analysis for the lowest pressure (Z3112-1) and the highest pressure (Z3064-4) experiments using the Vinet EOS and the posterior distributions from the
corresponding BMC in Sec. III B. The proportion variance represents the cumulative first-order sensitivity index, and each parameter and experiment has a time-dependent
structure related to the respective velocity profiles shown as the magenta curves.
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new post-reverberation correction that should extend the analysis
range, but a non-single-valued response due to localized regions of
release from strength effects cause a more nuanced issue that also
results in cutting off the analysis prior to peak.1 This sensitivity
analysis demonstrates that there remains good sensitivity to K 0

0 all
the way to the peak velocity. Since reverberation and strength
effects are wave interactions inherently modeled within the hydro-
code simulations, the calibrations are able to maintain sensitivity
through the entirety of the measurement. This is the reason the
BMC results shown later reach higher pressure than ILA. A less
intuitive result from Fig. 4 is the interplay between the relative sen-
sitives between the experiments. In the lower pressure experiment,
the K0 and K 0

0 sensitivities crossover roughly halfway up the veloc-
ity profile. Curiously, this crossover occurs roughly 3=4 up the
velocity profile for the higher pressure experiment. In other words,
the relative amount of information learned is not only different
between each experiment, but the parameter inferences will also be
influenced by different velocity/pressure regimes. The low pressure
experiment, for example, demonstrates a very high proportion vari-
ance to K 0

0, while the higher pressure experiment does not. Thus,
the inference of K 0

0 is likely based primarily on the low-pressure
data, which means that the parametric models are largely extrapo-
lating to the highest velocities rather than being highly constrained
by them. However, since the likelihoods (difference between experi-
ment and simulation) are summed to dictate the most probable
solutions, this is a rather complex interaction and it is difficult to
fully quantify.

The rest of the uncertain parameters in Fig. 4 do not reveal
any surprises. The strength parameters, Y0 and A, are relatively
minor and manifest as contributions primarily at early and late
times associated with the elastic precursor and elastic effects near
peak due to loading reversal, respectively. This is consistent with
the understanding of these experiments where the gross effect of
strength on most of the velocity profile is small (i.e., strength has a
slight effect on the wave speed1) until near the velocity peak where
the load reversal results in elastic effects, which introduce strong
sensitivity to strength. This is why the ramp-release experiments
described in Ref. 16 were able to make an inference on the strength
parameters. While the sensitivities here are not large enough to
make both strength parameters highly identifiable, they are still
present as a relevant effect, particularly in the higher pressure
experiments. This is congruent with the analysis in Paper I where
strength is a relatively small but important correction in reducing
the measurements to the isentrope of interest.1 The magnetic field
scaling term Ulin, timing Δt, electrode thickness XCu, and sample
thickness XPt are found to be small but relevant experimental
uncertainties, which is expected based on the conventional inter-
pretation of these experiments.1 Similar to the strength terms, the
experimental errors do not overwhelm the sensitivities of the Vinet
parameters of interest, but they are of sufficient magnitude that
their inclusion is warranted to get a proper estimate of the uncer-
tainties in the Bayesian inference. The remaining parameter associ-
ated with the magnetic field offset, Ucon, does not manifest as
measurable sensitivity. This term represents a relatively small offset
in the magnitude of the magnetic field that is expected to impact
only the lower velocity regions of the calibration; it appears to be
dwarfed by the other uncertainties in these experiments, which

suggests that the single scaling term used in previous studies8,9 is a
good approximation.

2. Non-parametric model

The parametric sensitivity study in Fig. 4 motivates the need
to examine a non-parametric form. Since the high-pressure com-
pressibility parameters in the parametric forms (namely, K 0

0) span
broad regions of the velocity profile, the BMC inference will only
globally fit the data. Furthermore, as described in Sec. III A 1, an
additional complication is that it is not clear when calibrating over
multiple experiments/pressure regimes how the parametric model
is being constrained; the results in Fig. 4 suggest that the model is
primarily being fit to the lower pressure regions of the measure-
ments. The consequence is that the highest velocity regions of the
calibrated fit represent an extrapolation of the model form from its
fit to the lower velocity region. Given some of these potential defi-
ciencies in calibrating over the parametric models, it is desirable to
examine the characteristics of alternative model forms. An addi-
tional motivation is the need to examine materials which undergo
phase transformations. This is beyond the scope of the Pt applica-
tion here, but of broader interest to the community. While it may
be possible to combine multiple single phase parametric models
together through a phase transformation kinetics model to capture
multi-phase behavior, there is interest in examining a simple model
with the potential to handle the non-monotonic wave speed
response typically observed in materials with phase transforma-
tions.11,25 Toward this end, we explore the use of the NP model
described in Sec. II C to form a completely generalized reference
curve that can localize sensitivities to specific regions of the velocity
profiles. The NP sensitivity analysis results shown in Fig. 5 suggest
that this has the desired behavior.

The sensitivity analysis in Fig. 5 is a reflection of the BMC
results shown later in Fig. 10. There are five equally spaced knot
locations, labeled c1–c5 across the strain space between 0 and 0.415
where the maximum value of 0.415 was determined a priori
through simulations of the highest pressure experiment. The results
indicate the desired feature of this model: each knot has sensitivity
localized over specific ranges of velocity. The low-pressure experi-
ment Z3112, for example, has a known peak stress of 170 GPa,
which means that it should not be sensitive to knots 4 or 5. Indeed,
Fig. 5 exhibits strong sensitivity to the first three knots and, in par-
ticular, c3, which correlates to the highest regions of the velocity
profile. The higher pressure experiment Z3064 exhibits similar
qualitative trends but adds strong sensitivities to the highest pres-
sure knots c4 and c5. Of note is the respective sensitivity of the
knots between the different experiments, particularly c3. Since the
material model parameters are assumed the same across all experi-
ments, the same variance for the knots is being propagated through
each experiment’s sensitivity analysis. In other words, c3 is being
highly constrained by the lower pressure experiment and very little
by the high-pressure experiment, much like K 0

0 in the parametric
study. Conversely, the high-pressure knots, c4 and c5, are being
constrained entirely by the high pressure experiments. Thus, unlike
the parametric models, there is a guarantee that the extracted high-
pressure response and the corresponding errors are being properly
inferred and not extrapolated from a lower pressure inference. The
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final feature of note in Fig. 5 is the weak sensitivity to the initial
density, ρ0. This lack of sensitivity contrasts with what is observed
with the parametric models, but, as discussed in Sec. II C, this is
the intended behavior and a direct consequence of the construction
of the NP model form. There are choices of calibration spaces
(such as a pressure-density reference curve) that would result in
strong initial density sensitivity, but it is our interpretation that this
is not appropriate for data of this type since the experiments ulti-
mately measure wave speed and not stress or density. However, this
choice results in poor identifiability in ρ0 for this model and is a
consideration for the BMC results discussed later in Sec. III B.

As with the parametric model, the experimental uncertainties
in Table I are inferred individually for each experiment, and there-
fore, these get balanced against the rest of the uncertain variables
along with the velocity error. As a result, these relative uncertainties
are experiment dependent, and therefore, there is some
experiment-to-experiment variability in their inference (see
Appendix B). However, they exhibit the expected trends8 and are
consistent with the parametric sensitivity analysis in Fig. 4 in the
sense that the experimental uncertainties have an effect on the
overall errors but do not dominate the measurement.

The NP sensitivity analysis in Fig. 5 also reveals some of the
challenges associated with using the NP model. The calibration
results are intrinsically tied to the choice of the number of knots

and their locations. The smooth nature of the sensitivity of the
transitions reveals the smooth interpolation between the knots such
that there is a correlation between them. This is particularly evident
in c1 and c2, where at the lowest pressures, one would expect c1 to
completely dominate. Instead, the interpolation creates an interac-
tion between c1 and c2, and this correlation introduces strong sensi-
tivity of c2 at the lowest pressures. However, the analysis also
reveals that there is still good identifiability of each of these knots,
and therefore, their inference is still expected to be accurate. This is
justified by the strong sensitivities relative to the amount of the
other variance represented by the gray region in Fig. 5. This other
variance represents the higher order interactions between the vari-
ables and is a measure of how difficult (how uncertain) it is to
uniquely infer each parameter. In the lower pressure experiments,
the other variance is sufficiently low that correlations will not add a
significant amount of uncertainty to the posterior distributions.
Conversely, knots c1, c2, and c3 in the higher pressure experiments
see reduced sensitivities with a significant amount of other vari-
ance. If the BMC were to be conducted on a per-experiment basis,
this would result in appreciable identifiability issues in these lower
pressure knots and inflated variance in their posterior distributions.
Fortunately, in our application, the calibration over all of the exper-
iments will utilize the advantages of the lower pressure experiments
such that good inferences of the low pressure knots are still

FIG. 5. Sensitivity analysis for the lowest pressure (Z3112-1) and the highest pressure (Z3064-4) experiments using the non-parametric (NP) model form and the posterior
distributions from the corresponding BMC in Sec. III B. The knot locations are shown in Fig. 10 where c1 and c5 correspond to the minimum (strain ¼ 0) and maximum
(strain ¼ 0:415) of the axis. The proportion variance represents the first-order sensitivity index, and each parameter and experiment has a time-dependent structure
related to the respective velocity profiles shown as the magenta curves.
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obtained. The high-pressure experiments then reveal good sensitiv-
ity (low other variance) to knots c4 and c5 such that good infer-
ences are obtained across the entire range of knots. This reveals the
advantages of calibrating over a diverse data set spanning multiple
pressure regimes. We are in an advantageous position with the Pt
data of interest here, but care should be taken in other applications
where the data may be more sparse.

The preceding discussion alludes to the dependence of the sol-
ution on the choice of knot locations. In our testing, we found that
this design decision results in a bias–variance trade-off. With more
knots, it is possible to obtain greater flexibility in the curve but at
the cost of increased correlation and, thus, greater variance. Our
approach here was to start with a large number of knots (ten) to
obtain a curve with low bias but high variance. The mean of this
result was then re-fitted with a lower number of knots. We found
that fitting between five and ten knots did not appreciably change
the quality of the fit, while using only four knots began to intro-
duce significant residuals. Thus, we settled on five knots as the
optimum to maintain low bias while minimizing correlations. We
note that everything in this process utilized a uniform knot spacing
over the fixed strain interval of [0,0.415]. An opportunity for future
work is to incorporate a method that optimizes the number of
knots and their locations for maximum effectiveness.

B. Bayesian model calibration

Bayesian model calibration (BMC) was performed using the
methodology in Francom et al.,9 known as elastic BMC, to estimate
the posterior probability distributions for all of the uncertain vari-
ables incorporated into the computational model. Of particular
interest are the Pt EOS parameters: ρ0, K0, and K 0

0 for the Vinet
and BM parametric models and the knot magnitudes using the NP
approach.

Elastic BMC is an extension of the Bayesian model calibration
approach introduced in Ref. 7. Several different approaches have
been proposed to extend BMC to more explicitly accommodate
functional responses,8,26–28 but the most common use a basis
decomposition of the functional responses and then calibrate in the
basis coefficient space. Using this technique, the responses are
modeled as

z(t, xi) ¼ y(t, xi, θ)þ εi(t, xi), ε(t, xi) � N (0, σ2
ε), (7)

where z(t, xi) denotes an experimental measurement from the ith
experiment, y(t, xi, θ) denotes a simulated response under the
same experimental conditions xi, and t parameterizes the func-
tional responses (e.g., time). εi(t, xi) denotes the observation error,
and θ is a vector of the model parameters (e.g., ρ0, K0, and K 0

0).
When fitting the model, t is typically discretized onto a grid,

and when the calculation of y is computationally expensive, an
emulator or surrogate model is used for more rapid evaluation at
any parameter combination. We use the Bayesian adaptive spline
surfaces (BASS)23 approach as a surrogate for y, which uses a prin-
cipal component basis to construct the surrogate.

Inference on the parameters is performed via Bayes’ rule,
incorporating the prior information about θ, the experimental
responses, and the simulated responses together to form a posterior
probability distribution over θ. Because the denominator in Bayes’

rule contains a high dimensional integral over θ, which is typically
intractable, the most common approach in Bayesian estimation is
to take samples from the posterior distribution of θ via Markov
Chain Monte Carlo (MCMC), rather than calculate the Bayes’
formula directly. In statistics, MCMC defines a set of algorithms to
generate random numbers from a probability distribution that is
intractable analytically. MCMC methods are iterative and tailored
to construct a Markov chain whose stationary distribution is the
probability distribution of interest. As more iterations are per-
formed, the distribution of the samples from MCMC will resemble
more the distribution of interest. In Bayesian statistics, this target
distribution is the posterior distribution. MCMC is also the
approach used to estimate the BASS surrogate and account for sur-
rogate uncertainty.

Although this model can be applied without modification to
the dynamic ramp compression experiments, we have found that
estimation can be improved by treating response variability in the
phase space (x axis, time) and amplitude space (y axis, velocity)
separately. By applying a specific transformation to the experimen-
tal and simulated responses, it is possible to construct a proper dis-
tance metric between z(t, xi) and y(t, xi, θ) through elastic
functional data analysis.29,30 This metric allows for the estimation
of a warping function γy!z(t) : [0, 1] ! [0, 1] that aligns the
y(t, xi, θ) to z(t, xi) in the phase space. Using this procedure, a
functional response is decomposed into two new functions: A
transformed, temporally aligned function and its corresponding
warping function.

The model in Eq. (7) is then applied to both the aligned func-
tions and the warping functions. This procedure reduces the dis-
crepancy between z(t, xi) and y(t, xi, θ), as the Bayesian calibration
procedure in Eq. (7) without elastic alignment does not explicitly
handle phase (temporal) variability. Following calibration, the
warping functions’ inverses can be applied to the aligned functions
to produce samples in the original data space. We have found that
by using this procedure to reduce modeling error, we are able to
obtain superior inferences about material compressibility. We refer
interested readers to Refs. 7, 9, and 28 for more details about
Bayesian calibration and the elastic BMC procedure, and to Ref. 31
for more details about general Bayesian modeling and MCMC.

The elastic BMC method can be summarized as containing
the following steps:

1. Use Latin hypercube (Monte Carlo) sampling over the prior dis-
tributions to determine inputs to the hydrocode simulations to
obtain high-fidelity computational model training data.

2. Align training data to experiment to separate out phase (time)
and amplitude (velocity) variability.

3. Use aligned training data to build surrogate models using BASS
emulators over both phase and amplitude.

4. Define likelihood based on the difference between simulated
and measured velocities in the phase and amplitude space.

5. Estimate posterior distributions of the uncertain parameters
using MCMC sampling.

The distributions used to train the emulator are summarized
in Tables I and II. The normal distributions for the BM and Vinet
models are values reported in Fratanduono et al.3 with the standard
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deviations increased 100-fold to provide full coverage of the data
and so as not to bias the posteriors. The NP training points are
sampled from a normal distribution given by a mean of the princi-
pal isentrope from the Sesame 3732 EOS (discretized to 5 equally
spaced points over the strain interval of [0,0.415]) and the standard
deviation of 15% of the Eulerian sound speed. The rest of the
experimental uncertainties in Table I are well defined based on a
priori characterization of various aspects of the experiments. After
sampling across these distributions, running the corresponding
hydrocode simulations, and training the emulators, MCMC sam-
pling is performed on the surrogate with non-informative uniform
priors standardized over the range of the training data. The philos-
ophy here is to provide the highest fidelity emulator possible by
sampling over a higher density of points where the priors dictate,
but then to use non-informative priors within the posterior sam-
pling so as to provide a solution mainly informed by the training
data. This is particularly relevant for the choice of distributions in
Table II. For example, the NP sampling distribution is centered
around the Sesame 373232 isentrope and was known a priori to be
a close solution. Thus, good sampling is obtained for building a
low error emulator, but the actual inferences use uniform distribu-
tions and so the final BMC results are not at all biased by the refer-
ence Sesame EOS. The trade-off to using non-informative priors is
that we are not taking advantage of the ability of Bayesian methods
to incorporate prior knowledge, and therefore, the calibrations may
be overly conservative. Referring again to the treatment of the NP
priors, it is entirely possible to implement a strong prior model for
the reference curve, but this introduces the usual trade-offs with
these types of Bayesian methods. If one were to use the ILA result
as a priori, for example, the BMC would contain lower uncertain-
ties at the risk of injecting error from the ILA into the calibration.
Within the present framework of using independent non-
informative priors, the results are believed to be conservative in
their uncertainty estimates but free from quantifiable bias, which is
deemed acceptable for this stage of the work.

To build the training data, a rough rule-of-thumb of 1000
samples per variable was used, resulting in a total of 10 000 simula-
tions for the parametric models and 13 000 for the NP form. For
each simulated velocity, the time history was discretized into 100
evenly spaced points in time between velocities of 100 m/s and 95%
of the peak. The velocity ranges were chosen based on the sensitiv-
ity analysis in Sec. III A to maximize sensitivity to the EOS and
minimize sensitivity to the regions sensitive to strength. As in pre-
vious studies,8 the number of training simulations and velocity
points were evaluated for convergence with respect to the final pos-
terior distributions of interest, and the values used here represent
good numerical convergence while minimizing computational
expense. Bayesian inference was run using the numerical method
described in Francom et al.9 The Markov chains were run using
modern adaptive techniques, and conventional criteria were used
to evaluate mixing and ensure convergence to the proper posterior
distributions.

The predictions resulting from the BMC for each model form
for the highest pressure experiment, Z3064, are shown in Fig. 6.
The plots show the BMC 95% prediction interval as they compare
with the measured velocities and arbitrary timeshifts are introduced
for clarity. The lower pressure results are not shown for brevity

because they exhibit identical features. All of the models illustrate
perfect coverage of the velocity data up to �3:5 km/s, suggesting
that the calibrations adequately represent the data over this range.
However, close inspection of the higher velocities above 3.5 km/s
for the Vinet and BM results reveals regions in some of the velocity
profiles outside of the predictive interval, which is suggestive of a
model form error. Reiterating the results from the sensitivity analy-
sis in Fig. 4 and the discussion in Sec. III A 1, it is believed that the
calibration of K 0

0 is being driven by the lower pressure regions
where more data exist and there is better sensitivity to this parame-
ter. Thus, it is expected that the Vinet and BM models are primar-
ily an extrapolation in these higher velocity regimes, which for
some of the curves results in a poor prediction. The NP model, on
the other hand, exhibits full coverage over the entire range of the
data, which is the desired behavior based on how this model is con-
structed and the full range of sensitivities that are obtained. A final
point in Fig. 6 is that the size (uncertainty) of the predictive inter-
vals is roughly consistent across the different models. This suggests
the NP model form and the choice of knot locations is not intro-
ducing significant additional variance.

The posterior distributions for the physical parameters of
interest from each BMC are summarized in Figs. 7–9. These
so-called pair plots show the marginal 1D distributions along the
diagonal, kernel density estimates (KDE) of the 2D distributions
along the lower diagonals, and the points from the MCMC chains
colored by the log likelihood in the upper diagonals. In both sets of
the off-diagonal plots, the heat maps correspond to solution pairs
with high likelihood and the oblong distributions for most parame-
ter pairs indicate high degrees of correlation. Since the priors used
were non-informative uniform distributions normalized over the
range of the training data, the multivariate Gaussian-like distribu-
tions that are obtained indicate that there is a strong degree of
learning associated with these parameters and so they are being
well constrained through the calibration; this is not surprising

FIG. 6. BMC 95% prediction intervals (PIs) compared to the experimental data
for the highest pressure experiment (Z3064) for each of the platinum models
with arbitrary timeshifts introduced for clarity. The parametric Vinet and BM
models exhibit regions at a high velocity that do not cover the experimental
data, which is suggestive of a model form error.
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given the results from the sensitivity analysis in Sec. III A. While
the posterior distributions are not perfectly Gaussian, they are rea-
sonably well approximated by the metrics associated with a normal
distribution, the results of which are summarized for the Vinet and
BM models in Table III to facilitate easy reproductions of the
results. It is less useful to tabulate the NP results as, by definition,
these points must be combined with the baseline amplitudes and
PCHIP interpolation to form the reference curve. Instead, the dis-
tributions are propagated to curves in the two thermodynamic cali-
bration spaces: Eulerian sound speed as a function of strain in
Fig. 10 and pressure as a function of strain in Fig. 11.

There are several interesting features in the parametric BMC
results in Figs. 7 and 8 and Table III. Most obviously, there are sig-
nificant differences between these parameters, which have a well
defined physical interpretation. As in other works on Pt,1,3 the
pressure derivative of the bulk modulus for the different models
contains differences well outside of their reported errors. This dis-
crepancy suggests that one or both of the model forms is not accu-
rately representing the meaning of this parameter at these extreme
pressures, and so, it may be more appropriate to interpret the
parameters in Table III as empirical fitting coefficients rather than
physical parameters. This is corroborated by the posterior of the
initial density from the BM calibration, which is on the lower end
of what is plausible. The sensitivity of ρ0 in Fig. 4 and strong corre-
lations in Fig. 8 suggest that it is playing a significant role in fitting

to the data. Even more concerning in the BM results is the positive
correlation inferred between K0 and K 0

0 since this is not physically
realistic. While a closer look at the distribution in Fig. 8 reveals a
bi-modal feature that artificially skews the correlation to positive,
these concerns taken together are indicators the BM model may
have relevant model form error for this application.

The NP BMC results in Fig. 9 are difficult to interpret without
the corresponding baseline Sesame 3732 isentrope since the knot
magnitudes represent the scaling of this curve. However, there are
several features in the pair plot worth highlighting. First, the correla-
tion between the knots is seen to be high between neighboring knots
and gradually decreases as the knots become more separated. For
example, the bivariate distribution of c2 and c3 near the center of
Fig. 9 is extremely oblong showing high correlations, while moving to
c1 and c5 on the bottom row shows a more circular uncorrelated dis-
tribution. Of course, this is the very nature of autocorrelation, but it
illustrates that the calibration is correctly capturing this behavior.
Second, and more importantly, the distributions reveal good inference
of the parameters. The prior for the knots is a uniform distribution
over a span of roughly 45%; therefore, a high degree of learning is
taking place to constrain these knots to the 1% level. The exception is
the inference of ρ0, which is rather broad and is bumping up against
its physically imposed limits of roughly 3-σ of the prior. This is not
entirely unexpected given the lack of sensitivity to ρ0 for this model
in Fig. 5, but it suggests errors could be further reduced by

FIG. 7. Pair plot for BMC using the Vinet parametric model. The diagonals
contain histograms of the 1D posterior distributions overlayed with a KDE of the
distribution. The off-diagonal plots are the 2D marginal distributions and are rep-
resented by a KDE on the lower diagonals and points directly from the MCMC
chain colored by the log likelihood on the upper diagonals. The axis ticks corre-
spond to +2σ values.

FIG. 8. Pair plot for BMC using the Birch–Murnaghan parametric model. The
diagonals contain histograms of the 1D posterior distributions overlayed with a
KDE of the distribution. The off-diagonal plots are the 2D marginal distributions
and are represented by a KDE on the lower diagonals and points directly from
the MCMC chain colored by the log likelihood on the upper diagonals. The axis
ticks correspond to +2σ values.
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introducing a more informative prior or removing it from the calibra-
tion entirely and then propagating the prior error through to the final
results (i.e., to the pressure).

To evaluate the accuracy and precision of the calibrations, the
results are compared to the traditional interpretation of these data
through inverse Lagrangian analysis (ILA) presented in Paper I.1

ILA is a well-accepted analysis methodology with rigorous uncer-
tainty quantification and is, thus, believed to be the gold standard
to which these calibrations should be compared. As a point of
clarity, the principal isentrope is used as the reference curve for
BMC, and therefore, the comparison is made to the reduced

isentrope from Ref. 1 and not the reduced room-temperature iso-
therm that is the focus of that work. This decision was made as the
isentrope is believed to be most representative of these experiments,
and it mitigates an extra step in the reductions that could cloud the
comparisons. However, the calibration methods could easily be
adapted to use an isotherm as the reference curve instead. Given
the agreement of the calibrations with ILA that will be shown, we
defer the reader to Paper I1 if fits to the room-temperature iso-
therm are desired.

The calibration results are represented in the Eulerian sound
speed–strain and pressure–strain spaces in Figs. 10 and 11,

FIG. 9. Pair plot for BMC using the non-parametric model. The diagonals contain histograms of the 1D posterior distributions overlayed with a KDE of the distribution. The
off-diagonal plots are the 2D marginal distributions and are represented by a KDE on the lower diagonals and points directly from the MCMC chain colored by the log likeli-
hood on the upper diagonals. The axis ticks correspond to +2σ values.
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respectively. These plots are the results of propagating the relevant
posterior parameter distributions from BMC through the respective
models to obtain these reference isentropes with well quantified
uncertainties. Figure 10 represents the NP calibration space, while
Fig. 11 is most representative of the parametric model form. Both
figures contain subplots representing the 1-σ standard errors for
each curve and the percent difference of the means from the ILA
result as an attempt to best visualize differences in the uncertainty
quantification, differences in the means, and, combined, if there are
any quantifiable differences beyond the error bars.

In the sound speed space, we find excellent agreement in the
uncertainties of all three calibrations and ILA (center panel of
Fig. 10). The biggest discrepancy is at low strains where ILA con-
tains significant uncertainties to strains of �0:025 due to the veloc-
ity uncertainty being large with respect to the rate of change of
velocity in this regime. Since correlations between the NP model
knots result in inference over larger regions of velocity, this highly
localized ILA behavior does not manifest in the BMC results.
Beyond this difference, though, the errors are remarkably similar.
The Vinet errors track almost exactly with the ILA results and
gradually increase from 0.25% to 0.75%. The NP errors are similar,
although they increase at a faster rate over the second half of the

compression to 1.5% due to the reduced sensitives at the highest
pressures, as elaborated on in the next paragraph. The BM uncer-
tainties are the outlier, but not outrageously so, although the larger
errors are another indicator of more difficulty in fitting to the data
and the potential model form error.

A subtlety worth highlighting is the difference in the nature of
the error profile between the NP BMC and ILA, where the NP
result has a nonlinear upturn toward peak compression. This is
believed to be a physically realistic feature since the wave reverbera-
tion creates a diminishing spatial region of high pressure within the
sample. In other words, the impedance mismatch between the
high-impedance Pt sample and the lower impedance LiF window
creates wave interactions that result in significant portions of the
sample that never reach the peak pressure. In fact, for a majority of
the experiments, the region of peak pressure asymptotically
approaches zero thickness. Thus, the effective sample thickness
over which there is wave evolution at the highest velocities is mark-
edly less than the actual sample thickness, and therefore, we
hypothesize that the corresponding uncertainties in wave speed
should also be higher. This feature is not captured in ILA because
the characteristics approach maps to an in situ configuration where
the window is effectively non-existent, and so, the entirety of the

FIG. 10. Results of the BMC parametric and non-parametric calibrations compared to ILA in the sound speed–strain space. The top panel shows the magnitudes with 1-σ
error bars on the ILA and 68% credible intervals as shaded regions on the BMC, with NP knot locations in strain indicated by c2-c4 (c1 and c5 coinciding with the axis
limits). The center panel shows the standard errors (1-σ) from all four results. The bottom panel is the percent difference in the mean of each BMC result from the ILA.
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sample experiences the highest pressures. Conversely, this effect is
naturally captured within the NP BMC because it is operating on
simulations of the true experimental configuration. Translating to
more quantitative terms, the pressure at the window interface is
roughly three times less than the pressure on the driven side of the
Pt due to the impedance mismatch, and therefore, pressures above
200 GPa should contain increased uncertainty. A pressure of
200 GPa corresponds to a strain of 0.27, which is where the NP and
ILA errors begin to diverge. This point of divergence lends confi-
dence to the hypothesis and further suggests that ILA could be
underestimating the high pressure wave speed errors by close to a
factor of 1.75. Moreover, since the parametric models are primarily
constrained by the lower pressures and cannot capture this type of
localized error behavior, this also suggests that the parametric BMC
can underestimate the high-pressure uncertainty, albeit for a
completely different reason than ILA.

The errors in the center panel of Fig. 10 compare favorably
with the differences of the mean curves of the BMC and ILA
shown in the lower panel. The NP difference is comparable to mag-
nitude of the errors over the entirety of the curve except for the jog
at a strain of 0.23, which results from the ILA transitioning
between averages over different numbers of experiments.

Regardless, all differences are within a 2-σ overlap in the error bars,
which suggests that there are no statistically meaningful differences
between the results. The same is mostly true for the parametric
results. The inset highlights the 1% differences at low strains, which
is just on the edge of a 2-σ overlap. This difference tracks to the
small offsets in the initial sound speed, where estimates of 3:548+
0:009 (Vinet), 3:560+ 0:010 (BM), and 3:585+ 0:009 (NP) are
obtained. While these estimates compare well to within their uncer-
tainties, they are systematically low (but still within the errors)
compared to the prior value reported in Ref. 1 of 3:617+ 0:055.
This systematic offset may suggest a tighter prior on K0 or c1 could
marginally improve the respective calibrations. The more definitive
difference is in the comparisons at strains above 0.35, particularly
for the BM model. In this case, the differences go off scale and
approach 4%, which is well outside of anticipated errors and
further indication of a model form error. These discrepancies
explain the lack of coverage in the high velocity regions in Fig. 6
where the higher wave speeds can result in earlier arrival times
when compared to the data.

Comparisons in the pressure–strain space in Fig. 11 reveal
similar trends. The ILA errors are higher at low strains but quickly
drop to �0:8% before rising slowly to 1%. The Vinet, BM, and NP

FIG. 11. Results of the BMC parametric and non-parametric calibrations compared to ILA in the pressure–strain space. The top panel shows the magnitudes with 1-σ
error bars on the ILA and 68% credible intervals as shaded regions on the BMC. The center panel shows the standard errors (1-σ) from all four results. The bottom panel
is the percent difference in the mean of each BMC result from the ILA.
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errors start at a slightly lower level of 0.7% before rising to 1.1%,
2%, and 1.6% respectively. These results largely follow the trends
observed in the sound speed space, where Vinet is the lowest
overall, NP has a higher rate of increase at higher strains, and BM
is the largest. However, because of differences in how pressure is
calculated, there are subtle differences in the overall error
budgets. For the parametric models, pressure–strain is close to
their native space [Eqs. (5) and (6)], and therefore, the errors
come directly from the posterior distributions on ρ0, K0, and K 0

0.
The NP and ILA errors, on the other hand, result from integra-
tion of the sound speed, and therefore, the error at a given pres-
sure is a cumulative effect. The largest consequence of this
integration is in the ILA’s propagation of its low strain uncer-
tainty. The result is higher overall errors in the ILA until the
high-pressure NP non-linearity causes a crossover. Since there is
some cancellation in these effects, the end result is less discrep-
ancy in the pressure errors at peak strain as the NP result exceeds
ILA by only a factor of 1.25.

While we highlighted some subtle differences in the nature of
the uncertainties between the different methods, the overall differ-
ences between the calibrations and ILA largely fall within these
errors. The Vinet and NP results are within the ILA errors, while
BM is systematically low over much of the curve and just outside of
a 2-σ overlap of the error bars. Thus, like the results in sound
speed space, there are some indications of problems with the BM
model, but it is difficult to identify significant differences between
the Vinet, NP, and ILA methods.

A final note with Fig. 11 is the peak pressure plotted of
�600 GPa. This contrasts with the peak experimental pressures
only reaching 570 GPa and is the result of the final knot being a
little too high since the form of the model makes a priori determi-
nation of the pressure difficult. Thus, the BMC result represents a
small extrapolation and should technically be cutoff �2% lower at
a strain closer to 0.408 for any subsequent use of the data. Of
course, the correlation between the knots still creates good sensitiv-
ity to the final knot despite it being beyond the range of the data.
As such, this may result in a minor overestimation of the error, but
it does not change the overall interpretation or comparisons to
ILA, and therefore, we leave the full range in Figs. 10 and 11 as a
reasonable representation of the calibration space with the caveat
that they represent a slight extrapolation.

The overall conclusion from the comparison between BMC
and ILA is the calibrations result in sufficient accuracy and preci-
sion to suggest that this is a viable analysis methodology for inter-
preting ramp compression experiments. The NP model, in
particular, contains features in the error estimates believed to be
physically realistic that are not captured by the parametric models
or ILA. Moreover, it is difficult to identify any significant differ-
ences in the ILA and NP results to within their respective uncer-
tainty estimates. The parametric model results are also reasonable
despite indications that the BM model could be suffering from
some model form error. The Vinet model appears to produce very
good calibration and is an excellent representation of the ILA
results. However, it would be difficult to know if either of the para-
metric results is valid in the absence of comparisons to the ILA or
NP results, and therefore, we caution against generalizing this
result to other scenarios.

IV. CONCLUSIONS

In this work, we examined feasibility and best practices associ-
ated with applying modern statistical methods to the interpretation
of Pt shockless compression experiments performed on the
Z machine. The methods recently developed by Francom et al.9

were found to be well-suited to our application where not only is
the fully functional nature of the velocity–time histories accurately
incorporated, but the alignment in both time and velocity enables
high fidelity calibrations. The performance of these Bayesian cali-
brations was assessed through quantitative comparisons to inverse
Lagrangian analysis, the traditional analytic analysis method for
these types of data. We find that the overall accuracy and precision
across a range of calibrations is similar to the traditional analysis.
Thus, Bayesian calibration is found to be a viable approach to inter-
pret and extract quantitative information from these high-pressure
Pt shockless compression experiments.

The primary challenge in utilizing the Bayesian methods was
in determining the model form describing the Pt isentrope. Our
exploration of parametric models, such as Vinet and Birch–
Murnaghan, identified potential issues, such as a lack of sensitivity
over the entirety of the measurement, suggesting that these model
forms are not highly constrained at the highest pressures. In prac-
tice, we found that the Vinet model provides excellent agreement
with Lagrangian analysis over the full range of the data and is
appropriate for this application, and therefore, Vinet results in
Table III are a reasonable analytic representation of the isentrope
extracted in this work. The Birch–Murnaghan model, on the other
hand, results in apparent model form error and does not fit the
data well at the highest pressures, and therefore, these calibration
results are not recommended for further use. However, the success
of the Vinet form is believed to stem from its ability to accurately
represent the Pt compression response such that lower pressure
constraints from the calibration extrapolate well over the range of
the data. As such, we recommend the wider ranging fits of the ILA
results in Paper I (Table IV of Ref. 1, which contains both the isen-
trope and isotherm) as the most appropriate parameter set for most
applications.

Due to concerns about how well parametric model forms will
generalize across a range of experimental platforms and materials,
we also examined a novel non-parametric model (NP) form con-
structed to provide sensitivity over the entire range of the measure-
ment. The NP construction consists of an arbitrary set of knots
coupled with spline interpolation to generate the reference isen-
trope curve of interest. Sensitivity analysis suggests that this NP
construction successfully produces sensitivities in the reference
curve over the full range of the measured data. The compromise
with the NP model form when compared to the parametric models
is the introduction of auto-correlation between the knots, which
ultimately results in a bias–variance trade-off where more knots
results in lower bias at the cost of higher variance. However, we
find optimization around this trade-off resulted in calibration in
excellent agreement with both Lagrangian analysis and the Vinet
calibration. Interestingly, we find that while the low-pressure NP
errors are in excellent agreement, the higher pressure errors
increase at a faster rate than any other analysis method. This is
believed to be a realistic result stemming from wave interactions,
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resulting in a significant decrease in the amount of sample material
that reaches these higher pressures, an effect that the other
methods do not capture. Thus, the NP approach is not only viable,
but it may be preferable to not only guarantee that the results are
constrained over the full range of the data, but also as a more real-
istic representation of the overall uncertainties. More generally, the
performance of parametric models will likely not be known a
priori, and therefore, NP calibrations are suggested as a useful diag-
nostic for unbiased comparisons. Furthermore, in scenarios where
parametric model forms are found to be insufficient or altogether
unknown, the NP approach offers a viable path forward. For
example, the NP approach may provide a potential path toward
analyzing data with obvious signatures of phase transitions, which
generally result in a non-monotonic sound speed response.
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APPENDIX A: MAGNETIC FIELD ERROR
PARAMETERIZATION

Figure 11 in Paper I1 and the surrounding discussion details
the impedance matching from the Cu electrode to the LiF window.
This effectively describes the relationship between the measured
window velocity uwin and the pressure in the copper electrode, PCu.
Since the mechanical pressure in the copper is the direct result of
the driving magnetic field, B, there is an equivalence between the
mechanical and magnetic pressures such that

B(uwin) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ0PCu uwinð Þ

p
, (A1)

where μ0 is the vacuum permeability constant. Uncertainty in the
magnetic field can then be estimated through

δB ¼ @B
@uwin

δuwin: (A2)

Given the non-analytic nature of PCu uwinð Þ, @B
@uwin

can be estimated
numerically and combined with the known velocity uncertainty,
Eq. (1), to solve for the magnetic field uncertainty. As a matter of
convenience, the dependence of δB2 on Ucon and Ulin is kept sepa-
rate such that their contributions can be isolated in the form

δB2 ¼ (αUcon)
2 þ (βUlin)

2: (A3)

The α and β coefficients in Eq. (A3) can be calculated as a function
of B(uwin) numerically, resulting in the curves in Fig. 12. In order
to make practical use of these curves, analytic fits are required, for
which we find that the power-law fits described in the legends
accurately reproduce the numerical calculations. These fits are com-
bined to give the final form for the magnetic field uncertainty used
in this work as represented in Eq. (2).

APPENDIX B: COMPLETE SENSITIVITY ANALYSIS
RESULTS

FIG. 12. Contributions to the magnetic field uncertainty as a function of the field
magnitude. Power-law fits to each contribution give a good representation of the
numerical derivatives.
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FIG. 13. Sensitivity analysis for all the experiments using the Vinet model form and the posterior distributions from the corresponding BMC in Sec. III B. The proportion
variance represents the first-order sensitivity index, and each parameter and experiment has a time-dependent structure related to the respective velocity profiles shown as
the magenta curves.
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FIG. 14. Sensitivity analysis for all the experiments using the BM model form and the posterior distributions from the corresponding BMC in Sec. III B.
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FIG. 15. Sensitivity analysis for all the experiments using the NP model form and the posterior distributions from the corresponding BMC in Sec. III B. The knot locations
are shown in Fig. 10 where c1 and c5 correspond to the minimum (strain = 0) and maximum (strain = 0.415) of the axis.
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