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Abstract

Osteoarthritis (OA) is a highly prevalent degenerative joint disease, and the knee is the most
commonly affected joint. Biomechanical factors, particularly forces exerted during walking,
are often measured in.modern studies of knee joint injury and OA, and understanding the
relationship among biomechanics, clinical profiles, and OA has high clinical relevance.
Biomechanical forces are typically represented as curves over time, but a standard practice in
biomechanics research is to summarize these curves by a small number of discrete values (or
landmarks). The objective of this work is to demonstrate the added value of analyzing full
movement curves over conventional discrete summaries. We developed a shape-based
representation of variation in full biomechanical curve data from the Intensive Diet and
Exercise for Arthritis (IDEA) study (Messier et al., 2009, 2013), and demonstrated through
nested model comparisons that our approach, compared to conventional discrete summaries,
yields stronger associations with OA severity and OA-related clinical traits. Notably, our
work is among the first to quantitatively evaluate the added value of analyzing full movement
curves over conventional discrete summaries.
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1 Introduction

Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by cartilage loss,
bone and soft tissue changes, joint pain, and diminished function. In the United States, OA
affects at least 19% of adults aged 45 years and older, with the knee being the most
commonly affected joint, accounting for more than 80% of the total burden of the disease
(Dillon et al., 2006; Jordan et al., 2007; Lawrence et al., 2008; Vos et al., 2012). Knee OA is
characterized by both the severity of radiographically-assessed damage and clinical
symptoms, such as knee pain and function. Previous research, such as in Zhang and Jordan
(2010), indicated that risk factors and disease progression may vary by clinical phenotype.
Additionally, important work like Felson (2013) and Guilak (2011) identified biomechanical
factors in the etiology and pathogenesis of knee OA.

Biomechanical variables, particularly forces exerted during walking, are often‘'measured in
modern studies of knee joint injury and OA, and understanding the relationship.among
biomechanics, clinical profiles, and OA has high clinical relevance. Biomechanical forces are
typically represented as curves over time, but a standard practice in biomechanics research is
to summarize these curves by a small number of discrete values. Such discrete summaries are
called landmarks in the shape statistics terminology of Dryden and Mardia (2016). Analyses
based on conventional discrete summaries, such as those by Sims et-al. (2009) and Astephen
et al. (2008), have identified differences between groups (e.g.; sex differences) and
discovered variations in gait patterns associated with knee‘OA-related outcomes. Recent
work by Buck et al. (2024) evaluated the ability of various ¢linical traits and conventional
discrete summaries of gait forces to predict early.symptomatic knee OA. While simplifying
the statistical methods required for analysis, relying on conventional discrete summaries risks
overlooking information encoded in the complete range and patterns of movement data.
Research by Muniz et al. (2006), Davis et al. (2019), Costello et al. (2021), Bjornsen et al.
(2024), and others indicate the value of analyzing full movement curves. However, these
studies are limited and did not formally compare analyses based on conventional discrete
summaries. For harmonic analyses of full movement curves, see Trentadue and Schmitt
(2024) and references therein:

The primary goal of this work is to'demonstrate the added value of analyzing full movement
curves over conventional discrete summaries. Our analysis of full movement curves follows
an Object Oriented Data-Analysis (OODA) approach. OODA, described in Marron and
Dryden (2021), is:a framework for analyzing complex data that emphasizes the careful
selection of data'ebjects for a given scientific question and the utilization of methods intrinsic
to the data object space. This approach facilitates the consideration of full movement data
curves as complex data objects in high-dimensional space. Furthermore, the richer
information within these curves allows for potentially many different choices of both the data
object of interest and the appropriate methodology for analysis.

We developed a shape-based representation of variation in full biomechanical curves using
data from the Intensive Diet and Exercise for Arthritis (IDEA) study (Messier et al., 2009,
2013), and demonstrated through easily interpretable nested model comparisons that our
approach, compared to conventional discrete summaries, yields stronger associations with
OA severity and OA-related clinical traits. Notably, our work is among the first to



quantitatively evaluate the added value of analyzing full movement curves over conventional
discrete summaries in OA research.

2 Curves as Data Objects

During gait data collection in the IDEA study, participants wore laboratory-provided
cushioned shoes and walked at their preferred speed on a 22.5m walkway. Kinetic data,
including Ground Reaction Force (GRF), were collected using an Advanced Medical

Technologies, Inc. model OR-6-5-1 force plate (480 Hz) and filtered using a 4™ order low-
pass Butterworth filter with a cutoff frequency of 6 Hz. The GRF consists of three
components: vertical GRF (VGRF), representing the force exerted downwards; anterior-
posterior GRF (apGRF), the propulsive or braking force in the direction of walking; and
medial-lateral GRF (mIGRF) in the third orthogonal direction. When representing GRF as a
function of time, the horizontal axis reflects the percentage of stance (time interval of foot
contact with the ground) over a gait cycle, and the vertical axis corresponds to body'weight-
normalized force values (measured in Newtons).

A walking trial was recorded as a successful observation when the participant’sientire foot
maintained contact with the force plate throughout the stance phase, and participants
maintained their preferred walking speed within £3.5%. Walking speed-was defined as the
mean speed at which participants walked a 10m walkway at a self-selected pace over six
practice trials. A photocell system registered speed and provided participants with real-time
visual feedback for maintaining their walking speed during formal trials.

We studied the part of the IDEA data that contained,measurements of each GRF component
taken at a constant sampling rate over the duration of each:step. For each IDEA participant,
three trials per limb were collected. For some participants, one or more trials were missing
from the data. In those cases, we used as many trials as were given in the data and did not
impute. We considered the collection of all-trials of both limbs from all participants.

The complete set of curves for each GRF component contained 2,686 curves from 454
participants. The top left panel of Figure 1 shows the collection of raw data VGRF curves
colored by walking speed. Thereptherainbow descends from fastest walking speed (red) to
slowest (purple). Notice that many of those curves have consecutive starting and trailing
zeros, which are outside the stance phase (i.e., after the foot has left contact with the force
plate, but force data were stilLbeing collected) and hence do not correspond to a meaningful
part of the measurements.{To account for these spurious measurements, we take the
beginning of the force curve as the zero value immediately preceding the first nonzero value,
and similarly, the 'end of the curve as the zero value immediately following the last nonzero
value. Using the relevant segment of each curve, we re-scaled the horizontal axis to the unit
interval [0,1] in order to establish a common time axis across all curves. Additionally, we
applied linear interpolation to the force values, aligning them to an evenly spaced grid. Time
normalization to the stance phase (0n100%) is a standard approach in biomechanics for
analyzing GRF and other kinetic variables. The most commonly used method for time
normalization is linear length normalization, which is a rescaling of the stance phases to a
standard interval (Helwig et al., 2011), as was applied in our analysis. While this approach
removes explicit information about stance duration, it retains timing differences in key joint-
loading events, such as heel-strike and toe-off, which impact cartilage stress and are therefore
relevant to understanding OA. In this work, we chose to focus on a careful analysis of shape,



and leave analyzing stance duration as a direction for future work. However, stance duration
is strongly correlated with walking speed and distance (Hebenstreit et al., 2015), which were
retained as clinical variables in our analysis.

The top right panel of Figure 1 presents the collection of vVGRF curves shown in the first
panel, following this processing. Those curves are also color-coded according to the
participant’s walking speed. Similar results were achieved using the same processing steps
for the apGRF and mIGRF curves, and are shown in the bottom left and bottom right panels
of Figure 1, respectively. For a more detailed view of GRF curve variations across walking
speeds, additional plots showing subsets of the curves grouped by deciles of walking speed
are provided in Section 1 of the supplementary material.

2.1 Conventional discrete summaries

Most relevant studies of GRF data, such as those in Messier et al. (1992), Hunt et al«(2006),
Zeni Jr and Higginson (2009), and Wiik et al. (2017), rely on discrete summaries {(also called
landmarks) rather than analyzing the full curves. These discrete summaries typically
correspond to critical subphases of stance during gait, such as the first and.second VGRF
peaks (heel-strike and toe-off) and positive and negative peaks of the apGRF curve (braking
and propulsion). In contrast, mMIGRF curves are highly variable and thereforesmore
challenging to interpret and summarize (Costello et al., 2021). Consequently, GRF studies
primarily analyze only the vVGRF and apGRF directions.

Traditionally, the first vVGRF peak has been of greater interest, as heel-strike is a significant
factor in joint compressive loads and has been consistently linked to knee OA onset and
progression. However, recent work by Buck et al. (2024) (and references therein) indicated
that the valley (reflecting mid-stance) and the second peak of the vVGRF curve are better
predictors of knee OA-related symptoms.

In this analysis, we focus on three conventional discrete summaries: (1) the first VGRF peak,
(2) the apGRF braking peak, and (3) the:apGRF propulsion peak. Throughout the remainder
of this paper, we refer to the 3-dimensional vector containing these landmark values as the
conventional discrete summarigs. While other landmark choices could have been analyzed, as
discussed in the preceding paragraphs, these three were selected because they are the most
commonly studied GRF featuresiin biomechanical research on knee OA.

The first vVGRF peak is defined in the references aforementioned as the maximum value
within the first 50% (0-50%, heel-strike to midstance) of the stance phase (0-50%) (0-0.5 on
the horizontal axis.in Figure 1). Similarly, the apGRF braking peak is defined as the
minimum valueover the first 50% of the stance phase, and the apGRF propulsion peak is
defined as the_ maximum value over the second 50% (50—-100% , mid-stance to toe-off) of
the stance phase (0.5-1.0 on the horizontal axis in Figure 1).

3 Shape-based Functional Data Analysis

3.1 Elastic shape analysis

The goal of our analysis was to characterize patterns of variation in gait using information in
the full force curves. Many datasets of curve data have variation that appears to be either



vertical or horizontal in nature. This variation is termed amplitude and phase variation,
respectively. In this context, horizontal variation is viewed as a potentially important aspect
of gait, while in other contexts it may represent temporal misalignment. The curves shown in
Figure 1 exhibit interesting variation of both types. In particular, there is clear phase variation
in the timing of the vVGRF and mIGRF peaks, as well as the shift from posterior to anterior
force in the apGRF curves.

Elastic warping of the time axis can provide aligned curves that better capture amplitude
variation, as studied in Section 2.1 of Marron and Dryden (2021). This is important because
poor alignment of curves due to phase variation can impact statistical methodology,
potentially obscuring important geometric structure. As noted by Helwig et al. (2011),
temporal alignment is a critical consideration in gait analysis, with various approaches
applied in gait studies. That paper highlights that while linear length normalization, which we
applied as a pre-processing step, removes differences in stance duration, it does not account
for phase variation in the timing of key events (e.g., peaks and valleys). Other methods
discussed by Helwig et al. (2011) require extensive manual tuning and may introduce
distortions in curve shape. The results discussed in that paper support the need,for an
alignment method that captures phase variation while preserving curve shape and minimizes
manual tuning.

Elastic warping involves a transformation of the time axis, which is described by a curve that
can be usefully thought of as a stretching and compression of the horizontal axis. The
functions are aligned by finding the Karcher mean (Tucker et-al., 2013) which produces
aligned functions and warping functions and will be defined lateren. A warping function
7(x):[0,1] —[0,1] is strictly increasing, invertible, anddiffeomorphic, meaning the function
and its inverse are smooth. The collection of such warping functions serve as phase data
objects.

Aligning points across functions is often referred to'as registration. Many conventional
Functional Data Analysis (FDA) techniques rely on the 1? norm, which simplifies
computations into point-wise evaluations. While point-wise computations involve vertical
registration, other methods focusien the shape of functions. L -based methods present well-
known challenges, as detailed insMarron et al. (2015). Elastic shape analysis, as proposed in
Srivastava et al. (2011); Tucker et al. (2013), uses the warp-invariant Fisher-Rao metric to
overcome the limitations ©f conventional 1?-based alignment techniques. This framework
dates back to such seminal'work as Younes (1998) and is the first to enable fully automatic
(meaning that no manual tuning is needed) shape-based registration. For each curve, the
elastic shape analysis method computes the warping function needed to align its peaks to a
template mean curve,/known as the Karcher mean. The Karcher mean is the curve that lies in
the “center’” ofall'the warped curves, meaning it minimizes the total distance (under the
Fisher-Rao metric) between itself and all the aligned curves.

The key idea of this method is to define an equivalence relation between curves. Two curves
f,(x) and f,(x) are called equivalent, f, ~ f,, if there exists a warping function y such that

f,(7(x)) = f,°7(x) = f,(x). Then, the set of all warps of a function f, given by

[f1={f°y:yel},



is an equivalence class and defines the amplitude ( called shape in Srivastava et al. (2011);
Wu et al. (2024)) of f.

The Fisher-Rao metric defines a proper distance on the set of such equivalence classes. A
natural framework for carrying out the computations required for curve alignment is achieved
through a Square Root Velocity Function (SRVF) representation, which transforms the

Fisher-Rao metric into the standard 1” metric. The Karcher mean equivalence class is
defined using this distance, along with the warping functions needed to align individual
functions to the Karcher mean template. The SRVF of a function f < F is given by

q(t) = sign( f OW f (t)|. For any time warping of f by » ", the SRVF of the warped
function is given by (q°;/)\/_', which we will denote by q* y for convenience. Then, the
warping functions needed to align a collection of curves f,..., f, with corresponding SRVF

representations, q,,...,q,, to the Karcher mean w4, are computed by solving the optimization
problem:

{4, =argmin Z(lyrg I1a—=a; x7; ||2)-

qel? izl

The output of this optimization problem is the Karcher mean u,, andithe'Set of optimal

warping functions {y;’}. The optimization the problem is solved,using dynamic
programming: the time domain [0, 1] is discretized into.N.equally spaced bins, and each
warping function y, is approximated by a piecewise linear mapping from (0,0) to (1,1). This

discretization corresponds to a path through an.N x N “grid, where each step is required to
have a positive slope to ensure invertibility.

In our analysis, we found substantial benefit in penalizing the amount of elasticity in the
alignment of the curve. This is achieved,by.modifying the optimization problem to include a
penalty term on the roughness of the' y“asifollows:

4 =angmin Y. inf 119~ Gt PNEA 2R (1)

qel? izl

The penalty R(y;)«controlled by the constant A >0, imposes a constraint on ;. In our

approach, wesrestrict.the second derivative of y., so that R(y;) = J'Ol y, (t)dt. This places a

restriction onthe smoothness in y, and has the effect of keeping y, closer to the identity
warp y;(t) =t thus regulating the level of elasticity in the alignment. The case A =0 is
referred to as fully elastic alignment, while 4 =00 is the non-elastic case.

The penalty is computed along the grid path and incorporated into the total cost, which is
then minimized using dynamic programming in the same manner as without the penalty. This
approach is similar to the method described by Wu and Srivastava (2011), where further
details on the algorithm are provided.



An interesting alternative to adding a smoothness penalty is a metric learning approach that
considers the broader 1-parameter family of elastic metrics, which extend SRVFs as
described in Bauer et al. (2024). This family allows for flexible control over warping by
varying the transformation in the metric, thereby implicitly enforcing smoothness without
requiring a penalty term on the y,.

For an intuitive overview of the elastic shape analysis procedure and a more detailed
derivation of the Karcher mean, see Section 9.1.3 of Marron and Dryden (2021). A thorough
comparison of functional data analysis with and without phase-amplitude separation is
provided in Chapters 2.1, 5.4, and 9 of Marron and Dryden (2021), demonstrating its
importance for data exhibiting both types of variation. Given these established results, the
observed phase variation in the GRF data motivated our application of elastic shape analysis,
from which we obtained a decomposition into amplitude and phase data objects. The
following subsection details our implementation and selection of the penalty parameter” A .

3.1.1 Implementation and penalty parameter selection

The elastic shape analysis procedure was implemented via the FDASRSF Pythonpackage
(Tucker et al., 2013). One possible approach to registering the GRF curve data is to apply the
elastic shape alignment to each GRF component (vGRF, apGRF, mIGRE).separately. An
analysis of amplitude and phase using this component-wise registration in‘the IDEA study
data is detailed in Section 4.4 of Xiang (2023). However, that approach is less meaningful
kinetically, as each component represents one direction of the same ‘measured force. Instead,
we adopted a more intuitive approach by treating the three.components as a single
multidimensional curve and applying elastic shape alignment.to obtain a common set of
warping functions. This approach allows us to focus on thesphase aspects shared by all three
components. Note that the Fisher-Rao mathematies extend to multi-dimensional functions
(Srivastava and Klassen, 2016), where the,SRVF for a vector-valued function f (t) becomes:

f (1)

Jrfon

A subset of GRF curves exhibited atypical vVGRF or apGRF components, which posed
challenges to aligning these curves with the rest of the data. Those GRFs were atypical in the
sense that the vertical.ecomponent lacked the two-peak structure expected of normal gait and
appeared closer to unimodal, and/or the anterior-posterior component was close to zero and
relatively flat. Examplesof these atypical cases are highlighted in Figure 2, with
representative atypical cases colored by walking speed and other curves in gray. Each panel
in this row corresponds to one component of the original (unaligned) GRF curves.

q(t) =

To address the lack of a common underlying structure, we registered the full dataset using the
penalized elastic shape analysis procedure. By adjusting the elasticity parameter A4, we
aligned the full set of GRF curves without distorting the shape of the atypical curves. To
determine an appropriate A, we computed warping functions iteratively over a grid of
candidate values and visually examined the alignment results, with particular attention to
atypical cases. We refined the grid in regions where A values produced reasonable results,
selecting values that avoided excessive smoothing of features in the atypical curves while still
capturing meaningful phase variation. Over-alignment led to sharp corners forming a



staircase-like pattern in the warping functions, indicating drastic stretching and compression
of curves with differing underlying structures, such as unimodal curves.

Based on this evaluation, we selected 4 =2 for mitigating the staircase effect without totally
sacrificing alignment. To illustrate the alignment trade-off, Figure 3 compares results for
three A values: the fully elastic case 4 =0 in the top row, our selected A =2 in the middle
row, and a less elastic case A =4 in the bottom row. Atypical cases are colored by speed,
while other curves are shown in gray, as in Figure 2. The leftmost panels display the warping
functions for each A, where A =0 results in sharp staircase-like patterns indicative of over-
alignment, while A =4 yields warping functions tightly clustered around the identity,
suggesting insufficient alignment. The second through fourth columns show the aligned
curves. Results for additional values of A can be found in Figure 11 of the supplementary
material.

While our approach treated alignment as agnostic to a specific performance criterionpa more
formal selection method could be constructed depending on the analytical objective. For
example, if the interest is in evaluating alignment quality in reference to a predictive or
inferential task, A could be optimized via cross-validation to maximize a relevant
performance metric. However, in finite samples, cross-validation is prone to noisy selection
due to its slow convergence to optimal results (see Hall and Marron (1987) in'the context of
bandwidth selection for kernel density estimation). Alternatively, ifithe goal is to estimate an
underlying common signal, Kim et al. (2023) provides a scale-space approach for estimating
both the shape of the unknown signal and the signal itself. Defining+a notion of optimality
depends on the specific context of the analysis, and the choice of A4 for different analytical
objectives is an open question for further research.

Next, we obtained amplitude objects by applying:the (common) set of warping functions to
each set of original GRF curves, which provides an intuitive representation of amplitude in
each component. The amplitude objects obtained for different values of A are shown in the
second through fourth columns of Figure'3.

3.2 Modes of variation

In OODA terminology, a collection of members of the object space that summarize one
component of variation and s in some sense one-dimensional is called a mode of variation.
For example, in the vector matrix case, a mode of variation is a rank-one matrix. We can
obtain modes of variation through Principal Component Analysis (PCA), where each object
is considered as a point in high dimensional space (column vector). For an introduction to
PCA, see Jolliffe (2002). Amplitude modes of variation (Tucker et al., 2013) were obtained
for each direction of the ground reaction force (vGRF, apGRF, mIGRF) computing PCA on
the set of 2,686 Fisher-Rao aligned curves, each corresponding to an individual gait
observation. The sets of input curves are shown in the second, third, and fourth columns of
the middle row of Figure 3.

Figure 4 shows the modes of variation of the amplitude objects of the VGRF, where the
curves are colored according to walking speed. The first mode of variation, shown in the first
panel of the second row of that figure, is associated with walking speed and reflects the
contrast in peak heights and valley depths. Faster walkers (indicated in red in the rainbow
color scheme) generally exhibit higher peaks and lower valleys, while slower walkers (purple



in the rainbow color scheme) have lower peaks and a shallower valley. The middle column of
that figure displays the largest (dashed curve) and smallest (dotted curve) PC projections
added back to the mean curve, which is shown as a solid black curve in each of the middle
panels. The middle panel of the first mode shows that the slowest walkers (dotted curve)
exhibit a vertical amplitude force that appears unimodal and does not exceed body weight (1
on the vertical axis), indicating that these walkers do not fully transfer their weight to the
striking limb. This type of gait can be thought of as “shuffling.” The second and third modes
of variation are about the second and first peak, respectively. The middle panel in the third
row shows the largest and smallest PC2 projections added back to the mean curve,
distinguished with a dashed (largest) and dotted (smallest) line type. These extremes show
that variation in this mode is mostly in the height of the second peak. In the panel below, the
extremes of the third mode indicate phase variation in the first peak that is unique to the
vertical component. The fourth mode of variation reflects the overall magnitude, particularly
in the mid-stance phase. The second, third, and fourth PC projection extreme curves all
suggest that some curves have a small third bump before the first peak. In gait analysis, this
pattern is known as the heel-strike transient (HST), a rapid and transient rise in the VGRF
immediately after ground contact. As discussed in Blackburn et al. (2016) and.references
therein, the presence and characterization (e.g. magnitude) of HST can indicate impulsive
loading, which influences cartilage degradation and symptoms of OA. However,'Blackburn et
al. (2016) also noted that methods for identifying HST can be unreliable. The.amplitude
modes of variation we identified offer a potentially viable method for-reliably identifying and
understanding the HST.

Similar plots of the amplitude modes of variation of the components of apGRF and mIGRF
are provided in Section 2 in the supplementary materials

Extracting phase modes of variation requires more careful consideration. Recall from Section
3.1 that the warping functions all have corresponding. SRVFs that lie on the surface of a high-
dimensional sphere in the function space. Thus, using PCA to identify phase modes of
variation is essentially an approximation in the tangent space centered on the Karcher mean.
In the case of warping functions, these-SRV/Fs must also lie on the positive orthant Wu et al.
(2024). It is demonstrated in Yu et al. (2017) that in cases of high variation, this tangent plane
PCA may vyield a distorted analysis; resulting in modes of variation that leave the positive
orthant and consequently produceinvalid warping functions. This phenomenon was also
observed in our dataset. In.suchiscenarios, a better decomposition of the variation can be
achieved using the functional PCA methodology proposed by Yu et al. (2017), which is based
on an improved PCAd@nalogue for spheres known as Principal Nested Spheres (PNS)
proposed by Jung.et al.. (2012). The PNS decomposition sequentially provides the best k-

dimensional approximation U* of the data for all k =d —1,d —2,...,0 such that
s oU,,o...oU, DU,

For each k, the sphere U*, called the k-dimensional principal nested sphere, is a submanifold
of the higher dimensional principal nested spheres. The algorithm to find sample principal
nested spheres is determined by iteratively minimizing an objective function to find the best-
fitting subsphere, projecting the data to the lower dimensional sphere, and mapping to the
original space through a relevant transformation. The signed residuals, defined as the signed
length of the minimal geodesic joining the (projected and transformed) data points to the



subsphere, serve as analogs of principal component scores. Chapter 8 of Marron and Dryden
(2021) provides further review of PNS and other geodesic-based methods.

We applied the PNS-based functional PCA methodology to the set of (common) warping
functions to obtain phase modes of variation. We found that the great sphere decomposition
from PNS yielded the most interpretable phase modes of variation because of weak
interpretability of small sphere variation. Figure 5 depicts an intuitively useful notion of
phase variation represented by warpings of the Karcher mean of the vVGRF curves. The
warping functions used to create these visualizations were generated by taking the inverse of
the phase PNS projections added to the 45-degree line (identity warp). In each panel of the
figure, the curves are colored based on the PNS scores for the corresponding mode, with cyan
indicating the lowest scores and magenta indicating the highest. It is important to note that
the curves are plotted in the order of the corresponding score, as over-plotting is an issue. The
first mode (first panel) shows an overall shift in timing, with most apparent differences.in the
timing of the first peak (maximum heel-strike force) and valley. The second mode in the,next
panel appears to explain variability in the closeness of the peaks: the cyan curvesare the
curves with peaks closer together and the magenta curves have peaks farther apart. The'third
mode represents an overall phase shift (left vs. right) and seems to suggest that.curves having
a small third bump before the first peak correspond with earlier timing (cyan curves),
especially an earlier second peak. The fourth mode appears to highlightvariability in the
timing of the second peak, independent of the rest of the curve.

4 Comparison to Conventional Discrete Summaries

We investigated the added value of analyzing patterns acress.the entire movement curve,
rather than relying on conventional discrete summaries of. GRF curves. For this purpose, we
compared how strongly full-curve modes versus.conventional discrete summaries were
associated with OA-related clinical traits using a nested regression framework, detailed in
Section 4.2. While some of the traits we considered are clinically meaningful to predict from
gait biomechanics, the aim of this analysis was:to quantify and compare the strength of
associations between OA-related traits'and gait features derived from full-curve analysis
versus conventional discrete summariesS. In this section, we outline the sets of gait features
that served as independent variablesiin.our models, and in the following section, we introduce
the OA-related clinical traits.

To create independent variables derived from our full-curve analysis, we combined scores for
16 distinct modes of amplitude variation from three types of curve data objects (VGRFs,
apGRFs, and mIGRFs)-and phase variation. Each mode is represented by either a set of
amplitude PC scores or PNS phase scores. Below are listed the 16 sets of scores that together
formed our full-curve independent variables:

» PC1-PC4 scores of the vGRFs amplitude data objects (studied in Figure 4);

* PC1-PC4 scores of the apGRFs amplitude data objects (studied in Figure 12 in the
supplementary material);

* PC1-PC4 scores of the mIGRFs amplitude data objects (studied in Figure 13 in the
supplementary material);

* Great sphere PNS1-PNS4 scores of the common phase data object (studied in Figure 5).



We developed a set of independent variables based on conventional discrete summaries of
GRF curves found in the literature, including the first peak of the vVGRF curve (maximum
over 0—50% of the stance), the minimum value of the apGRF curve (minimum over
0-100% of the stance) and the maximum value of the apGRF curve (maximum over
0-100% of stance).

4.1 OA Clinical Traits

The IDEA study defined several OA disease outcomes and symptoms of interest (Messier et
al., 2009, 2013). These included mechanistic outcomes: knee joint compressive force and
inflammatory biomarkers (interleukin-6 [IL-6] and C-reactive protein [CRP]); and clinical
outcomes: self-reported pain and function, mobility, and health-related quality of life.
Increased knee joint compressive force is known to contribute to cartilage stress and
degeneration and has been associated with patterns in gait biomechanics (D’Lima et aly,
2012). Elevated IL-6 and CRP levels are linked to chronic inflammation and have been
associated with knee OA (Messier et al., 2009). Pain and function were measured using the
Western Ontario and McMaster Universities Arthritis Index (WOMAC) (Alexandersen et al.,
2014). Mobility was assessed using walking speed and distance walked in.a6-minute trial,
while health-related quality of life was evaluated using the SF-36 Physical and:Mental
Component Scales. These IDEA study outcomes were included as dependentvariables in our
regression analyses.

Although not specified as outcomes in the IDEA study, we analyzed-additional biomedical
measures that have been examined in other OA research, Notably, radiographic OA severity
is evaluated using joint space width (JSW) and Kellgren—Lawrence grade (KLG), and both
are key metrics for diagnosing and monitoring disease,progression. Prior studies have
reported associations between gait features and variability in these structural measures (e.g.
Kwon et al. (2019); Jansen et al. (2024)), makingthem particularly relevant to this analysis.
OA is also associated with elevated fall riskyand existing studies have examined fall risk as
an outcome in patients with knee OA (for example, Rosadi et al. (2022)). Furthermore,
anthropometric characteristics (e.g., body weight) and sociodemographic traits (e.g., age, sex,
race) are important factors in OArisk,'Symptoms, and treatment (see, for example, Sims et al.
(2009); Allen et al. (2022); Chang etial, (2024)). These additional measures, together with the
IDEA study outcomes, are summarized in Table 1 of the supplementary material and are
collectively referred to as<Clinical traits throughout the paper. For limb-level measurements
(such as joint compressiveforce, KLG, and JSW), we used the patient-level clinical
aggregates of these measures reported in the IDEA study for our analysis (Messier et al.,
2009, 2013).

Since the IDEAstudy was an 18-month clinical trial of interventions in patients with
advanced knee OA, traits were collected at different intervals throughout the study. For the
purpose of this analysis, focusing on baseline values provides the most consistent basis for
comparison and may better reflect OA variability in the dataset. For example, although
change in JSSW is a key marker of progression, prior studies suggest that knees at similar OA
stages progress at comparable rates (Benichou et al., 2010), making baseline JSW a more
meaningful indicator of disease severity for the IDEA participants. Additionally, using
baseline values avoids the need to account for treatment effects, which are not of interest in
this analysis.



Figure 15 in the supplementary material shows a heat map of missing values in the baseline
data, with blue lines indicating missing entries for each trait; note that JSW has a relatively
high rate of missing data. Baseline JSW measurements were missing for 126 of the 454 IDEA
participants. Although the reasons for these missing values were not reported in the study,
comparison of the other clinical traits between participants with and without baseline JSW
showed no apparent sampling bias. This left 328 participants with JSW data for our analysis.
Due to the large proportion of missing values, analysis involving JSW was restricted to the
complete subset, with gait variables subset accordingly. Missing values for other traits, which
were relatively few, were imputed using the mean of each trait (or the mean rounded to the
nearest integer for integer-valued data). Importantly, there were no missing values for traits
that may be particularly sensitive to imputation, such as categorical traits like sex and race,
and low-resolution ordinal measures like KLG. The treatment of different types of dependent
variables (count, binary, ordinal, continuous) for modeling purposes is discussed in detail in
the following section.

4.2 Nested Model Comparison

We assessed the added value of full-curve gait analysis over conventional discrete Summaries
by comparing nested regression models. Specifically, we evaluated whether full-curve
models provided additional explanatory value beyond conventional discrete'summaries using
a bootstrap-based likelihood ratio test (LRT) approach. Since we treat curves as data objects,
all 2,686 gait curves were used as individual observations, except when modeling JSW,
which was analyzed on the subset described earlier. Each trait was treated as a dependent
variable and a full model fit on the combined set of gait features (full-curve modes plus
conventional discrete summaries), while reduced models were fit using either the full-curve
modes alone or the conventional discrete summaries alone.

The choice of regression model depended on the type of dependent variable: count, binary,
ordinal, or continuous. Number of falls was:the only count-valued trait and was modeled
using Poisson regression. Sex and race were the only binary-valued traits and were fit using
logistic regression. Ordinal logistic regression‘was used for fall-related traits, WOMAC pain
and function, health-related quality of Jife ./measures, and KLG. KLG is a radiographic score
of OA severity, while the other_ordinal traits represent scores from Likert-type scales. All
remaining traits were continuous and fit using linear regression. As detailed in the previous
section, missing trait values'(except for JSW) were imputed using the trait mean. For integer-
valued traits, the mean was‘rounded to the nearest integer, whereas for continuous traits it
was used directly.

To compare nested models, we computed likelihood ratio tests for two cases: (1) a full model
containing both full-curve modes and conventional discrete summaries versus a reduced
model with only the full-curve modes, and (2) the same full model versus a reduced model
with only the conventional discrete summaries. The null hypothesis in each case is that the
reduced model explains the data as well as the full model, while the alternative is that the
additional independent variables in the full model significantly improve model fit. Failing to
reject the null when the reduced model contains the full-curve modes suggests that discrete
summaries add no explanatory value beyond the full-curve modes. Conversely, rejecting the
null when the reduced model contains the discrete summaries is evidence that full-curve
modes provide additional explanatory value not captured by discrete summaries. The same
logic applies when the roles of the two variable sets are reversed. Note that for linear
regression models, the likelihood ratio test is equivalent to the nested-model F-test.



Typically, a LRT statistic is compared to a chi-squared reference distribution, but this relies
on an asymptotic result which assumes independent observations. This assumption is violated
in our dataset due to a clear dependence between the multiple gait curves per patient. To
account for this, we implemented a bootstrap procedure in which patients were resampled
with replacement, and all gait curves associated with a selected patient were included in the
resampled dataset. For each of 1,000 bootstrap resamples, the regression models were on the
selected sample and the corresponding LRT statistic was computed. This resampling
approach reflects the natural dependence structure in the data and generates an appropriate
reference distribution for inference. All other bootstrap analyses in this paper also used 1,000
replications. The significance of the observed LRT statistic from the original data was then
assessed by computing the proportion of bootstrap LRT statistics greater than or equal to the
observed LRT statistic. When no bootstrap replications were larger than the original statistic,

=0.0005.

we defined the p-value to be
2*1000

Figure 6 presents a scatterplot of p-values from the LRTs of nested models, displayed on a
logarithmic scale. The horizontal axis shows p-values for testing full-curve reduced models,
while the vertical axis corresponds to p-values for conventional discrete summary reduced
models. For readability, the axes are labeled on the original scale.

The green plus signs highlight traits for which the full-curve reduced model was not rejected,
while the conventional discrete summary reduced model was rejected;,;meaning conventional
discrete summaries provided no additional explanatory value: The eorresponding traits
include joint compressive force; both measures of radiographic OA severity (JSW and KLG);
all of the anthropometric and mobility measures; and sex and race. Balance confidence, one
of the fall-related traits, was also in this group, though.close to the 0.05 threshold.

The gray circles represent cases in which neither‘reduced model was rejected, which account
for roughly half of the traits. These include both inflammatory biomarkers; self-reported pain
and function; health-related quality of life measures; all but one fall-related trait; and age.
Except for the biomarkers and age, thesestraits are Likert-type scale scores, which are highly
subjective and generally difficultite model. Although inflammatory biomarkers and age are
important in OA, there is no knownidirect relationship with gait biomechanics. Therefore, it
IS unsurprising that more complex gait variables do not provide significant explanatory value
beyond simple discrete summariesfor the gray-circle traits.

No points fall to the left of the vertical red dashed line, meaning there were no instances in
which the full-curve reduced model was rejected while the conventional discrete summary
reduced model was not. Although sex (Male) is near the 0.05 threshold for the full-curve
reduced model,it.is well below the threshold for the conventional discrete summary reduced
model. Overall, these results show that a model based solely on full-curve modes is a
consistently suitable approach.

5 Conclusion

This paper quantitatively demonstrates the extent to which complete GRF curves, compared
with conventional discrete summaries, capture information relevant to disease severity and
clinical profiles of OA, demonstrating the added value of full-curve analysis. We apply a
straightforward nested model comparison to highlight this difference. Furthermore, our



shape-based approach illustrates an intuitive representation of full movement curves that is
applicable in broader analyses and reveals insightful modes of variation. To our knowledge,
this work is among the first to show that analysis of full movement curves yields stronger
associations with OA outcomes and OA-related clinical traits than conventional discrete
summaries.
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Figure 1: Top left panel: Raw vertical ground reaction force (VGR % before

processing, colored by walking speed. Top right: The same curves a scaling and
interpolation of the time axis . The common rainbow color palett ends from fastest
walking speed (red) to slowest (purple). Bottom row panel pGRF curves (left) and

Note that the vertical axis
el is scaled to the data it

mIGRF curves (right) after the same processing of the
(measured in N/kg, i.e. percentage of body weight)
displays.

(2]

@Is: VGRF, apGRF, and mIGRF curves. Examples of atypical GRF
ted, with representative atypical cases colored by walking speed and other
atypical curves lack the expected two-peak vertical structure or have
nterior-posterior components.

Figure 2: Left to ri
curves are highli
curvesing
near-zero, fl



113

. < z
Figure 3: Alignment results for three elasticity parameter values: fully elastin&&;), e
selected A =2, and a more rigid case (A =4). Atypical cases are colore S , While
other curves are shown in gray. The leftmost panels display the warpi ions, and the
second through fourth columns show the aligned curves. The stair %ect in the fully
elastic case (A =0) indicates over-alignment, while 4 =4 prod@ ing functions

tightly close to identity, suggesting insufficient alignment. 'b A =2 balances these
effects.
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Figure 5: Visual representation of phase variation using warpings of the Karcher mean of the
VGRF curves. Warping functions were generated by taking the inverse of the phase PNS
projections added to the 45-degree line. Each panel shows curves colored by corresponding
PNS scores, with cyan indicating the lowest scores and magenta indicating the highest.
Curves are plotted in the order of the corresponding score to avoid over-plotting. The first
panel (first mode) shows an overall shift in timing, with most apparent differences in the
timing of the first peak (maximum heel-strike force) and valley. The second panel (second
mode) shows variability in the closeness of the peaks. The third panel (third mode) represents
an overall phase shift, suggesting earlier timing for curves with a small third bump,before the
first peak (cyan). The fourth panel (fourth mode) emphasizes variability insthe timing of the
second peak, independent of the rest of the curve.
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Figure 6: Scatter plot of bootstrap p-values resulting from LRTs of nested models, shown on
a logarithmic scale. The horizontal axis represents the p-values for testing full-curve reduced

S L ——

0.005 g10 0.(
Reg@lted model: full curve

[ . S S .

Male

+

n

50

SF36 Mental

Number of falls

Age IL6

Fear falling
CRP
WOMAC pain
WOMAC function
Think falling

SF36 Physical

Balance confidenge

-} Joint sgéce width
2 Worstthpee K06
8lack

Hip circumferenda

-+

+ walk distance.

BM1  Waist circumference

" y,\,,,gh’ Walking speed
Joint compressive force

0.100 0500 1.000C

des

models, and the vertical axis'represents those for testing conventional discrete summary
reduced models. For readability, the axes are labeled on the original scale. Gray circles

represent traits where neither reduced model was rejected at this significance level, indicating
that neither variable set adds substantial explanatory value beyond the other. Green plus signs
represent traits.where the full-curve reduced model was not rejected, but the conventional
discrete summary reduced model was rejected, highlighting the added value of the full-curve
approach. Note that the full-curve reduced model was never rejected and is consistently a

suitable approach.




