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Abstract 

Osteoarthritis (OA) is a highly prevalent degenerative joint disease, and the knee is the most 

commonly affected joint. Biomechanical factors, particularly forces exerted during walking, 

are often measured in modern studies of knee joint injury and OA, and understanding the 

relationship among biomechanics, clinical profiles, and OA has high clinical relevance. 

Biomechanical forces are typically represented as curves over time, but a standard practice in 

biomechanics research is to summarize these curves by a small number of discrete values (or 

landmarks). The objective of this work is to demonstrate the added value of analyzing full 

movement curves over conventional discrete summaries. We developed a shape-based 

representation of variation in full biomechanical curve data from the Intensive Diet and 

Exercise for Arthritis (IDEA) study (Messier et al., 2009, 2013), and demonstrated through 

nested model comparisons that our approach, compared to conventional discrete summaries, 

yields stronger associations with OA severity and OA-related clinical traits. Notably, our 

work is among the first to quantitatively evaluate the added value of analyzing full movement 

curves over conventional discrete summaries. 
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1 Introduction 

Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by cartilage loss, 

bone and soft tissue changes, joint pain, and diminished function. In the United States, OA 

affects at least 19% of adults aged 45 years and older, with the knee being the most 

commonly affected joint, accounting for more than 80% of the total burden of the disease 

(Dillon et al., 2006; Jordan et al., 2007; Lawrence et al., 2008; Vos et al., 2012). Knee OA is 

characterized by both the severity of radiographically-assessed damage and clinical 

symptoms, such as knee pain and function. Previous research, such as in Zhang and Jordan 

(2010), indicated that risk factors and disease progression may vary by clinical phenotype. 

Additionally, important work like Felson (2013) and Guilak (2011) identified biomechanical 

factors in the etiology and pathogenesis of knee OA. 

Biomechanical variables, particularly forces exerted during walking, are often measured in 

modern studies of knee joint injury and OA, and understanding the relationship among 

biomechanics, clinical profiles, and OA has high clinical relevance. Biomechanical forces are 

typically represented as curves over time, but a standard practice in biomechanics research is 

to summarize these curves by a small number of discrete values. Such discrete summaries are 

called landmarks in the shape statistics terminology of Dryden and Mardia (2016). Analyses 

based on conventional discrete summaries, such as those by Sims et al. (2009) and Astephen 

et al. (2008), have identified differences between groups (e.g., sex differences) and 

discovered variations in gait patterns associated with knee OA-related outcomes. Recent 

work by Buck et al. (2024) evaluated the ability of various clinical traits and conventional 

discrete summaries of gait forces to predict early symptomatic knee OA. While simplifying 

the statistical methods required for analysis, relying on conventional discrete summaries risks 

overlooking information encoded in the complete range and patterns of movement data. 

Research by Muniz et al. (2006), Davis et al. (2019), Costello et al. (2021), Bjornsen et al. 

(2024), and others indicate the value of analyzing full movement curves. However, these 

studies are limited and did not formally compare analyses based on conventional discrete 

summaries. For harmonic analyses of full movement curves, see Trentadue and Schmitt 

(2024) and references therein. 

The primary goal of this work is to demonstrate the added value of analyzing full movement 

curves over conventional discrete summaries. Our analysis of full movement curves follows 

an Object Oriented Data Analysis (OODA) approach. OODA, described in Marron and 

Dryden (2021), is a framework for analyzing complex data that emphasizes the careful 

selection of data objects for a given scientific question and the utilization of methods intrinsic 

to the data object space. This approach facilitates the consideration of full movement data 

curves as complex data objects in high-dimensional space. Furthermore, the richer 

information within these curves allows for potentially many different choices of both the data 

object of interest and the appropriate methodology for analysis. 

We developed a shape-based representation of variation in full biomechanical curves using 

data from the Intensive Diet and Exercise for Arthritis (IDEA) study (Messier et al., 2009, 

2013), and demonstrated through easily interpretable nested model comparisons that our 

approach, compared to conventional discrete summaries, yields stronger associations with 

OA severity and OA-related clinical traits. Notably, our work is among the first to 
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quantitatively evaluate the added value of analyzing full movement curves over conventional 

discrete summaries in OA research. 

2 Curves as Data Objects 

During gait data collection in the IDEA study, participants wore laboratory-provided 

cushioned shoes and walked at their preferred speed on a 22.5m walkway. Kinetic data, 

including Ground Reaction Force (GRF), were collected using an Advanced Medical 

Technologies, Inc. model OR-6-5-1 force plate (480 Hz) and filtered using a th4  order low-

pass Butterworth filter with a cutoff frequency of 6 Hz. The GRF consists of three 

components: vertical GRF (vGRF), representing the force exerted downwards; anterior-

posterior GRF (apGRF), the propulsive or braking force in the direction of walking; and 

medial-lateral GRF (mlGRF) in the third orthogonal direction. When representing GRF as a 

function of time, the horizontal axis reflects the percentage of stance (time interval of foot 

contact with the ground) over a gait cycle, and the vertical axis corresponds to body weight-

normalized force values (measured in Newtons). 

A walking trial was recorded as a successful observation when the participant’s entire foot 

maintained contact with the force plate throughout the stance phase, and participants 

maintained their preferred walking speed within 3.5% . Walking speed was defined as the 

mean speed at which participants walked a 10m walkway at a self-selected pace over six 

practice trials. A photocell system registered speed and provided participants with real-time 

visual feedback for maintaining their walking speed during formal trials. 

We studied the part of the IDEA data that contained measurements of each GRF component 

taken at a constant sampling rate over the duration of each step. For each IDEA participant, 

three trials per limb were collected. For some participants, one or more trials were missing 

from the data. In those cases, we used as many trials as were given in the data and did not 

impute. We considered the collection of all trials of both limbs from all participants. 

The complete set of curves for each GRF component contained 2,686 curves from 454 

participants. The top left panel of Figure 1 shows the collection of raw data vGRF curves 

colored by walking speed. There, the rainbow descends from fastest walking speed (red) to 

slowest (purple). Notice that many of those curves have consecutive starting and trailing 

zeros, which are outside the stance phase (i.e., after the foot has left contact with the force 

plate, but force data were still being collected) and hence do not correspond to a meaningful 

part of the measurements. To account for these spurious measurements, we take the 

beginning of the force curve as the zero value immediately preceding the first nonzero value, 

and similarly, the end of the curve as the zero value immediately following the last nonzero 

value. Using the relevant segment of each curve, we re-scaled the horizontal axis to the unit 

interval [0,1] in order to establish a common time axis across all curves. Additionally, we 

applied linear interpolation to the force values, aligning them to an evenly spaced grid. Time 

normalization to the stance phase (0n100%)  is a standard approach in biomechanics for 

analyzing GRF and other kinetic variables. The most commonly used method for time 

normalization is linear length normalization, which is a rescaling of the stance phases to a 

standard interval (Helwig et al., 2011), as was applied in our analysis. While this approach 

removes explicit information about stance duration, it retains timing differences in key joint-

loading events, such as heel-strike and toe-off, which impact cartilage stress and are therefore 

relevant to understanding OA. In this work, we chose to focus on a careful analysis of shape, 
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and leave analyzing stance duration as a direction for future work. However, stance duration 

is strongly correlated with walking speed and distance (Hebenstreit et al., 2015), which were 

retained as clinical variables in our analysis. 

The top right panel of Figure 1 presents the collection of vGRF curves shown in the first 

panel, following this processing. Those curves are also color-coded according to the 

participant’s walking speed. Similar results were achieved using the same processing steps 

for the apGRF and mlGRF curves, and are shown in the bottom left and bottom right panels 

of Figure 1, respectively. For a more detailed view of GRF curve variations across walking 

speeds, additional plots showing subsets of the curves grouped by deciles of walking speed 

are provided in Section 1 of the supplementary material. 

2.1 Conventional discrete summaries 

Most relevant studies of GRF data, such as those in Messier et al. (1992), Hunt et al. (2006), 

Zeni Jr and Higginson (2009), and Wiik et al. (2017), rely on discrete summaries (also called 

landmarks) rather than analyzing the full curves. These discrete summaries typically 

correspond to critical subphases of stance during gait, such as the first and second vGRF 

peaks (heel-strike and toe-off) and positive and negative peaks of the apGRF curve (braking 

and propulsion). In contrast, mlGRF curves are highly variable and therefore more 

challenging to interpret and summarize (Costello et al., 2021). Consequently, GRF studies 

primarily analyze only the vGRF and apGRF directions. 

Traditionally, the first vGRF peak has been of greater interest, as heel-strike is a significant 

factor in joint compressive loads and has been consistently linked to knee OA onset and 

progression. However, recent work by Buck et al. (2024) (and references therein) indicated 

that the valley (reflecting mid-stance) and the second peak of the vGRF curve are better 

predictors of knee OA-related symptoms. 

In this analysis, we focus on three conventional discrete summaries: (1) the first vGRF peak, 

(2) the apGRF braking peak, and (3) the apGRF propulsion peak. Throughout the remainder 

of this paper, we refer to the 3-dimensional vector containing these landmark values as the 

conventional discrete summaries. While other landmark choices could have been analyzed, as 

discussed in the preceding paragraphs, these three were selected because they are the most 

commonly studied GRF features in biomechanical research on knee OA. 

The first vGRF peak is defined in the references aforementioned as the maximum value 

within the first 50% (0-50%, heel-strike to midstance) of the stance phase (0-50%) (0-0.5 on 

the horizontal axis in Figure 1). Similarly, the apGRF braking peak is defined as the 

minimum value over the first 50% of the stance phase, and the apGRF propulsion peak is 

defined as the maximum value over the second 50% ( 50 100% , mid-stance to toe-off) of 

the stance phase (0.5-1.0 on the horizontal axis in Figure 1). 

3 Shape-based Functional Data Analysis 

3.1 Elastic shape analysis 

The goal of our analysis was to characterize patterns of variation in gait using information in 

the full force curves. Many datasets of curve data have variation that appears to be either 
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vertical or horizontal in nature. This variation is termed amplitude and phase variation, 

respectively. In this context, horizontal variation is viewed as a potentially important aspect 

of gait, while in other contexts it may represent temporal misalignment. The curves shown in 

Figure 1 exhibit interesting variation of both types. In particular, there is clear phase variation 

in the timing of the vGRF and mlGRF peaks, as well as the shift from posterior to anterior 

force in the apGRF curves. 

Elastic warping of the time axis can provide aligned curves that better capture amplitude 

variation, as studied in Section 2.1 of Marron and Dryden (2021). This is important because 

poor alignment of curves due to phase variation can impact statistical methodology, 

potentially obscuring important geometric structure. As noted by Helwig et al. (2011), 

temporal alignment is a critical consideration in gait analysis, with various approaches 

applied in gait studies. That paper highlights that while linear length normalization, which we 

applied as a pre-processing step, removes differences in stance duration, it does not account 

for phase variation in the timing of key events (e.g., peaks and valleys). Other methods 

discussed by Helwig et al. (2011) require extensive manual tuning and may introduce 

distortions in curve shape. The results discussed in that paper support the need for an 

alignment method that captures phase variation while preserving curve shape and minimizes 

manual tuning. 

Elastic warping involves a transformation of the time axis, which is described by a curve that 

can be usefully thought of as a stretching and compression of the horizontal axis. The 

functions are aligned by finding the Karcher mean (Tucker et al., 2013) which produces 

aligned functions and warping functions and will be defined later on. A warping function 

( ) :[0,1] [0,1]x   is strictly increasing, invertible, and diffeomorphic, meaning the function 

and its inverse are smooth. The collection of such warping functions serve as phase data 

objects. 

Aligning points across functions is often referred to as registration. Many conventional 

Functional Data Analysis (FDA) techniques rely on the 2  norm, which simplifies 

computations into point-wise evaluations. While point-wise computations involve vertical 

registration, other methods focus on the shape of functions. 2L -based methods present well-

known challenges, as detailed in Marron et al. (2015). Elastic shape analysis, as proposed in 

Srivastava et al. (2011); Tucker et al. (2013), uses the warp-invariant Fisher-Rao metric to 

overcome the limitations of conventional 
2
-based alignment techniques. This framework 

dates back to such seminal work as Younes (1998) and is the first to enable fully automatic 

(meaning that no manual tuning is needed) shape-based registration. For each curve, the 

elastic shape analysis method computes the warping function needed to align its peaks to a 

template mean curve, known as the Karcher mean. The Karcher mean is the curve that lies in 

the “center” of all the warped curves, meaning it minimizes the total distance (under the 

Fisher-Rao metric) between itself and all the aligned curves. 

The key idea of this method is to define an equivalence relation between curves. Two curves 

1( )f x  and 
2( )f x  are called equivalent, 

1 2~f f , if there exists a warping function   such that 

1 1 2( ( )) ( ) ( ).f x f x f x     Then, the set of all warps of a function f, given by 

[ ] { : },f f      
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is an equivalence class and defines the amplitude ( called shape in Srivastava et al. (2011); 

Wu et al. (2024)) of f. 

The Fisher-Rao metric defines a proper distance on the set of such equivalence classes. A 

natural framework for carrying out the computations required for curve alignment is achieved 

through a Square Root Velocity Function (SRVF) representation, which transforms the 

Fisher-Rao metric into the standard 2  metric. The Karcher mean equivalence class is 

defined using this distance, along with the warping functions needed to align individual 

functions to the Karcher mean template. The SRVF of a function f   is given by 

( ) sign( ( )) | ( ) |.q t f t f t  For any time warping of f by   , the SRVF of the warped 

function is given by ( ) ,q    which we will denote by q   for convenience. Then, the 

warping functions needed to align a collection of curves 
1, , nf f  with corresponding SRVF 

representations, 
1, , nq q , to the Karcher mean q


 are computed by solving the optimization 

problem: 

 
2

2

1

argmin inf .
n

q i i
q i

q q


 


 

   

The output of this optimization problem is the Karcher mean q

 and the set of optimal 

warping functions { }i
 . The optimization the problem is solved using dynamic 

programming: the time domain [0, 1] is discretized into N equally spaced bins, and each 

warping function 
i  is approximated by a piecewise linear mapping from (0,0)  to (1,1) . This 

discretization corresponds to a path through an N N  grid, where each step is required to 

have a positive slope to ensure invertibility. 

In our analysis, we found substantial benefit in penalizing the amount of elasticity in the 

alignment of the curve. This is achieved by modifying the optimization problem to include a 

penalty term on the roughness of the 
i  as follows:  

 
2

2

1

argmin inf ( )
n

q i i i
q i

q q


   


 

    

The penalty ( )i , controlled by the constant 0  , imposes a constraint on 
i . In our 

approach, we restrict the second derivative of 
i , so that 

..1

0
( ) ( )i i t dt   . This places a 

restriction on the smoothness in 
i  and has the effect of keeping 

i  closer to the identity 

warp ( )i t t  , thus regulating the level of elasticity in the alignment. The case 0   is 

referred to as fully elastic alignment, while    is the non-elastic case. 

The penalty is computed along the grid path and incorporated into the total cost, which is 

then minimized using dynamic programming in the same manner as without the penalty. This 

approach is similar to the method described by Wu and Srivastava (2011), where further 

details on the algorithm are provided. 
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An interesting alternative to adding a smoothness penalty is a metric learning approach that 

considers the broader 1-parameter family of elastic metrics, which extend SRVFs as 

described in Bauer et al. (2024). This family allows for flexible control over warping by 

varying the transformation in the metric, thereby implicitly enforcing smoothness without 

requiring a penalty term on the 
i . 

For an intuitive overview of the elastic shape analysis procedure and a more detailed 

derivation of the Karcher mean, see Section 9.1.3 of Marron and Dryden (2021). A thorough 

comparison of functional data analysis with and without phase-amplitude separation is 

provided in Chapters 2.1, 5.4, and 9 of Marron and Dryden (2021), demonstrating its 

importance for data exhibiting both types of variation. Given these established results, the 

observed phase variation in the GRF data motivated our application of elastic shape analysis, 

from which we obtained a decomposition into amplitude and phase data objects. The 

following subsection details our implementation and selection of the penalty parameter  . 

3.1.1 Implementation and penalty parameter selection 

The elastic shape analysis procedure was implemented via the FDASRSF Python package 

(Tucker et al., 2013). One possible approach to registering the GRF curve data is to apply the 

elastic shape alignment to each GRF component (vGRF, apGRF, mlGRF) separately. An 

analysis of amplitude and phase using this component-wise registration in the IDEA study 

data is detailed in Section 4.4 of Xiang (2023). However, that approach is less meaningful 

kinetically, as each component represents one direction of the same measured force. Instead, 

we adopted a more intuitive approach by treating the three components as a single 

multidimensional curve and applying elastic shape alignment to obtain a common set of 

warping functions. This approach allows us to focus on the phase aspects shared by all three 

components. Note that the Fisher-Rao mathematics extend to multi-dimensional functions 

(Srivastava and Klassen, 2016), where the SRVF for a vector-valued function ( )f t  becomes: 

( )
( ) .

( )

f t
q t

f t
  

A subset of GRF curves exhibited atypical vGRF or apGRF components, which posed 

challenges to aligning these curves with the rest of the data. Those GRFs were atypical in the 

sense that the vertical component lacked the two-peak structure expected of normal gait and 

appeared closer to unimodal, and/or the anterior-posterior component was close to zero and 

relatively flat. Examples of these atypical cases are highlighted in Figure 2, with 

representative atypical cases colored by walking speed and other curves in gray. Each panel 

in this row corresponds to one component of the original (unaligned) GRF curves. 

To address the lack of a common underlying structure, we registered the full dataset using the 

penalized elastic shape analysis procedure. By adjusting the elasticity parameter  , we 

aligned the full set of GRF curves without distorting the shape of the atypical curves. To 

determine an appropriate  , we computed warping functions iteratively over a grid of 

candidate values and visually examined the alignment results, with particular attention to 

atypical cases. We refined the grid in regions where   values produced reasonable results, 

selecting values that avoided excessive smoothing of features in the atypical curves while still 

capturing meaningful phase variation. Over-alignment led to sharp corners forming a 
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staircase-like pattern in the warping functions, indicating drastic stretching and compression 

of curves with differing underlying structures, such as unimodal curves. 

Based on this evaluation, we selected 2   for mitigating the staircase effect without totally 

sacrificing alignment. To illustrate the alignment trade-off, Figure 3 compares results for 

three   values: the fully elastic case 0   in the top row, our selected 2   in the middle 

row, and a less elastic case 4   in the bottom row. Atypical cases are colored by speed, 

while other curves are shown in gray, as in Figure 2. The leftmost panels display the warping 

functions for each  , where 0   results in sharp staircase-like patterns indicative of over-

alignment, while 4   yields warping functions tightly clustered around the identity, 

suggesting insufficient alignment. The second through fourth columns show the aligned 

curves. Results for additional values of   can be found in Figure 11 of the supplementary 

material.  

While our approach treated alignment as agnostic to a specific performance criterion, a more 

formal selection method could be constructed depending on the analytical objective. For 

example, if the interest is in evaluating alignment quality in reference to a predictive or 

inferential task,   could be optimized via cross-validation to maximize a relevant 

performance metric. However, in finite samples, cross-validation is prone to noisy selection 

due to its slow convergence to optimal results (see Hall and Marron (1987) in the context of 

bandwidth selection for kernel density estimation). Alternatively, if the goal is to estimate an 

underlying common signal, Kim et al. (2023) provides a scale-space approach for estimating 

both the shape of the unknown signal and the signal itself. Defining a notion of optimality 

depends on the specific context of the analysis, and the choice of   for different analytical 

objectives is an open question for further research. 

Next, we obtained amplitude objects by applying the (common) set of warping functions to 

each set of original GRF curves, which provides an intuitive representation of amplitude in 

each component. The amplitude objects obtained for different values of   are shown in the 

second through fourth columns of Figure 3. 

3.2 Modes of variation 

In OODA terminology, a collection of members of the object space that summarize one 

component of variation and is in some sense one-dimensional is called a mode of variation. 

For example, in the vector matrix case, a mode of variation is a rank-one matrix. We can 

obtain modes of variation through Principal Component Analysis (PCA), where each object 

is considered as a point in high dimensional space (column vector). For an introduction to 

PCA, see Jolliffe (2002). Amplitude modes of variation (Tucker et al., 2013) were obtained 

for each direction of the ground reaction force (vGRF, apGRF, mlGRF) computing PCA on 

the set of 2,686 Fisher-Rao aligned curves, each corresponding to an individual gait 

observation. The sets of input curves are shown in the second, third, and fourth columns of 

the middle row of Figure 3. 

Figure 4 shows the modes of variation of the amplitude objects of the vGRF, where the 

curves are colored according to walking speed. The first mode of variation, shown in the first 

panel of the second row of that figure, is associated with walking speed and reflects the 

contrast in peak heights and valley depths. Faster walkers (indicated in red in the rainbow 

color scheme) generally exhibit higher peaks and lower valleys, while slower walkers (purple 
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in the rainbow color scheme) have lower peaks and a shallower valley. The middle column of 

that figure displays the largest (dashed curve) and smallest (dotted curve) PC projections 

added back to the mean curve, which is shown as a solid black curve in each of the middle 

panels. The middle panel of the first mode shows that the slowest walkers (dotted curve) 

exhibit a vertical amplitude force that appears unimodal and does not exceed body weight (1 

on the vertical axis), indicating that these walkers do not fully transfer their weight to the 

striking limb. This type of gait can be thought of as “shuffling.” The second and third modes 

of variation are about the second and first peak, respectively. The middle panel in the third 

row shows the largest and smallest PC2 projections added back to the mean curve, 

distinguished with a dashed (largest) and dotted (smallest) line type. These extremes show 

that variation in this mode is mostly in the height of the second peak. In the panel below, the 

extremes of the third mode indicate phase variation in the first peak that is unique to the 

vertical component. The fourth mode of variation reflects the overall magnitude, particularly 

in the mid-stance phase. The second, third, and fourth PC projection extreme curves all 

suggest that some curves have a small third bump before the first peak. In gait analysis, this 

pattern is known as the heel-strike transient (HST), a rapid and transient rise in the vGRF 

immediately after ground contact. As discussed in Blackburn et al. (2016) and references 

therein, the presence and characterization (e.g. magnitude) of HST can indicate impulsive 

loading, which influences cartilage degradation and symptoms of OA. However, Blackburn et 

al. (2016) also noted that methods for identifying HST can be unreliable. The amplitude 

modes of variation we identified offer a potentially viable method for reliably identifying and 

understanding the HST. 

Similar plots of the amplitude modes of variation of the components of apGRF and mlGRF 

are provided in Section 2 in the supplementary material. 

Extracting phase modes of variation requires more careful consideration. Recall from Section 

3.1 that the warping functions all have corresponding SRVFs that lie on the surface of a high-

dimensional sphere in the function space. Thus, using PCA to identify phase modes of 

variation is essentially an approximation in the tangent space centered on the Karcher mean. 

In the case of warping functions, these SRVFs must also lie on the positive orthant Wu et al. 

(2024). It is demonstrated in Yu et al. (2017) that in cases of high variation, this tangent plane 

PCA may yield a distorted analysis, resulting in modes of variation that leave the positive 

orthant and consequently produce invalid warping functions. This phenomenon was also 

observed in our dataset. In such scenarios, a better decomposition of the variation can be 

achieved using the functional PCA methodology proposed by Yu et al. (2017), which is based 

on an improved PCA analogue for spheres known as Principal Nested Spheres (PNS) 

proposed by Jung et al. (2012). The PNS decomposition sequentially provides the best k-

dimensional approximation kU  of the data for all 1, 2, ,0k d d     such that  

1 1 0.
d

dS U U U    

For each k, the sphere kU , called the k-dimensional principal nested sphere, is a submanifold 

of the higher dimensional principal nested spheres. The algorithm to find sample principal 

nested spheres is determined by iteratively minimizing an objective function to find the best-

fitting subsphere, projecting the data to the lower dimensional sphere, and mapping to the 

original space through a relevant transformation. The signed residuals, defined as the signed 

length of the minimal geodesic joining the (projected and transformed) data points to the 
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subsphere, serve as analogs of principal component scores. Chapter 8 of Marron and Dryden 

(2021) provides further review of PNS and other geodesic-based methods. 

We applied the PNS-based functional PCA methodology to the set of (common) warping 

functions to obtain phase modes of variation. We found that the great sphere decomposition 

from PNS yielded the most interpretable phase modes of variation because of weak 

interpretability of small sphere variation. Figure 5 depicts an intuitively useful notion of 

phase variation represented by warpings of the Karcher mean of the vGRF curves. The 

warping functions used to create these visualizations were generated by taking the inverse of 

the phase PNS projections added to the 45-degree line (identity warp). In each panel of the 

figure, the curves are colored based on the PNS scores for the corresponding mode, with cyan 

indicating the lowest scores and magenta indicating the highest. It is important to note that 

the curves are plotted in the order of the corresponding score, as over-plotting is an issue. The 

first mode (first panel) shows an overall shift in timing, with most apparent differences in the 

timing of the first peak (maximum heel-strike force) and valley. The second mode in the next 

panel appears to explain variability in the closeness of the peaks: the cyan curves are the 

curves with peaks closer together and the magenta curves have peaks farther apart. The third 

mode represents an overall phase shift (left vs. right) and seems to suggest that curves having 

a small third bump before the first peak correspond with earlier timing (cyan curves), 

especially an earlier second peak. The fourth mode appears to highlight variability in the 

timing of the second peak, independent of the rest of the curve. 

4 Comparison to Conventional Discrete Summaries 

We investigated the added value of analyzing patterns across the entire movement curve, 

rather than relying on conventional discrete summaries of GRF curves. For this purpose, we 

compared how strongly full-curve modes versus conventional discrete summaries were 

associated with OA-related clinical traits using a nested regression framework, detailed in 

Section 4.2. While some of the traits we considered are clinically meaningful to predict from 

gait biomechanics, the aim of this analysis was to quantify and compare the strength of 

associations between OA-related traits and gait features derived from full-curve analysis 

versus conventional discrete summaries. In this section, we outline the sets of gait features 

that served as independent variables in our models, and in the following section, we introduce 

the OA-related clinical traits. 

To create independent variables derived from our full-curve analysis, we combined scores for 

16 distinct modes of amplitude variation from three types of curve data objects (vGRFs, 

apGRFs, and mlGRFs) and phase variation. Each mode is represented by either a set of 

amplitude PC scores or PNS phase scores. Below are listed the 16 sets of scores that together 

formed our full-curve independent variables: 

• PC1-PC4 scores of the vGRFs amplitude data objects (studied in Figure 4);  

• PC1-PC4 scores of the apGRFs amplitude data objects (studied in Figure 12 in the 

supplementary material);  

• PC1-PC4 scores of the mlGRFs amplitude data objects (studied in Figure 13 in the 

supplementary material);  

• Great sphere PNS1-PNS4 scores of the common phase data object (studied in Figure 5).  
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We developed a set of independent variables based on conventional discrete summaries of 

GRF curves found in the literature, including the first peak of the vGRF curve (maximum 

over 0 50%  of the stance), the minimum value of the apGRF curve (minimum over 

0 100%  of the stance) and the maximum value of the apGRF curve (maximum over 

0 100%  of stance).  

4.1 OA Clinical Traits 

The IDEA study defined several OA disease outcomes and symptoms of interest (Messier et 

al., 2009, 2013). These included mechanistic outcomes: knee joint compressive force and 

inflammatory biomarkers (interleukin-6 [IL-6] and C-reactive protein [CRP]); and clinical 

outcomes: self-reported pain and function, mobility, and health-related quality of life. 

Increased knee joint compressive force is known to contribute to cartilage stress and 

degeneration and has been associated with patterns in gait biomechanics (D’Lima et al., 

2012). Elevated IL-6 and CRP levels are linked to chronic inflammation and have been 

associated with knee OA (Messier et al., 2009). Pain and function were measured using the 

Western Ontario and McMaster Universities Arthritis Index (WOMAC) (Alexandersen et al., 

2014). Mobility was assessed using walking speed and distance walked in a 6-minute trial, 

while health-related quality of life was evaluated using the SF-36 Physical and Mental 

Component Scales. These IDEA study outcomes were included as dependent variables in our 

regression analyses. 

Although not specified as outcomes in the IDEA study, we analyzed additional biomedical 

measures that have been examined in other OA research. Notably, radiographic OA severity 

is evaluated using joint space width (JSW) and Kellgren–Lawrence grade (KLG), and both 

are key metrics for diagnosing and monitoring disease progression. Prior studies have 

reported associations between gait features and variability in these structural measures (e.g. 

Kwon et al. (2019); Jansen et al. (2024)), making them particularly relevant to this analysis. 

OA is also associated with elevated fall risk, and existing studies have examined fall risk as 

an outcome in patients with knee OA (for example, Rosadi et al. (2022)). Furthermore, 

anthropometric characteristics (e.g., body weight) and sociodemographic traits (e.g., age, sex, 

race) are important factors in OA risk, symptoms, and treatment (see, for example, Sims et al. 

(2009); Allen et al. (2022); Chang et al. (2024)). These additional measures, together with the 

IDEA study outcomes, are summarized in Table 1 of the supplementary material and are 

collectively referred to as clinical traits throughout the paper. For limb-level measurements 

(such as joint compressive force, KLG, and JSW), we used the patient-level clinical 

aggregates of these measures reported in the IDEA study for our analysis (Messier et al., 

2009, 2013). 

Since the IDEA study was an 18-month clinical trial of interventions in patients with 

advanced knee OA, traits were collected at different intervals throughout the study. For the 

purpose of this analysis, focusing on baseline values provides the most consistent basis for 

comparison and may better reflect OA variability in the dataset. For example, although 

change in JSW is a key marker of progression, prior studies suggest that knees at similar OA 

stages progress at comparable rates (Benichou et al., 2010), making baseline JSW a more 

meaningful indicator of disease severity for the IDEA participants. Additionally, using 

baseline values avoids the need to account for treatment effects, which are not of interest in 

this analysis. 
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Figure 15 in the supplementary material shows a heat map of missing values in the baseline 

data, with blue lines indicating missing entries for each trait; note that JSW has a relatively 

high rate of missing data. Baseline JSW measurements were missing for 126 of the 454 IDEA 

participants. Although the reasons for these missing values were not reported in the study, 

comparison of the other clinical traits between participants with and without baseline JSW 

showed no apparent sampling bias. This left 328 participants with JSW data for our analysis. 

Due to the large proportion of missing values, analysis involving JSW was restricted to the 

complete subset, with gait variables subset accordingly. Missing values for other traits, which 

were relatively few, were imputed using the mean of each trait (or the mean rounded to the 

nearest integer for integer-valued data). Importantly, there were no missing values for traits 

that may be particularly sensitive to imputation, such as categorical traits like sex and race, 

and low-resolution ordinal measures like KLG. The treatment of different types of dependent 

variables (count, binary, ordinal, continuous) for modeling purposes is discussed in detail in 

the following section. 

4.2 Nested Model Comparison 

We assessed the added value of full-curve gait analysis over conventional discrete summaries 

by comparing nested regression models. Specifically, we evaluated whether full-curve 

models provided additional explanatory value beyond conventional discrete summaries using 

a bootstrap-based likelihood ratio test (LRT) approach. Since we treat curves as data objects, 

all 2,686 gait curves were used as individual observations, except when modeling JSW, 

which was analyzed on the subset described earlier. Each trait was treated as a dependent 

variable and a full model fit on the combined set of gait features (full-curve modes plus 

conventional discrete summaries), while reduced models were fit using either the full-curve 

modes alone or the conventional discrete summaries alone. 

The choice of regression model depended on the type of dependent variable: count, binary, 

ordinal, or continuous. Number of falls was the only count-valued trait and was modeled 

using Poisson regression. Sex and race were the only binary-valued traits and were fit using 

logistic regression. Ordinal logistic regression was used for fall-related traits, WOMAC pain 

and function, health-related quality of life measures, and KLG. KLG is a radiographic score 

of OA severity, while the other ordinal traits represent scores from Likert-type scales. All 

remaining traits were continuous and fit using linear regression. As detailed in the previous 

section, missing trait values (except for JSW) were imputed using the trait mean. For integer-

valued traits, the mean was rounded to the nearest integer, whereas for continuous traits it 

was used directly. 

To compare nested models, we computed likelihood ratio tests for two cases: (1) a full model 

containing both full-curve modes and conventional discrete summaries versus a reduced 

model with only the full-curve modes, and (2) the same full model versus a reduced model 

with only the conventional discrete summaries. The null hypothesis in each case is that the 

reduced model explains the data as well as the full model, while the alternative is that the 

additional independent variables in the full model significantly improve model fit. Failing to 

reject the null when the reduced model contains the full-curve modes suggests that discrete 

summaries add no explanatory value beyond the full-curve modes. Conversely, rejecting the 

null when the reduced model contains the discrete summaries is evidence that full-curve 

modes provide additional explanatory value not captured by discrete summaries. The same 

logic applies when the roles of the two variable sets are reversed. Note that for linear 

regression models, the likelihood ratio test is equivalent to the nested-model F-test. 
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Typically, a LRT statistic is compared to a chi-squared reference distribution, but this relies 

on an asymptotic result which assumes independent observations. This assumption is violated 

in our dataset due to a clear dependence between the multiple gait curves per patient. To 

account for this, we implemented a bootstrap procedure in which patients were resampled 

with replacement, and all gait curves associated with a selected patient were included in the 

resampled dataset. For each of 1,000 bootstrap resamples, the regression models were on the 

selected sample and the corresponding LRT statistic was computed. This resampling 

approach reflects the natural dependence structure in the data and generates an appropriate 

reference distribution for inference. All other bootstrap analyses in this paper also used 1,000 

replications. The significance of the observed LRT statistic from the original data was then 

assessed by computing the proportion of bootstrap LRT statistics greater than or equal to the 

observed LRT statistic. When no bootstrap replications were larger than the original statistic, 

we defined the p-value to be 
1

0.0005.
2*1000

   

Figure 6 presents a scatterplot of p-values from the LRTs of nested models, displayed on a 

logarithmic scale. The horizontal axis shows p-values for testing full-curve reduced models, 

while the vertical axis corresponds to p-values for conventional discrete summary reduced 

models. For readability, the axes are labeled on the original scale. 

The green plus signs highlight traits for which the full-curve reduced model was not rejected, 

while the conventional discrete summary reduced model was rejected, meaning conventional 

discrete summaries provided no additional explanatory value. The corresponding traits 

include joint compressive force; both measures of radiographic OA severity (JSW and KLG); 

all of the anthropometric and mobility measures; and sex and race. Balance confidence, one 

of the fall-related traits, was also in this group, though close to the 0.05 threshold. 

The gray circles represent cases in which neither reduced model was rejected, which account 

for roughly half of the traits. These include both inflammatory biomarkers; self-reported pain 

and function; health-related quality of life measures; all but one fall-related trait; and age. 

Except for the biomarkers and age, these traits are Likert-type scale scores, which are highly 

subjective and generally difficult to model. Although inflammatory biomarkers and age are 

important in OA, there is no known direct relationship with gait biomechanics. Therefore, it 

is unsurprising that more complex gait variables do not provide significant explanatory value 

beyond simple discrete summaries for the gray-circle traits. 

No points fall to the left of the vertical red dashed line, meaning there were no instances in 

which the full-curve reduced model was rejected while the conventional discrete summary 

reduced model was not. Although sex (Male) is near the 0.05 threshold for the full-curve 

reduced model, it is well below the threshold for the conventional discrete summary reduced 

model. Overall, these results show that a model based solely on full-curve modes is a 

consistently suitable approach. 

5 Conclusion 

This paper quantitatively demonstrates the extent to which complete GRF curves, compared 

with conventional discrete summaries, capture information relevant to disease severity and 

clinical profiles of OA, demonstrating the added value of full-curve analysis. We apply a 

straightforward nested model comparison to highlight this difference. Furthermore, our 
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shape-based approach illustrates an intuitive representation of full movement curves that is 

applicable in broader analyses and reveals insightful modes of variation. To our knowledge, 

this work is among the first to show that analysis of full movement curves yields stronger 

associations with OA outcomes and OA-related clinical traits than conventional discrete 

summaries. 

SUPPLEMENTARY MATERIAL 

Supplement to Elastic Shape Analysis of Movement Data: Additional figures and tables, 

with accompanying brief discussions. (pdf)  
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Figure 1: Top left panel: Raw vertical ground reaction force (vGRF) curves before 

processing, colored by walking speed. Top right: The same curves after re-scaling and 

interpolation of the time axis . The common rainbow color palette descends from fastest 

walking speed (red) to slowest (purple). Bottom row panels show apGRF curves (left) and 

mlGRF curves (right) after the same processing of the time axis. Note that the vertical axis 

(measured in N/kg, i.e. percentage of body weight) of each panel is scaled to the data it 

displays. 

 

Figure 2: Left to right panels: vGRF, apGRF, and mlGRF curves. Examples of atypical GRF 

curves are highlighted, with representative atypical cases colored by walking speed and other 

curves in gray. These atypical curves lack the expected two-peak vertical structure or have 

near-zero, flat anterior-posterior components. Acc
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Figure 3: Alignment results for three elasticity parameter values: fully elastic ( 0  ), the 

selected 2  , and a more rigid case ( 4  ). Atypical cases are colored by speed, while 

other curves are shown in gray. The leftmost panels display the warping functions, and the 

second through fourth columns show the aligned curves. The staircasing effect in the fully 

elastic case ( 0  ) indicates over-alignment, while 4   produces warping functions 

tightly close to identity, suggesting insufficient alignment. The selected 2   balances these 

effects.  
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Figure 4: Modes of variation of the vGRF amplitude objects, shown in the top left panel. The 

first mode of amplitude variation, showing magnitude of the peaks and valley, is displayed in 

the second row, first panel. The panels in the middle column show the largest and smallest 

PC projections added back to the mean curve, while the solid black curve corresponds to the 

mean curve. The second and third modes of amplitude variation (third and fourth row, 

respectively) explain variation within each peak. The fourth mode indicates variation in 

overall magnitude, particularly of the valley, as seen in the middle panel of the last row. 
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Figure 5: Visual representation of phase variation using warpings of the Karcher mean of the 

vGRF curves. Warping functions were generated by taking the inverse of the phase PNS 

projections added to the 45-degree line. Each panel shows curves colored by corresponding 

PNS scores, with cyan indicating the lowest scores and magenta indicating the highest. 

Curves are plotted in the order of the corresponding score to avoid over-plotting. The first 

panel (first mode) shows an overall shift in timing, with most apparent differences in the 

timing of the first peak (maximum heel-strike force) and valley. The second panel (second 

mode) shows variability in the closeness of the peaks. The third panel (third mode) represents 

an overall phase shift, suggesting earlier timing for curves with a small third bump before the 

first peak (cyan). The fourth panel (fourth mode) emphasizes variability in the timing of the 

second peak, independent of the rest of the curve. 
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Figure 6: Scatter plot of bootstrap p-values resulting from LRTs of nested models, shown on 

a logarithmic scale. The horizontal axis represents the p-values for testing full-curve reduced 

models, and the vertical axis represents those for testing conventional discrete summary 

reduced models. For readability, the axes are labeled on the original scale. Gray circles 

represent traits where neither reduced model was rejected at this significance level, indicating 

that neither variable set adds substantial explanatory value beyond the other. Green plus signs 

represent traits where the full-curve reduced model was not rejected, but the conventional 

discrete summary reduced model was rejected, highlighting the added value of the full-curve 

approach. Note that the full-curve reduced model was never rejected and is consistently a 

suitable approach. 
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