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ABSTRACT
Climate field reconstructions (CFRs) attempt to estimate spatiotemporal fields of climate variables in the
past using climate proxies such as tree rings, ice cores, and corals. Data assimilation (DA) methods are
a recent and promising new means of deriving CFRs that optimally fuse climate proxies with climate
model output. Despite the growing application of DA-based CFRs, little is understood about how much the
assimilated proxies change the statistical properties of the climate model data. To address this question,
we propose a robust and computationally efficient method, based on functional data depth, to evaluate
differences in the distributions of two spatiotemporal processes. We apply our test to study global and
regional proxy influence in DA-based CFRs by comparing the background and analysis states, which are
treated as two samples of spatiotemporal fields. We find that the analysis states are significantly altered from
the climate-model-based background states due to the assimilation of proxies. Moreover, the difference
between the analysis and background states increases with the number of proxies, even in regions far
beyond proxy collection sites. Our approach allows us to characterize the added value of proxies, indicating
where and when the analysis states are distinct from the background states. Supplementary materials for
this article are available online.
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1. Introduction

Since their first high-profile application two decades ago (Mann,
Bradley, and Hughes 1998), multi-proxy spatiotemporal climate
field reconstructions (CFRs) have become increasingly popular
in the climate science community for their ability to reconstruct
global climate variability on seasonal and annual timescales
over many hundreds of years into the past (Jones et al. 2009;
Smerdon and Pollack 2016; Christiansen and Ljungqvist 2017).
The reconstruction of climate is critical because data from
instrumental observations are only available for the past 100–
150 years. CFRs therefore provide estimates of past climate
variability and extreme events that may not be well represented
over the instrumental interval. This helps to better characterize
the physical dynamics of the climate system and how climate
may change in the future.

The basic approach of CFRs is to statistically relate a col-
lection of climate proxies, such as isotopic information in ice
cores, the width of tree rings, or coral isotope data, to observed
climate variables like temperature and soil moisture during
their periods of overlap (Masson-Delmotte et al. 2013). Once
the relationship between the proxies and the climate variables
is established, the proxies are used to estimate climate vari-
ability during periods when observations are not available in
the past. CFRs thus depend critically on the imperfect proxy
information and the robustness with which their relation-
ship to observed climate variables can be defined. A central
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approach to this problem in the past has been through reg-
ularized versions of multivariate regression techniques (e.g.,
Lee, Zwiers, and Tsao 2008; Jones et al. 2009; Smerdon 2012;
Tingley et al. 2012; Guillot, Rajaratnam, and Emile-Geay 2015;
Li, Zhang, and Smerdon 2016; Smerdon and Pollack 2016;
Christiansen and Ljungqvist 2017). More advanced techniques
have been emerging, however, all of which are associated with
advantages and challenges that require further evaluation and
assessment.

A recent CFR innovation is the paleoclimatic data assim-
ilation (DA) algorithms, which are a class of reconstruction
methods that optimally combine general circulation models
(GCMs) with proxy information to create paleoclimate recon-
structions (Goosse et al. 2012; Steiger et al. 2014; Hakim
et al. 2016; Steiger et al. 2018; Tardif et al. 2019). The pri-
mary advantage of DA approaches is their ability to jointly
reconstruct multiple atmosphere-ocean variables and to do so
in a manner that is physically consistent within the frame-
work of a climate model. An important distinction of the
DA methods, relative to the other statistical (inverse) meth-
ods, is the use of forward models that map from climate
states to the proxies. An additional advantage is that DA algo-
rithms naturally provide probabilistic, ensemble estimates of
past climate. Such ensemble reconstructions first begin with a
background ensemble of states from a climate model. These
states are then updated through the equations of DA (Steiger
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et al. 2014), based on the available proxy information and
the uncertainties involved, to arrive at an analysis ensem-
ble state estimate. This probabilistic analysis state provides
an uncertainty quantification that is critical given the noisy
relationship between paleoclimate proxies and climate vari-
ables.

Despite the rapid development of DA-based reconstruction
methods, much remains to be characterized about the influence
of each of their two components: climate models and paleo-
climate proxies. In currently published DA-based CFRs (e.g.,
Steiger et al. 2018), it is hard to quantify how much information
the models and the proxies each contribute to the end product.
One approach is independent proxy validation of the analysis
states (Hakim et al. 2016). Another approach is to compare
climate time series and climate patterns in the background and
analysis with each other and with observations (Singh et al.
2018). However, more formal statistical approaches are called
for to differentiate whether or not the climate model-based
background is fundamentally distinct from the analysis. If the
background and analysis are not in fact distinct, then this would
imply that DA-based CFRs are essentially dominated by the
underlying climate model and fail to glean information from the
historical proxy data. A lack of proxy influence would, therefore,
indicate a need to fundamentally re-evaluate DA methodolo-
gies.

In this article, we quantify the level of proxy influence in
the analysis states of a DA product by introducing a robust and
computationally efficient method for evaluating the exchange-
ability of two ensembles of random fields. The purpose of this
study is therefore 2-fold: to answer an important climatological
question by quantifying and assessing the influence of prox-
ies in a new DA based CFR product and to develop a new
statistical test for comparing the distributions of two sets of
random fields. In the following two subsections, we provide
background on the methodological development embodied in
this article and the characteristics of the DA-based CFR that
we analyze.

1.1. Previous Work in Random Fields Comparisons

Comparing two spatial processes has been addressed in both
the geostatistics and functional data analysis literature. The
general strategy in both frameworks is to reduce the dimension
of the random process either by a low-rank decomposition or
by parameterization and then to develop a test for evaluating
differences in the reduced dimension.

The wavelet decomposition has been widely used to reduce a
stochastic process to a finite number of wavelet coefficients, then
the comparison between two processes can be transformed into
the comparison between two sets of wavelet coefficients (Briggs
and Levine 1997; Shen, Huang, and Cressie 2002; Pavlicova, San-
ter, and Cressie 2008). Snell, Gopal, and Kaufmann (2000) and
Wang et al. (2007) introduced methods for comparing random
fields based on their spatial interpolation root-mean-square
error and R2 coefficient. Their methods were later extended
by Hering and Genton (2011) to include more arbitrary loss
functions. Motivated by Lund and Li (2009) that compared
two time series, Li and Smerdon (2012) proposed a parametric

method to jointly assess the first two moments between two
random fields.

Functional data analysis approaches assume that the spatial
random fields are noisy realizations of an underlying continuous
function. The majority of existing functional approaches have
focused on testing the equality of the mean functions arising
from two functional datasets (Ramsay and Silverman 2005;
Zhang and Chen 2007; Horvath, Kokoszka, and Reeder 2013;
Staicu et al. 2014), although more recently the second-order
structure of functional data has also been considered (Zhang
and Shao 2015). Li, Zhang, and Smerdon (2016) extended Zhang
and Shao (2015) to evaluate the joint difference in mean and
covariance structure as well as in the trend surface between two
spatiotemporal random fields. A nice feature of functional data
analysis methods, as opposed to geostatistical methods, is that
assumptions about distribution and model specification can be
relaxed if there are replicate observations in the data.

All the above procedures are nevertheless inadequate for
our problem because the proxies can simultaneously affect the
mean, covariance, and higher order structures of the recon-
structed climate field. The most comprehensive way to identify
proxy influence is therefore to compare the distributions of the
background and analysis states. The rich ensemble structure of
the background and analysis states also allows us to examine
more information than differences in the mean and covariance
parameters. We take advantage of the ensembles by employing a
functional data approach that is both distribution and parameter
free.

The problem of comparing the distributions of functions
has remained relatively unexplored. Hall and Van Keilegom
(2007) proposed a Cramer–von Mises-like test by constructing
an empirical distribution over each of the samples and measur-
ing theL2 distance between the empirical distributions. Benko,
Hardle, and Kneip (2009) introduced a permutation test on the
leading coefficients of the common functional principal compo-
nents (FPCs) and Corain et al. (2014) introduced three omnibus
tests for combining pointwise tests on the observations of the
functions. Each of these methods depends on a resampling
procedure that renders them computationally prohibitive for
large ensembles like the DA ensemble output that we consider.

Pomann, Staicu, and Ghosh (2016) proposed a method based
on marginal FPCs that does not require resampling, called the
functional Anderson–Darling (FAD) test. The FAD test com-
pares the distributions of the marginal FPCs using the two
sample Anderson–Darling test and a Bonferroni correction.
Lopez-Pintado and Romo (2009) proposed a rank based band
depth test (BAND). The BAND test is closely related to the
multivariate distribution test based on the quality index (QI, Liu
and Singh 1993) but it replaces the multivariate simplicial depth
(Liu 1990) with the functional band depth (Lopez-Pintado and
Romo 2009). Both of these tests are inadequate for our data
because, as we show in the supplementary materials, they are
incapable of detecting heterogeneous variance changes across
the domain of the generating process. This causes the BAND
test to experience a severe loss of power and for FAD to miss an
important trend (Section 4.1) in our dataset.

In this article, we propose a new nonparametric statistic,
based on the concept of data depth, for assessing the equality
of distributions between two spatial datasets. Our test falls into
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the general category of functional data analysis methods for
comparing spatial random fields, but is conceptually different
from previous efforts in this area. The use of data depth for
comparing two multivariate distributions was first explored by
Liu and Singh (1993) who introduced the QI for comparing
two multivariate distributions. The QI essentially measures the
mean outlyingness of one sample from a reference sample using
data depth. We will extend their ideas to the functional set-
ting and propose a modification that makes our test statistic
invariant to the reference distribution. The use of depth, and
particularly integrated Tukey depth (Cuevas and Fraiman 2009),
ensures our test is computationally efficient, distribution free,
and invariant to location, scale, warping, and other nuisance
properties that could influence the testing (Nagy et al. 2016).

1.2. Reconstruction Data

The DA-based CFR that we analyze comes from the Paleo
Hydrodynamics Data Assimilation product (PHYDA), which is
a global paleoclimate reconstruction of both temperature and
moisture variables (Steiger et al. 2018). PHYDA incorporates a
simulation from the Community Earth System Model (CESM)
last millennium ensemble experiment, run over the historical
years 850 CE to 1850 CE (Otto-Bliesner et al. 2016).

A collection of modeled climate fields from the CESM simu-
lation are used to form the background state in the DA scheme.
For the purpose of our analysis herein, we will specifically use
the modeled and reconstructed 2-m surface temperature fields.
The temperature fields are processed from the native model
output by annual averages and spatially discretizing onto a 2◦
latitude and longitude grid (144 × 96 grid points). Annual in
this context is defined as the interval between April and March
of the following year, thus yielding 998 such climatological years
to be used for the background ensemble. Because of the large
data files produced by PHYDA, we only used a 100 member
sub-ensemble, randomly drawn from the original 998 member
ensemble, for our analyses. The final processed background
state, therefore, consists of 100 spatial fields, each observed on
the same 144 × 96 grid points.

The 998 analysis states are derived from the background
state by using DA to incorporate temporally available proxy
information during each year of reconstruction (see Figure 1).
Each analysis state is also a 100 member ensemble of 2 m
surface temperature fields discretized to the same 2◦ latitude
and longitude grid as the background ensemble. Quantifying
the influence that proxies have in the analysis states is quite
challenging due to their small individual effect sizes, and the fact
that they can affect higher order structures of the data beyond
the mean and variance. Identifying the full effect of the proxies
would, therefore, require testing for distributional changes.

2. Statistical Solution

We first formulate our scientific problem into a sequence of
hypothesis tests. We then introduce the integrated Tukey depth
and propose our test statistic, followed by a discussion of the
asymptotic distribution of our test statistics under the null
hypothesis.

Figure 1. Temporal distribution of proxies by the three largest categories (tree
rings, ice cores, and corals). There are total of 2468 proxies used over this interval,
with the vast majority being tree rings.

2.1. Formulation of Evaluating Proxy Influence

Let X and Yt , respectively, represent the ensemble in the back-
ground state and the ensemble in the analysis state at time t in
PHYDA. Under the assimilation design, the proxies at time t
are the only contributors to the differences between the two sets
of ensembles. Our goal is to define and quantify the differences
between X and Yt each year to assess the proxy influence.

The amount that proxies impact the analysis states depends
on many factors including the proxy type (e.g., tree ring, ice
core, coral), where proxies were collected, and the interval over
which the proxies were observed (Steiger et al. 2018). As shown
in Figure 2, the effects from proxies may be small and thinly dif-
fused over a noncontiguous area due to spatial correlations and
teleconnections. In fact, most of the induced mean differences
generally fall within the natural variation of the background
fields. The most comprehensive approach to test for the proxy’s
cumulative influence is, therefore, to test for changes in the
distributions of X and Yt . We thus formulate our problem into
the following hypotheses:

H0 : X D= Yt versus HA : X
D�= Yt , (1)

where D= means equality in distribution. In addition to the
outcome of these hypothesis tests at each time t, we are also
equally interested in the pattern of those outcomes as t increases.
Over time, the amount of proxy information available for recon-
struction increases, while the background ensemble stays the
same. We therefore might expect that the divergence between
the background and the analysis distributions will increase over
time accordingly if the proxies are having their due influence.

Under the functional data analysis regime, we assume that
the observed data are generated from continuous functions
combined with additive noise, instead of from a spatially cor-
related stochastic processes. In this framework, each ensemble
member represents a single observation over a spatial domain
where 144 × 96 grid points are embedded. This distinction
allows us to consider each ensemble member as an iid realization
of a stochastic process in a functional space.

We develop our test statistic for the testing problem (1) at any
given t in a general context. For ease of notation, we suppress t
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Figure 2. Temperature anomalies for a single background and analysis ensemble member with respect to the background mean field. Left panel is from the CESM
simulation run while the right panel is from PHYDA during 850 CE. Red triangles indicate the locations of proxies available in 850 CE.

from Yt . Let X = {Xi(s)}n
i=1 and Y = {Yj(s)}m

j=1, where s ∈ D
and D is a compact subspace of Rp. Without loss of generality,
let D be [0, 1]p and let each functional datum be observed at the
same locations in [0, 1]p. We assume that each function Xi and
Yj is a univariate continuous function on the domain [0, 1]p, that
is, Xi : [0, 1]p �→ R for i ∈ 1, . . . , n; Yj : [0, 1]p �→ R for j ∈
1, . . . , m. In other words, each Xi (or Yj) is an element of the
class of univariate continuous functions on [0, 1]p, denoted by
C[0, 1]p. Specific to our data, we have p = 2 and Xi(s) and
Yj(s), respectively, represent the ith background state and the
jth analysis state at location s.

Let P and Q be two absolutely continuous distributions on
C[0, 1]2 and suppose each Xi ∼ P and each Yj ∼ Q. We are
interested in testing if the functional data in X and in Y follow
the same distribution, so (1) is equivalent to the hypotheses,

H0 : P = Q; versus HA : P �= Q, (2)

for any given t. We will use functional data depth to construct a
two sample Kolmogorov–Smirnov-type test. Other distribution
free tests such as the Anderson–Darling or Cramer–von Mises
test could equally have been applied. We chose Kolmogorov–
Smirnov for its convenient asymptotic form and its ubiquity in
testing distributions.

2.2. Integrated Tukey Depth

Data depth is a statistical concept for quantifying the centrality
or “depth” of the observed data points with respect to a ref-
erence distribution. The closer an observation is to the center
of the distribution, the higher its depth value should be to
indicate its centrality. As the reference distribution is typically
unknown, the depth of an observation has to be estimated via
an empirical notion of data depth. Many notions of data depth
for functional data have been developed including the integrated
band depth (Lopez-Pintado and Romo 2009), extremal depth
(Narisetty and Nair 2017), and various integrated univariate
depths (Fraiman and Muniz 2001). Each of these depth func-
tions has its own strengths and weaknesses but none domi-
nates the others in all aspects, see Cuevas and Fraiman (2009)
and Nagy et al. (2016) for a review. We chose the integrated

Tukey depth as the basis of our test for its simplicity, robust-
ness, computational tractability, and highly desirable theoretical
properties.

Integrated depths are a well-studied class of functional data
depth measures that were first introduced by Fraiman and
Muniz (2001) and then studied extensively by Cuevas and
Fraiman (2009) and Nagy et al. (2016). To define an integrated
depth function, a univariate depth function is first defined
over a collection of one-dimensional “projections” of the data
which often refers to the observed values of the functions at
each location s ∈ D. The univariate depth is then integrated
over these projections to yield the integrated depth. Among
all the univariate depths, the Tukey depth and the simplicial
depth are perhaps the two most popular ones. We opted to
use the Tukey depth but the simplicial depth would have been
equally effective because the orderings they induce are nearly
identical.

The integrated Tukey depth is defined as follows. Let P be
a distribution for X ∈ C[0, 1]p, and let Ps be the marginal
distribution of P at s ∈ [0, 1]p. The univariate Tukey depth of
X(s) = x(s) with respect to Ps is

D(x(s), Ps) = 1 − |1 − 2Ps(x(s))|,

and the integrated Tukey depth of X = x with respect to P is

D(x, P) =
∫

[0,1]p
D(x(s), Ps)ds.

To ensure that this depth function is proper, we refer to the
criteria proposed by Zuo and Serfling (2000) and Mosler and
Polyakova (2012). In Nagy et al. (2016), it was shown that the
integrated Tukey depth satisfies translation invariance, function
scale invariance, measure-preserving rearrangement invariance,
maximality at the center, continuity, and quasi-concavity of
the induced level sets. They also demonstrated strong univer-
sal consistency and weak uniform consistency, which assure
that the integrated Tukey depth behaves well and asymptoti-
cally converges to its population counterpart under regularity
conditions.
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2.3. Test Statistic

We propose a test statistic KD(X, Y), called the Kolmogorov
depth (KD) statistic, for our hypothesis testing problem (2)
based on the integrated Tukey depth. The KD statistic measures
the outlyingness of a sample X ∼ P from the distribution Q as
well as the outlyingness of a sample Y ∼ Q from the distribution
P. It takes the maximum of the two outlyingness measures as its
value. This way we can correctly detect differences between P
and Q even when they do not appear mutually outlying from
each other under data depth. For example, if one of the distri-
butions is nested inside the other then the nested distribution
will not appear outlying to the other distribution.

Denote Pn as the empirical estimate of P based on the sample
X = {X1 = x1, . . . , Xn = xn} and Qm the empirical estimate
of Q based on Y = {Y1 = y1, . . . , Ym = ym}. We start by
considering Pn fixed and aim to measure the outlyingness of Qm
over Pn. To do this we first define the following two empirical
measures for any given xk ∈ X:

F̂X(xk) = 1
n

n∑
i=1
1(D(xi, Pn) ≤ D(xk, Pn)), (3)

ĜY(xk) = 1
m

m∑
j=1
1(D(yj, Pn) ≤ D(xk, Pn)). (4)

Essentially, F̂X(xk) is a rescaling of D(xk, Pn) to its standardized
rank, that is, F̂X(xk) = 1/n if D(xk, Pn) is the smallest, F̂X(xk) =
2/n if D(xk, Pn) is the second smallest, and so on. It acts as the
empirical cumulative distribution function of D(xk, Pn) for k ∈
1, . . . , n evaluated at itself and thus follows a discrete uniform
distribution. The second quantity ĜY(xk) can be considered as
the empirical cumulative distribution function of D(yk, Pn) eval-
uated at D(xk, Pn). Under H0 in (2), ĜY should be approximately
uniform, so a deviation of ĜY from the uniform distribution
indicates an outlyingness of Qm from Pn. The introduction of
F̂X(xk) and ĜY(xk) allows us to reduce the problem of com-
paring two sets of random fields to assessing the difference in
distribution between two sets of random variables, F̂X(xk) and
ĜY(xk) for k = 1, . . . , n. The latter can be naturally quantified
using the Kolmogorov distance over the set X:

KPn(X, Y) = max
xk∈X

|̂FX(xk) − ĜY(xk)|. (5)

To measure the outlyingness of Pn over Qm we now fix Qm
rather than Pn. Following the same scheme, we define the two
empirical measures for any given yk ∈ Y as

F̃X(yk) = 1
n

n∑
i=1
1(D(xi, Qm) ≤ D(yk, Qm)),

G̃Y(yk) = 1
m

m∑
j=1
1(D(yj, Qm) ≤ D(yk, Qm)).

These two quantities exactly mirror F̂X and ĜY except that now
G̃Y is uniform on the depth values D(yk, Qm), for k ∈ 1, . . . , m,
and F̃X is the indicator for the outlyingness of Pn from Qm. We
again take the Kolmogorov distance, but now over the set Y , as
the measure of outlyingness

KQm(X, Y) = max
yk∈Y

|̃FX(yk) − G̃Y(yk)|.

We define the overall test statistic KD by taking the maxi-
mum of the two distances:

KD(X, Y) = max{KPn(X, Y), KQm(X, Y)}. (6)
The test statistic KD attains a level of symmetry by making the
test invariant to the reference distribution. It is strictly nonneg-
ative and it equals 0 only under H0 in the hypothesis (2). Thus,
the originally stated hypothesis (1) can be tested by evaluating
whether KD is significantly greater than 0.

One major difference between our test statistic KD and the
QI in Liu and Singh (1993) is that our test does not depend on
a reference distribution while QI requires one of the samples to
be used as the reference. Our test computes the outlyingness of
two samples from each other and aggregates the results into one
single test. This is a more efficient use of the two samples and
enables KD to detect a larger range of alternative hypotheses,
such as the nesting situation mentioned above. We discuss the
critical values of KD in the following section.

2.4. Computing Critical Values

Deriving the asymptotic distribution of KD is nontrivial because
KD explicitly depends on two non-iid processes, D(xi, Pn) and
D(yj, Qm). This renders standard results on the Kolmogorov–
Smirnov test inapplicable. Nevertheless, we conjecture without
formal proof that KD either follows the same limiting distribu-
tion as the regular Kolmogorov–Smirnov two sample statistic,
that is, √

nm
n + m

KD D−→ K ′,

where

P(K ′ < t) = 1 − 2
∞∑

j=1
(−1)je−2j2t2

,

or converges to a distribution that can be closely approximated
by K ′. Although we are unable to prove this result in its full gen-
erality, we consider two special cases below and show that both
conform to the conjecture of converging to K ′. Our extensive
simulation studies in Section 3 demonstrate convergence in the
general case.

We first consider a special case where P is known and we
are interested in testing if Yj ∼ P for j = 1, . . . , m. In this
case, F̂X(xk) in (3) becomes the uniform[0, 1] distribution at
D(xk, P) ∈ [0, 1]. Then KPn(X, Y) in (5), which is the test
statistic in this special case, reduces to

KP(Y) = sup
xk

|D(xk, P) − ĜY(xk)|.

Because ĜY(xk) is an empirical distribution of the iid random
variables {D(y1, P), . . . , D(ym, P)} at D(xk, P), KP(Y) is exactly
the one sample Kolmogorov–Smirnov statistic for testing the
uniformity of ĜY(xk). Therefore,

√
mKP(Y)

D−→ K ′.
We further consider another special case where P and Q are

both unknown but with either n � m or m � n. We can show
that KPn(X, Y) (or KQm(X, Y)) converges to the Kolmogorov
distribution under n � m (m � n). We encapsulate this result
in the following proposition.
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Proposition 2.1. Suppose that n � m, then under the null
hypothesis, √

nm
n + m

KPn(X, Y)
D−→ K ′,

where K ′ follows the Kolmogorov distribution.

The proof is deferred to the Appendix.
Generalizing the results of these special cases is challenging.

This issue was also noted in Liu and Singh (1993) where the
authors conjectured that their two sample QI asymptotically
followed a normal distribution, as its one sample version does.
Their conjecture was only later proven in Zuo and He (2006)
after substantial theoretical development. The techniques that
emerged from the proof in Zuo and He (2006) relied heavily on
QI being an expectation, making them largely inapplicable to
our context involving suprema. Proving the conjecture would
require the development of advanced theoretical machinery that
can accommodate the complex dependence nature of the distri-
bution functions of the depth measures. We leave this problem
open for independent theoretical research in the future.

In lieu of the proposed asymptotic distribution, we may con-
sider using permutations to find critical values for KD (Good
2013). Permutation works well for small samples or sparsely
observed functions, but it quickly becomes computationally
infeasible on large volumes of data, such as our reconstruction
data. For this reason, the conjectured Kolmogorov distribution
is more appealing in practice.

3. Simulation Study

Simulation studies are conducted to assess the convergence of
KD to K ′, and the size and power of the test. Each of these
properties is evaluated using two-dimensional functional data
because our main application considers ensembles of spatial
fields. All functional data in the simulation are generated from
Gaussian random processes with the Matérn covariance func-
tion (Stein 2012),

C(x, x′) = σ
√

πr2ν

2ν−1�(ν + 1/2)

(‖x − x′‖
r

)ν

Kν

(‖x − x′‖
r

)
,

where � is the Gamma function, Kν is a modified Bessel
function, σ is the marginal variance of the random process,
and r and ν are two nonnegative parameters called range and
smoothness. The range parameter, r, governs how quickly the
correlation decays between points. The smoothness parameter,
ν, determines how smooth sampled functions are in terms of
their differentiability.

In each simulation, we consider the sample X as the baseline
and Y as the sample to be varied. For the size and convergence
simulations, the marginal variance σ will always be set to 1,
while r and ν will be allowed to vary. For the power simulations,
μ, σ , r, and ν will all be allowed to vary.

3.1. Convergence

We use simulations to validate the conjectured asymptotic
Kolmogorov distribution of our test statistic (6) under the

null hypothesis. The main idea is to evaluate how well the
permutation distribution of the test statistic is approximated by
the Kolmogorov distribution, even at moderate sample sizes.
Functional data X = {X1, . . . , Xn} and Y = {Y1, . . . , Yn} are
each generated with mean, μ = 0, and standard deviation, σ =
1, on the spatial domain [0, 1] × [0, 1]. Because the integrated
Tukey depth is invariant to the location and scale of functional
data, we only vary the range and smoothness of the covariance
function: 0.2, 0.3, 0.4, 0.5 and 0.5, 1.0, 1.5, respectively. The
number of replicates, n, in each sample is also varied between
25, 50, 75, 100. We also considered the unbalanced sample
size case by fixing the number of replicates in Y to be 75 and
allowing the number in X to vary between 25, 50, 75, 100.
The results were nearly identical as to those when the sample
sizes were balanced so only the balanced case is presented
here.

The permutation distribution was constructed by recomput-
ing KD on 500 permutations of the generated X and Y samples.
We then calculated the L2 distance between the permutation
distribution and the Kolmogorov distribution and the difference
between critical values derived from the permutation and Kol-
mogorov distribution at three common significance levels: 0.01,
0.05, and 0.10. Due to the computational cost of constructing
permutation distributions, we ran 100 simulations for each
combination of r, ν, and n to obtain the boxplots in Figures 3
and 4.

Figure 3 demonstrates convergence of the permutation dis-
tribution to Kolmogorov in L2. For even small sample sizes,
such as n = 25, the distance between the two distributions
is already vanishingly small for smooth data (r ≥ 0.3 and
ν ≥ 1.0). The largest deviations are only observed when both
the range and smoothness are small, r < 0.3 and ν < 1.0.
This is typically not an issue in practice because functional data
are generally preprocessed with a smoothing step; effectively
increasing ν and r. In all cases the L2 norm decreases rapidly
with an increasing sample size such that the convergence even
applies to unprocessed noisy data if the sample sizes are large
enough.

Figure 4 evaluates the convergence of the two sets of critical
values at the significance levels 0.01, 0.05, and 0.10. This fig-
ure shows that testing decisions reached under the asymptotic
Kolmogorov distribution are generally not biased away from
decisions reached under the permutation decision. Again, a
sufficient amount of smoothness (r ≥ 0.3 or ν ≥ 1.0) is
required to have well-behaved critical values. If the data are not
sufficiently smooth then the Kolmogorov distribution tends to
have smaller critical values than the corresponding permuta-
tion distribution. The size will therefore be slightly inflated by
using Kolmogorov and so the permutation distribution should
be preferred when computationally feasible. Once a sufficient
level of smoothness has been reached, in this case r ≥ 0.3
or ν ≥ 1.0, the critical values of the permutation distribu-
tion become highly comparable with the Kolmogorov distri-
bution. The observed differences are minuscule such that any
decision reached using the Kolmogorov distribution is likely
to be the same as if the permutation distribution were used.
With noisy raw data a sufficient number of samples (n ≥
100) can begin to compensate for a lack of smoothness or
correlation.
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Figure 3. L2 distance between the permutation distribution and the Kolmogorov distribution under 12 different ranges, r, and smoothness, ν, settings.

Figure 4. Kolmogorov critical values minus permutation critical values at three common test levels: 0.90, 0.95. 0.99 under 12 different ranges, r, and smoothness, ν, settings.

3.2. Size and Power

Using the same data generating process as in Section 3.1, we
evaluate the size of our test using critical values from the
asymptotic Kolmogorov distribution and compare our size to
the QI test. Again only r, ν, and the two sample sizes n and m
will be varied. The size under each combination of r, ν, n, and m
was estimated using 2000 simulations; the results of which are
presented in Table 1.

Our simulations show that for even small samples, such as
n = m = 50, our test can control the size near the prescribed
level if the range or smoothness is sufficiently high; that is r ≥
0.4 or ν ≥ 1. Smoothness and range are in fact more important
for controlling size than the number of replicates. Under the
noisiest setting, r = 0.2 and ν = 0.5, the lowest attained size
(0.07) occurs when n = m = 300. This is an only moderate
improvement over the size (0.15) when n = m = 50, and is still
above the nominal level. If instead the number of replicates were
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Table 1. Sizes of KD and QI (in parenthesis) under 12 combinations of range, r, and smoothness, ν, and 16 combinations of sample sizes, n and m, for X and Y , respectively.

ν = 0.5 ν = 1.0 ν = 1.5

n m r = 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5

50 50 0.15 0.09 0.08 0.06 0.07 0.06 0.04 0.05 0.06 0.05 0.05 0.06
(0.24) (0.17) (0.15) (0.13) (0.13) (0.13) (0.11) (0.09) (0.13) (0.10) (0.09) (0.08)

50 100 0.13 0.10 0.07 0.06 0.07 0.06 0.04 0.05 0.06 0.06 0.05 0.06
(0.28) (0.21) (0.17) (0.13) (0.17) (0.14) (0.11) (0.10) (0.14) (0.11) (0.10) (0.09)

50 200 0.16 0.10 0.07 0.07 0.08 0.06 0.06 0.05 0.07 0.05 0.06 0.05
(0.32) (0.26) (0.19) (0.16) (0.20) (0.13) (0.13) (0.10) (0.16) (0.11) (0.11) (0.09)

50 300 0.14 0.09 0.08 0.06 0.07 0.06 0.06 0.05 0.06 0.06 0.05 0.04
(0.39) (0.23) (0.19) (0.16) (0.19) (0.13) (0.13) (0.11) (0.16) (0.12) (0.11) (0.09)

100 50 0.15 0.10 0.07 0.06 0.09 0.07 0.06 0.05 0.06 0.05 0.05 0.04
(0.15) (0.11) (0.09) (0.08) (0.10) (0.08) (0.07) (0.07) (0.09) (0.07) (0.07) (0.06)

100 100 0.10 0.07 0.07 0.05 0.06 0.05 0.04 0.05 0.06 0.04 0.04 0.04
(0.18) (0.13) (0.12) (0.11) (0.11) (0.09) (0.08) (0.08) (0.11) (0.08) (0.08) (0.07)

100 200 0.11 0.07 0.07 0.06 0.06 0.05 0.06 0.05 0.06 0.05 0.05 0.05
(0.22) (0.15) (0.11) (0.12) (0.12) (0.10) (0.10) (0.10) (0.10) (0.08) (0.08) (0.08)

100 300 0.11 0.06 0.06 0.06 0.07 0.06 0.05 0.05 0.06 0.05 0.05 0.04
(0.22) (0.16) (0.14) (0.10) (0.15) (0.11) (0.08) (0.08) (0.11) (0.09) (0.09) (0.07)

200 50 0.15 0.10 0.07 0.08 0.08 0.06 0.06 0.06 0.06 0.06 0.05 0.05
(0.09) (0.08) (0.07) (0.07) (0.07) (0.07) (0.06) (0.06) (0.07) (0.07) (0.06) (0.06)

200 100 0.10 0.08 0.06 0.06 0.07 0.06 0.05 0.05 0.06 0.04 0.05 0.04
(0.11) (0.09) (0.07) (0.06) (0.09) (0.07) (0.07) (0.06) (0.08) (0.06) (0.07) (0.06)

200 200 0.08 0.06 0.05 0.05 0.06 0.05 0.04 0.05 0.05 0.05 0.06 0.04
(0.13) (0.10) (0.08) (0.08) (0.09) (0.08) (0.08) (0.07) (0.08) (0.08) (0.07) (0.07)

200 300 0.08 0.07 0.06 0.06 0.06 0.06 0.05 0.05 0.06 0.05 0.06 0.06
(0.12) (0.11) (0.10) (0.09) (0.09) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07)

300 50 0.14 0.08 0.06 0.06 0.07 0.06 0.06 0.05 0.06 0.06 0.05 0.05
(0.07) (0.06) (0.06) (0.05) (0.06) (0.07) (0.06) (0.06) (0.06) (0.07) (0.06) (0.06)

300 100 0.10 0.06 0.05 0.05 0.06 0.06 0.04 0.05 0.05 0.05 0.04 0.05
(0.09) (0.08) (0.07) (0.06) (0.06) (0.07) (0.06) (0.06) (0.06) (0.06) (0.07) (0.05)

300 200 0.09 0.06 0.06 0.07 0.07 0.05 0.04 0.04 0.06 0.05 0.05 0.05
(0.10) (0.07) (0.07) (0.08) (0.07) (0.07) (0.06) (0.06) (0.08) (0.06) (0.07) (0.07)

300 300 0.07 0.06 0.06 0.06 0.05 0.05 0.05 0.04 0.05 0.05 0.06 0.05
(0.11) (0.09) (0.09) (0.08) (0.08) (0.08) (0.07) (0.06) (0.06) (0.07) (0.06) (0.07)

Figure 5. Power of KD and QI in detecting changes in the four parameters in the Gaussian process. Mean, range, and smoothness are presented as shifts of parameters in
Y from X . Standard deviation is presented as a multiple of standard deviation in X .

fixed at n = m = 50 but the range and smoothness increased
to either 0.5 and 1.0, respectively, then the size is controlled
at the nominal level and thereafter. As with the convergence
simulations though, these minimal smoothness conditions are
not all that impactful in practice because functions are typically
smoothed before analysis. Moreover, the sizes are stable at the
nominal level once the range exceeds a threshold between 0.3
and 0.4 or ν ≥ 1.0 for the spatial domain [0, 1] × [0, 1]. The QI
test appears to inflate the size in nearly all cases compared to our
test.

We compare the power of our test and the QI test in detecting
changes in the four parameters μ, σ , r, and ν that govern the
underlying Gaussian process in our data generation. We set the
number of replicates to n = 100 and m = 50 for the two samples

X and Y , respectively, and sample the functional observations
in X from a Gaussian process with r = 0.4, ν = 1, μ = 0, and
σ = 1. This setup ensures that the sizes of KD and QI are similar
(see Table 1) so that their power functions are comparable. To
generate samples of Y we let each of the parameters in Y vary
around the parameter values in X. The mean, μ, was set from
−1 to 1 in 0.1 increments, σ was set between 0.1 and 2 in 0.05
increments, r from 0.05 to 1 in 0.05 increments, and ν from 0.1
to 2 in 0.1 increments. This gave a total of 96 alternative models
because the parameters were varied individually. The power of
KD and QI were then calculated under each of these alternative
models using 2000 simulations each.

Figure 5 shows the empirical power functions for both
KD and QI on each parameter. Both tests are almost equally
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powerful in detecting mean changes and increases in standard
deviation. However, KD shows a strong improvement over QI
in detecting changes in range, smoothness, and decreases in
standard deviation. Two caveats about the power functions
should be noted. The first is that there is a slight advantage to
QI in the testing of mean, range and smoothness because QI still
appears to slightly inflate size, which can be seen by observing its
power function at the null value of these three parameters. The
second caveat is that QI was not designed to detect decreases
in standard deviation because the application for which it was
designed found a drop in standard deviation desirable.

Further simulation results comparing against the FAD and
the BAND are available in the supplementary materials. While
FAD shows considerable power in detecting mean changes it
falls short of the other methods for detecting variance changes.
On average, our method maintained the highest power across
the different parameters.

The situation where the mean or variance is shifted uniformly
over the entire domain of the function may be a little too sim-
plified. A more realistic scenario is that the mean, variance, and
other aspects of the distribution differ heterogeneously; higher
in some regions and lower in others. To study this situation, we
conduct another set of simulations where the mean and vari-
ance are both allowed to vary non-uniformly over the domain,
though the range and smoothness are kept constant throughout
at r = 0.4 and ν = 1.0. More specifically, we generate the mean
and standard deviation of Y as two dimensional sine waves
centered about 0 and 1, respectively. Then, we slowly increase
the amplitude of sine waves to make X and Y deviate more in
their parameters. The two sine waves are as follows:

μ(s) =
(κ

2
sin (4πs1 − π/2) + 1

)
⊗

(κ

2
sin (4πs1 − π/2) + 1

)
− 1,

σ(s) =
(κ

2
sin (4πs1 − π/2) + 1

)
⊗

(κ

2
sin (4πs1 − π/2) + 1

)
,

where s = (s1, s2) ∈ [0, 1]× [0, 1], κ is set to vary from 0.05 to 1
in increments of 0.05, and ⊗ is the Kronecker product. We fixed
the number of replicates to n = 100 and m = 50 and again used
2000 simulations per κ value to estimate the power at κ .

Figure 6 shows the power functions of KD and QI under het-
erogeneous mean and standard deviation changes. For detecting
mean changes, both KD and QI maintain comparable powers

although our test carries more power than the QI test at certain
ranges of mean change. It is worth noting that the power curves
in this setting appear to be similar to those under the homoge-
neous mean change which indicates no serious power loss when
the mean change is heterogeneous. A huge difference between
KD and QI is observed, however, when the standard deviation
change is heterogeneous: KD still maintains its power while QI
seems to lose power.

Further simulations are again made available in the supple-
mentary materials comparing KD, QI, FAD, and BAND in the
heterogeneous case. FAD is extremely powerful in detecting
mean changes but like QI and BAND it loses all power in
detecting heterogeneous variance changes. Our method again
shows the highest average power of the four approaches.

4. Evaluating Proxy Influence in Assimilated CFRs

We now apply the proposed KD statistic to evaluate the influ-
ence of proxies on the 2 m surface temperature reconstruction
by examining the differences between the background and anal-
ysis states in PHYDA. In our experiment, the background state
consists of a single 100 member ensemble of 2 m surface tem-
perature fields that are randomly sampled from a single climate
model simulation run. For every year of the reconstruction, the
analysis state consists of a 100 member ensemble of 2 m surface
temperatures (the same 100 randomly drawn ensemble mem-
bers are selected for both the background and analysis). We will
use our KD statistic to test for distributional differences between
the background ensemble and each year’s analysis ensemble
so as to test for proxy influence during each reconstruction
year. Formally, this refers to testing the hypothesis (1) that was
formulated in Section 2.1. We will then further subdivide the
background and analysis states into 12 regions, correspond-
ing with the five oceans and seven continents, and repeat our
analysis on the regions separately. Finally, we investigate how
correlation between regions may impact the influence of proxies
at the regional level.

4.1. Global Reconstructions

Figure 7 shows the values of KD over time. A larger value of KD
corresponds to a smaller p-value and more separation between
the background and analysis states in their distribution. The
p-values were adjusted by the Benjamini–Yekutieli procedure

Figure 6. Power functions for KD and QI under heterogeneous differences in the mean and standard deviation between X and Y . The parameter κ controls the amplitude
of the sine waves μ(s) and σ(s), which are centered about 0 and 1, respectively.
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(Benjamini and Yekutieli 2001) to have a false discovery rate
(FDR) of 0.05. The uniformly near zero p-values strongly indi-
cate that the background and analysis are significantly different
in distribution each year, which suggests that the proxies indeed
change the distribution of the background and have a material
influence over the PHYDA reconstructions. Despite the uni-
formly small p-values, the magnitudes of KD indicate a relatively
weak separation between the background and analysis in the
beginning followed by a steadily increasing separation over
time until the end of the reconstruction period. The apparent
rise in separation is caused by the fact that proxy information
is sequentially introduced into the reconstruction over time.
Over the interval of our analysis (850 CE to 1850 CE), more
proxies become available for assimilation as the reconstruction
approaches 1850 CE.

4.2. Regional Variation of Proxy Influence

Analysis of the global reconstruction is important for establish-
ing the strength of proxy influence at the global level and for

Figure 7. Value of KD over the reconstruction period from 850 CE to 1850 CE. Larger
values of KD indicate larger differences between the distribution of the background
and analysis states. Red line shows the overall increasing trend of KD. All p-values
were less than 6 × 10−10 (after FDR adjustment).

confirming the upward trend of the proxy influence. A natural
next step is to investigate how these effects propagate down to
a regional level, namely how proxies impact the temperature
reconstruction at the continental and oceanic level. Proxies are
not collected uniformly across all regions as shown in Figure 8,
so a weaker influence might be expected of the proxies in the
poorly sampled regions than those with dense sampling. We
therefore use our method to investigate the local influence of
proxies.

We divide the globe into 12 regions corresponding to the
five oceans and seven continents as in Figure 8. Within each
of the 12 regions, we apply our test to evaluate the difference
between the background and analysis states over the full recon-
struction period. Analogous to the global study in Section 4.1,
the progression of KD over time for all regions is summarized
in Figure 9 and Figure 10. It is surprising to see that KD values
over all regions share a consistent increasing trend, even for
the regions with scarce proxies. Intuitively, we expect that the
increasing trend holds only for the regions with abundant prox-
ies because gradually introduced proxy information in those
regions will make the analysis states more and more distinct
from the background. However, due to the complex dependency
structure of the climate system and its teleconnections, these
regional deficits are likely being mitigated. This result intrigues
us to study whether the long range dependence in the back-
ground climate states helps to stabilize the reconstruction in
data-sparse regions (Figure 10).

We investigate this conjecture using the correlation maps
in Figure 11, for which the value at each location describes
the strongest correlation, that is, the maximum r2, between the
temperature time series at this location and every temporally
available proxy location during the representative years of 1000,
1400, and 1800 CE, respectively. These maps indicate the maxi-
mum potential strength of spatial diffusion of proxy information
over time. As more proxies are added toward the present, more
global area becomes highly correlated with the proxy locations.

The maps in Figure 11 are helpful in understanding why
some regions such as the Pacific have few proxies but show
a high degree of divergence between their background and
analysis states. The Pacific is strongly correlated with nearby
continental regions such as North America, which has many

Figure 8. The left panel divides the whole globe into 12 regions marked by different colors and the right panel shows the locations of all of the n = 2978 proxies used in
PHYDA, as in Figure 1a of Steiger et al. (2018). The vast majority of proxies are collected in North America and Europe. Not all displayed proxies are available every year in
the reconstruction. More proxies become available as the reconstruction approaches the present day, see Figure 1.
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Figure 9. KD over time by region. Regional KD values were computed by measuring differences in the regions of interest within the global reconstructions. They generally
follow the pattern of the global KD values with the exception of the Arctic Ocean. Red lines show the regional trends of KD.

Figure 10. p-values of KD over time by region. Gray points indicate p-values over 0.05 after the Benjamini–Yekutieli FDR adjustment. Except for in the early years, most
regions have statistically significant differences between their background and analysis ensembles across the reconstruction. The Arctic Ocean and Antarctica fail to reject
in many more cases due to their relatively small size and lack of proxies.

Figure 11. Proxy-point r2 maps for representative years 1000, 1400, and 1800 CE. There is an overall increasing proxy point correlation (purple) in time. This is reflected in
the increasing effect sizes seen in regions with little proxy representation.
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Figure 12. Left: Polar plot of proxy sites near the Arctic Ocean (above 50◦ latitude) in 1500 CE. Right: Proxy sites near the Arctic Ocean in 1700 CE. The number of tree-rings
(green) more than triples from 1500 to 1700 CE (75 to 260 sites, respectively) without a similar increase in the number of ice cores, marine cores, corals, etc.

proxies, due to the El Niño-Southern Oscillation phenomenon.
Conversely, Australia, which has few proxies and weak proxy
correlations, shows a correspondingly low degree of diver-
gence between its background and analysis states. Regions with
densely sampled proxies tend to show high proxy correlation
due to proximity with their own proxies, and also a high degree
of background-analysis separation, as expected.

The Arctic and Southern oceans represent two anomalies
with regards to their apparent proxy information. Most notably
around 1600 CE the Arctic ocean experiences a strong trend
reversal in KD, just when other regions are experiencing trend
increases. This runs counter to the fact that both the number of
proxies and the proxy-point correlations shown in Figure 11 are
increasing in the Arctic over this time period.

One possible explanation of this effect is the dramatic
increase in the number of Arctic tree-ring records beginning
around 1600 CE, prior to which ice core and sediment records
dominate in the Arctic region (see Figure 12). These latter
records are isotope based and have been shown to sample far-
field temperature signals across regions of the Arctic Ocean
(Steiger et al. 2017), while several of the isotope records included
in the reconstruction are specifically marine based. It is possible
that the isotope records are therefore better samples of the far-
field and exclusively marine temperatures that are reconstructed
across the Arctic Ocean, relative to the land-based tree-ring
records that begin to dominate in the 17th century and sample
local temperature conditions. The inclusion of more widely
abundant tree-ring records that are potentially less informative
of far-field marine temperatures over the Arctic Ocean may
therefore effectively increase the noise in the reconstruction
over that region, thus obscuring the contribution from the
isotope records and increasing the reliance of the DA on the
information from the prior.

Conversely, the Southern ocean has relatively large values of
KD when the correlation information in Figure 11 would lead
us to believe that they should be much smaller. The Southern
ocean has no local proxies and perhaps has the weakest overall
proxy-point correlation strength, yet it experiences a strong
and significant divergence between its background and analysis
states. This unexpectedly strong divergence may be due to the
large amount of moderate correlations observed near the Pacific,
along the coast of Antarctica, and off the southern tip of South

America. The cumulative effect of those moderate correlations
may lead to the results in Figure 9.

5. Discussion and Conclusions

Motivated by the newly available PHYDA reconstruction prod-
uct, we developed a nonparametric statistical test to compare
the distributions of the ensembles in the background states and
in the analysis states. The PHYDA data product was derived
using a DA scheme that merges information from climate model
simulations and climate proxies, the latter of which is expected
to provide its due influence on the derived analysis fields. How-
ever, the nature of the DA approach and the variation of proxy
information through time makes it difficult to assess the degree
to which the proxies influence the final analysis product.

Optimally adding proxy information is one of the principal
qualities of a DA-based reconstruction and thus knowing the
cumulative effect of adding proxies is of fundamental impor-
tance, particularly as DA becomes increasingly popular (Franke,
Werner, and Donner 2017; Steiger et al. 2018; Tardif et al.
2019). Before now, testing for significant proxy influence over
DA reconstructions has been conducted empirically through
validation procedures (e.g., Hakim et al. 2016; Singh et al. 2018).
Our test instead provides a direct and powerful way to formally
quantify the information added by proxies to the analysis states
based on changes in their distribution from the background. By
treating each ensemble member in the background and analysis
states as continuous two dimensional surfaces, our test statistic
based on functional data depth is able to measure the difference
in distribution between ensembles in the two states.

Due to the nonparametric nature of functional data depth,
our method does not require any distributional or model
assumptions on the observations. Our method also does not
require that the curves be square integrable, second-order sta-
tionary, or even strictly continuous. We showed numerically that
the asymptotic distribution of our test statistic converges to or
at least is well approximated by the Kolmogorov distribution.
Additional simulations in the supplementary materials show the
same conclusion even when the spatial data are from a non-
Gaussian process (see Figures 3 and 4 in the supplementary
materials). We also demonstrated that the sizes of our test are
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well controlled near the nominal level, even under moderate
sample sizes, and that our test’s powers are highly competitive
with the QI test in Liu and Singh (1993).

Our results provide strong evidence of a clear divergence
between the background and analysis states associated with
PHYDA. The degree of separation, however, depends greatly
on geographical location and time period. An overall upward
trend in proxy influence is seen and it is generally maintained
even when subdividing the globe into oceanic and continental
sub-regions. With the notable exception of the Arctic, these
findings are consistent with the fact that proxy information
steadily increases as the reconstruction period approaches the
present day. This confirms that increasing proxy information
is associated with commensurate influence on the assimilated
reconstructions, which suggests that the influence of the model
prior is minimized as proxy networks become considerably
more dense, therefore placing less emphasis on which model
should be used to form the prior. This also suggests that more
proxies should be collected further back in time to improve
reconstruction skill over all parts of the Common Era.

We have also found that, despite the stark imbalance in proxy
density in the different geographic regions, most regions exhibit
an increasing separation between the background and analysis
states. The mitigating effect for the proxy deficit regions is
mostly attributable to the long-range dependency structure that
proxies and temperatures often display. Some regions such as the
Pacific Ocean and South America have very few local proxies but
due to their strong overall correlation with other regions they
still benefit from proxies collected remotely. These results there-
fore suggest that the desirable addition of proxy information to
data assimilated reconstructions extends beyond the immediate
regions where proxies are densely sampled. This provides cre-
dence to the idea that the geographic regions outside of dense
proxy sampling may still establish some reconstruction skill,
particularly in the last several centuries before the present.

In addition to the important results for assessing assimilated
reconstruction products, our test is much more broadly appli-
cable. Our generic formulation allows it to be applied to any
functional data that the depth function can handle, including
curves on R and higher dimensional functions on Rn. In our
framework, each Xi and Yj can also be multivariate valued so
long as they both map to the same subspace of Rp. This only
changes integration to be over a multivariate depth instead of a
univariate depth. Our method can also be useful for comparing
image data in medical studies, and meet the increasing demand
of comparing simulated climate from different climate models
and comparing the simulated climate to observations.

Data Availability

PHYDA is publicly available at the Zenodo data repository
as NetCDF4 files: https://doi.org/10.5281/zenodo.1154913. The
100 member ensembles of PHYDA used herein are avail-
able at: http://clifford.ldeo.columbia.edu/nsteiger/recon_output/
phyda_ens/.

Appendix

Proof of Proposition 2.1. Let P be a distribution on C[0, 1]p and sup-
pose X = {X1, . . . , Xn} and Y = {Y1, . . . , Yn} are two iid samples

from P. Let F̂n(·) and Ĝm(·) be defined as before with each converging
in distribution to F, the distribution over D(·, P). Let x ∈ X, then√

nm
n + m

max
x∈X

|̂Fn(x) − Ĝm(x)|

≤
√

nm
n + m

max
x∈X

|̂Fn(x) − F(x)| +
√

nm
n + m

max
x∈X

|F(x) − Ĝm(x)|
� √

m max
x∈X

|̂Fn(x) − F(x)| + √
m max

x∈X
|F(x) − Ĝm(x)|.

Because n � m. By the enforced uniformity of F̂n(x) we get that
maxx∈X |̂Fn(x) − F(x)| = op( 1√

n ) and so the following upper bound

≤ op(1) + √
m max

x∈X
|F(x) − Ĝm(x)|.

The second term is simply a one sample Kolmogorov–Smirnov statistic
so the whole quantity converges to the Kolmogorov distribution.

Supplementary Materials

Supplementary results: PDF file containing additional power simulations
and comparisons between FAD and KD on the PHYDA data. (pdf file).

Source code: Zip file containing code to produce all figures and results in
the manuscript and supplementary file. (zip file)

R-package for the KD statistic: R-package “kstat” containing code to
compute the the Kolmogorov Depth statistic and p-values using the
asymptotic and permutation distributions. Available through GitHub:
trevor-harris/kstat. (GNU zipped tar file)
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