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A Framework for Inverse
Prediction Using Functional
Response Data
Inverse prediction models have commonly been developed to handle scalar data from phys-
ical experiments. However, it is not uncommon for data to be collected in functional form.
When data are collected in functional form, it must be aggregated to fit the form of tradi-
tional methods, which often results in a loss of information. For expensive experiments,
this loss of information can be costly. This paper introduces the functional inverse predic-
tion (FIP) framework, a general approach which uses the full information in functional
response data to provide inverse predictions with probabilistic prediction uncertainties
obtained with the bootstrap. The FIP framework is a general methodology that can be mod-
ified by practitioners to accommodate many different applications and types of data. We
demonstrate the framework, highlighting points of flexibility, with a simulation example
and applications to weather data and to nuclear forensics. Results show how functional
models can improve the accuracy and precision of predictions.
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1 Introduction
Inverse prediction (IP) modeling is concerned with predicting the

unknown values of independent variables that produced an
observed, dependent response. In classical regression modeling,
the values of the independent variables, often called “covariates’
or “predictors,” are known. The linear regression problem is to esti-
mate the coefficients of a posited linear combination that captures
the relationship between the independent variables and the depen-
dent variable—the observed response. Inverse prediction modeling
reverses the problem by starting with given coefficients (or other
model parameters, usually estimated from training data), then
uses the observed values of the dependent variable to predict the
values of the independent variables that generated the observed
response. IP is used in a variety of fields, including, but not
limited to, forensic science [1], nuclear forensics [2,3], computer
modeling [4,5], chemometrics [6], nutrition tracking [7], and geo-
sciences [8,9].
We consider the problem of IP from the perspectives of a forward

and an inverse model. The general mathematical form of a forward
model associates a q-dimensional response Y= (Y1, Y2, …, Yq)′
with a p-dimensional vector of input variables x= (x1, x2, …, xp)′.
The relationship between the responses and inputs can be expressed
as Y= g(x; θ)+ ɛ, where g(·) is the true underlying relationship
(often expressed as a low-order polynomial for physical experi-
ments, particularly when no theoretical causal relationship is
known), θ is a vector of unknown model parameters, and ϵ repre-
sents a random vector that captures noise in the observed data.
These response surface models [10] are common in many applica-
tions and can be effective ways of summarizing relationships
between inputs and responses.
The goal of the inverse model is to estimate the value of the

unknown variable X*= (X1*, X2*,…, Xp*)′ that most likely produced
a new observation Y*= (Y1*, Y2*,…, Yq*)′. The relationship between
X* and Y* is captured in a model whose parameters are estimated

using a set of training data and whose performance is assessed using
techniques described later. Typically, it is more convenient to
directly construct an inverse model that predicts X*, rather than
inverting a forward model. This approach may violate regression
assumptions, however, as a standard linear regression model
assumes that the independent variable is measured with negligible
error, and it is the response that is associated with some error.
This approach is also not well suited for traditional optimal
design of experiments (DoEx). Direct inverse models can be diffi-
cult to develop from optimal DoEx since most literature does not
consider the inverse problem as the goal to use Y* to predict X*
[11,12].
In model calibration [5,13–15], the goal is to estimate, or cali-

brate, computer model parameters based on a small amount of
observational data and limited, imperfect, computer model runs.
This process is effectively performing IP to determine the values
of computer model parameters which will align closest the com-
puter model runs to the observed data while accounting for the com-
puter model biases (model discrepancy). Verification and
Validation (V&V) [16,17] is closely related to model calibration
and considers assessing accuracy and reliability of computational
models. According to Oberkampf and Trucano [16], verification
is the identification and quantification of errors in computer
models and validation is comparing computer model results to
experimental data, while quantifying errors and estimate uncertain-
ties. The main difference between the IP problem addressed in this
paper and model calibration and V&V is the absence of a computer
model approximating the underlying scientific mechanism. Because
there is no computer model, the model discrepancy term is not
needed since we model the response directly. For IP in this paper,
the “causal”model g(·) is either assumed known through theoretical
consideration, or approximated through a Taylor series expansion
by a low-order polynomial. This approximation is reasonable for
many physical experiments, which often only considers a 2–4
levels for experimental factors. Therefore, the IP framework pro-
posed in this paper is a purely data-driven approach.
Inverse prediction modeling has traditionally been presented

using scalar or vector values for both the dependent and indepen-
dent variables. Many applications, however, handle data in func-
tional form, where the observed values are naturally a function of
time, frequency, location, or some other index [18]. The
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information of interest to the researcher is the function itself, and so
aggregation or statistical summary reduces the usefulness of the
data. In such cases, a functional data approach to inverse prediction
is required. Functional data analysis (FDA) is the branch of statistics
concerned with continuous data such as curves, surfaces, and func-
tions [18,19]. Rather than considering a curve as a set of discrete
data points over time, the entire curve is considered one functional
measurement. Information is contained in the curve rather than at
individual points along its length or in some aggregation of the
function such as the mean. Handling data in this form allow for
better treatment of its true structure and characteristics, such as
the smoothness of the function which implicitly contains correla-
tions that would need to be explicitly modeled otherwise.
In this paper, we present a functional inverse prediction (FIP)

framework for IP problems where the response variable is func-
tional. This framework is general enough to be widely applicable
across research programs and problem domains, allowing the user
to customize details of the forward and inverse models. Even
though the framework is flexible, its structure captures the informa-
tion in functional responses for IP and quantifies uncertainty for the
inverse predictions produced.
This paper is structured as follows: in Sec. 2, we present the FIP

framework at a high level, explaining briefly how the different parts
of FIP fit together. In Sec. 3, details of the FIP framework are
fleshed out, including a description of some possible basis represen-
tations of functional data, forward model forms, and inverse predic-
tion loss functions. Uncertainty quantification (UQ) using the
bootstrap method is also explained in Sec. 3. Section 4 presents a
simulation study demonstrating how the FIP framework works in
practice. Section 5 expands on the simulation study by applying
the framework to a weather and a nuclear forensics problem.
Section 6 discusses the results from the examples, reviews how
the framework can be generalized to different scenarios, and pro-
vides suggestions for future improvements of the framework.
Section 7 summarizes the FIP framework and results.

2 Functional Inverse Prediction Framework
The FIP framework is a general process using functional

response data to perform IP on scalar independent variables. To
ensure maximum flexibility, the FIP framework outlined here is
developed with a minimal set of assumptions and does not rely
on specific conditions or models. Figure 1 displays a diagram of

the FIP framework. Section 3 details the specifics of each portion
of the framework and gives examples and suggestions for modeling.
The framework is divided into two phases: (i) the training phase and
(ii) the inference phase. In the training phase, the forward model is
fit using training data such as data already collected for the purpose
of understanding the relationship between the responses and the
independent variables. During this phase, uncertainty in the
model is also quantified to characterize the variability associated
with the modeled relationship. In the inference phase, the model
is used for inverse prediction. When new response data are
observed, they are run backwards through the model to predict
the values of the independent variables that most likely generated
the observed response. As in the training phase, uncertainty in the
inverse predictions is also quantified.
The training phase consists of four parts:

(1) Represent observed functional data as functional objects
using basis functions.

(2) Choose and estimate the forward model.
(3) Bootstrap the forward model to quantify uncertainty in the

forward model parameters.
(4) Evaluate the model using cross validation.

The training phase offers many opportunities for tailoring the
framework to a specific problem. Discrete, observed measurements
must be represented in some function space using basis functions
that capture the smoothness of the response. The form and
number of bases as well as the smoothing parameters can be
chosen according to the goals of the specific application. The
form of the forward model is also the modeler’s choice: both
linear and non-linear options will be introduced in Sec. 3.2. The
last two steps of the training phase—uncertainty quantification
and model validation—contribute to model interpretation. Uncer-
tainty quantification of the forward model generates a distribution
of values for the forward model parameters, which will then be
used in the inference phase to generate inverse prediction intervals.
Model fit is assessed through cross validation techniques, and
common measures are defined in Sec. 3.4.
The inference phase consists of two parts:

(1) Estimate the inverse model.
(2) Assess uncertainty in inverse predictions using a modified

bootstrap procedure.

In the inference phase, values of the independent variables are
estimated from new observed data by minimizing the difference
between the new dependent variable values and a functional predic-
tion from the forward model, using model parameters estimated in
the training phase. The minimization problem is solved using opti-
mization techniques, which can be tailored to the specific problem,
along with the associated loss function. Several options for loss
functions are described in Sec. 3. To assess the uncertainty in the
inverse predictions, we employ a modified bootstrap procedure
using Monte Carlo simulations from the distributions of the
forward model parameters generated in the training phase.

3 Components of Functional Inverse Prediction
Framework
This section provides details for each of the steps in the FIP

framework described in the previous section.

3.1 Basis Functions. Data can be functional in a theoretical
sense, but observed data is always a collection of discrete, finite
points. An essential assumption of FDA is that this collection of dis-
crete points is representative of the underlying function of interest.
The framework described here involves response data that is func-
tional in a theoretical sense, and so the first step is to estimate a
function from the observed discrete response data. This can be
accomplished using basis functions to create a representation of
the observed response data in some functional space.

Fig. 1 FIP Framework. This is the general process to ensure for
doing IP with functional response data.
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Let {Vijk}
ni
k=1 be a vector containing ni measurements on observa-

tion i of response variable j. We would like to represent {Vijk}
ni
k=1 on

a functional space, as Vij(t), for some continuous domain t:

Vijk = Btζ + δijk (1)

where form basis functions,Bt is an ni bymmatrix of fully specified
basis functions (note the change in notation from k to t: the rows of
this matrix are the m values of the basis functions evaluated at
observation k), ζ is the m-element vector of coefficients on the
basis functions, and δijk is a mean-zero error term. Using this
approach, the discretely collected data {Vijk}

ni
k=1 can be represented

in functional space with argument t:

Vij(t) = b(t)
′ ζ̂ (2)

where the m-element vector of basis functions is changed from dis-
crete representation Bt to functional representation b(t)′ and ζ̂ are
the coefficients on the basis functions estimated (for example)
using ordinary least squares. Notice that the error term δijk is
dropped: it is common to assume that all noise is measurement
noise and thus not part of the true response function.
Many options for the basis functions have been described in the

literature, including Fourier basis [18], power series basis [18],
B-splines [20], functional principal component analysis (fPCA)
[18,19], and wavelets [21]. The choice of basis is left to the
modeler, and this choice should consider the application. For
example, applications whose underlying mechanism is expected
to be relatively smooth might use B-splines, whereas applications
containing data with extensive random microstructure might use
wavelets.

3.2 Forward Model. With the response data represented in
functional space alongside a vector of p independent variables x,
the relationship between the two can be modeled using a suitable
forward model. The forward model represents the “cause and
effect” part of the framework, where the p-vector of independent var-
iables xi, i= 1, …, n, are the causes, the functional dependent vari-
ables Yij, i= 1, …, n, j= 1, …, q, are the effects, and the
relationship between the two can be treated as either known or
unknown. Although forward models are often characterized as
“cause and effect”, the relationship between the response and the
independent variables need not be causal nor is a designed experi-
ment needed to use the FIP framework.

3.2.1 Forward Model for Scalar Response. Because functional
models add a layer of complexity, we first introduce forward mod-
eling for the case of scalar responses and vectors of independent
variables. Forward models for a scalar response can be expressed
as follows:

Yij = gj(xi; θj) + εij, i = 1, . . . , n; j = 1, . . . , q (3)

where gj(·) represents a functional relationship, θ is a vector of
unknown model parameters, and ɛij, i= 1, …, n; j= 1, …, q are
independent and identically distributed (iid) random variables
with mean zero, and a finite, constant variance. The standard devia-
tion for the jth component of ɛi is σj and the correlation between
each ɛij is assumed to be zero. The subscript on gj(·) allows for
the functional form of gj(·) to change based on response variable j.
The p elements in the vector xi are the independent variables for

which inverse prediction is desired. The parameters, θj are fixed,
unknown values and are commonly estimated with least squares
or maximum likelihood techniques. In practice, sample sizes are
finite and the assumed likelihood is only an approximation of the
true data model. The likelihood function and the form of g(·) are
determined by both the data and subject matter knowledge to
ensure interpretability and a good model fit. As with all modeling
exercises, the model should be validated by assessing the fit of
the model, the residual distributions, and the quality of the predic-
tions. Several candidate forms of gj(·) may be explored with

variable selection methods such as criterion-based methods
(Akaike information criterion or Bayesian information criterion)
or step-wise procedures: independent variables that may not be
related to the response may be considered for removal from the
model. For the scalar case, in order for the inverse model to generate
unique predictions, it must be the case that q≥ p [2].

(a) Multivariate Adaptive Regression Splines. Multivariate
adaptive regression splines (MARS) is a flexible non-linear model-
ing approach for scalar or vector responses, in which the function
gj(·) in Eq. (3) takes the form of an expansion of basis functions that
are hinge functions of the independent variables [22]. The MARS
forward model for a scalar response with m basis functions is

Yij =
∑m
l=1

αlBl(xi) + εij, i = 1, . . . , n, j = 1, . . . , q (4)

where Bl(xi) is a basis function on the independent variables xi, αl is
the coefficient for the lth basis function, and ɛij is defined the same as
for Eq. (3). The number of basis functions used,m, is a preset tuning
parameter. When the responses are vectors, Eq. (4) reduces to a mul-
tivariate model. Because of their flexibility, MARS models can
capture highly nonlinear relationships—an advantage when the
underlying relationships between independent variables and
responses is complex or involves non-smooth functions.

3.2.2 Forward Model for Functional Response. Forward
models for functional responses are more complex than the scalar
case, because the effect of scalar independent variables on entire
functions must be determined. The model parameters are often
themselves functions describing changes over the functional
domain. As discussed in Sec. 3.2.1, forward models with scalar
responses require that the number of response variables is larger
than the number of independent variables. However, because of
the richness of the responses and the flexibility of functional data,
FDA allows for potentially relaxing this assumption such that a
smaller number of responses may be sufficient to uniquely deter-
mine the values of the independent variable [3].
A functional forward model can be written as

Yij(t) = gj(xi; θj(t)) + εij(t); i = 1, . . . , n; j = 1, . . . , q (5)

where the regression coefficients θj(t) are functions of the domain t
and ɛij(t), i= 1, …, n; j= 1, …, q are iid, mean-zero, second-order
stationary stochastic processes. Equation (5) looks almost the same
as the scalar version Eq. (3), with the only differences being the
response and model parameters are functions. Many linear and non-
linear models can be cast in the general model framework of Eq. (5),
including functional linear regression, described later.

a Functional Linear Regression. In functional linear regres-
sion, the function g(·) in Eq. (5) takes the form of a linear combina-
tion of regression coefficients and independent variables.
Functional linear regression is conceptually similar to standard
linear regression; however, in functional linear regression the
response variables are functions of the domain t rather than
scalars. As a result, the regression parameters are also functions
of t. The functional regression model is

Yij(t) = x
′
iβj(t) + εij(t); i = 1, . . . , n; j = 1, . . . , q (6)

where the p regression coefficients in the vector βj(t) are functions
of the domain t and ɛij(t) is an iid, mean-zero, second-order station-
ary stochastic process, the same as for Eq. (5). Computationally, to
estimate the regression coefficient functions βj(t), the response,
Yij(t), is evaluated at a large number of values of t and ordinary
least squares is performed for each t to obtain estimates of the
regression coefficients at each t. Functional linear models are
simple yet powerful statistical models whose parameters are
easily interpreted. Additionally, the small number of parameters
reduces the danger that the model will be overfit.
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3.3 Inverse Model. The inverse model generates predictions
for the p independent variables in x for newly observed response
data Y* by minimizing with respect to x the distance between the
fitted forward model’s estimated response Ŷ , and Y*.

3.3.1 Inverse Model for Scalar Response. Given the estimated
parameters θ̂j and new responses {Y∗

j }
q
j=1, we estimate X* with x̂∗.

Note the capitalization of unobserved X* indicates it is now treated
as a random variable. The best estimate is the value that minimizes a
specified loss function and describes the penalty for estimating Y*
with ŷ∗:

x̂∗ = argmin
X∗

∑q
j=1

L(ŷ∗j , Y
∗
j ) (7)

where L(·) is the loss function and ŷ∗j = gj(X∗; θ̂j). The optimization
in Eq. (7) is said to be the “inverse model.” The most commonly
used loss function is the squared error loss, where the minimization
criterion is

x̂∗ = argmin
X∗

∑q
j=1

(ŷ∗j − Y∗
j )

2 (8)

To keep large-magnitude responses from dominating this sum, all
responses are usually normalized to a common scale.

3.3.2 Inverse Model for Functional Response. For inverse pre-
diction, we assume that the newly observed response functions were
generated from a single p-element vector of independent variable
values (e.g., a single set of processing conditions) X*. To predict
the values of the independent variables X* from the observation’s
q functional responses, given θ̂j(t), j = 1, . . . , q and newly
observed functions Yj*, the functional inverse model is

x̂∗ = argmin
X∗

∑q
j=1

∫
L(ŷ j(t), Y∗

j (t))dt (9)

where ŷ j(t) = gj(X∗, θ̂j(t)) with loss function L(·). For example, the
squared-error loss for functional data is

x̂∗ = argmin
X∗

∑q
j=1

∫
ŷ j(t) − Y∗

j (t)
( )2

dt (10)

In practice, the integral in Eq. (10) is approximated with a sum over
a large number of discrete values of t.

3.4 Uncertainty Quantification of Inverse Predictions. The
inverse prediction model in Eq. (9) will always generate a unique
predicted value for the independent variables. However, it does
not provide an assessment of uncertainty on that prediction.
Given the complexity and diversity of inverse prediction models
compatible with this framework, bootstrap procedures are a
logical choice for providing uncertainty estimates [23]. The modi-
fied bootstrap procedure to provide uncertainty quantification for
inverse prediction is as follows: let (x,Y) be training data consisting
of n observations, and Y* be newly observed functional response
data with which to predict unobserved independent variables X*.
Then, for b= 1, …, B:

(1) Create the bth bootstrap sample (xb, Yb) by sampling n times
with replacement from (x, Y),

(2) Train forward model in Eq. (5) with (xb, Yb), to generate θ̂b

(3) Perform inverse prediction in Eq. (9) with Y* and θ̂b and
record prediction x̂∗b.

For a vector of p independent variables, prediction standard
errors for the sth, s= 1, …, p variable are given by computing the
standard deviation of {x̂∗bs }Bb=1. Prediction intervals can be con-
structed using the same procedure, such that the true value for xs
will lie between the α/2 and (1− α/2) quantiles of {x̂∗bs }Bb=1

approximately (1 − α)% of the time. The value of B should be
large (10,000 is generally sufficient in our experience.)

3.5 Model Performance and Assessment. The predictive
capabilities of the model can be assessed using cross validation
(CV) procedures. Using k-fold CV, the training data is grouped
into k sets of equal size, then the model is trained using k− 1 sets
and evaluated for performance on the set that has been withheld.
This process is repeated for each of the k sets, prediction perfor-
mance is quantified at each step with a loss function L(·), and
overall performance is measured by the average loss over the k
sets. Leave-one-out CV (LOOCV) is a special case of k-fold CV
where k= n, the sample size. In the presence of large quantities of
data, k-fold CV is preferred over LOOCV in order to reduce com-
putational costs.
Different applications can call for different loss functions

depending on the researcher’s goals. The root mean-squared error
(RMSE) loss function is a common choice for evaluating predictive
ability:

RMSE(x̂s) =

�����������������∑n
i=1 (x̂ij − xij)2

n − 1

√
(11)

Different candidates for the forward model can be compared
using CV RMSE: the model with lowest RMSE has the best predic-
tive performance in terms of squared-error loss. When using RMSE
to evaluate a single model, the scale of the data values must be con-
sidered. If the RMSE is higher than the standard deviation of the
data, a simple intercept-only model performs better than the
model under consideration. Because raw values of RMSE are
hard to interpret, centering and scaling independent variables x
before modeling is helpful, since a value of 1 describes the variabil-
ity associated with using the sample mean as the inverse prediction.

4 Simulation Study
For functional data analysis, we assume the data are generated by

an underlying continuous process that can be expressed in functional
form. Nevertheless, in practice we observe and record discrete
response values, and the data used in model computations are also
necessarily discrete. In standard multivariate analysis, the data
values are used directly for model computations; the response
values fed into the model are just the observed values. In functional
data analysis, the discrete response data are first represented in func-
tional form using basis functions, and the discrete values of those
basis functions are used in the model computations. In this section,
we illustrate the FIP framework using two forward model forms—
functional linear regression and MARS—and compare the results
of the functional models to a standard regression approach in
which the response data are not represented in functional form.
Let x1= (x11, x21, …, xn1)′ be the first independent variable,

where {xi1}
n
i=1 take values on the sequence from 1.1 to 3.0, by

0.1. Similarly, let x2= (x12, x22,…, xn2)′ be the second independent
variable, where {xi2}

n
i=1 take values on the sequence from 0.5 to 2.4,

by 0.1, in random order. Randomizing the order of the values in x2
ensures there is no correlation between x1 and x2. The functional
observations, Y1(t)= (Y11(t), Y21(t), …, Yn1(t))′, Y2(t)= (Y12(t),
Y22(t)…, Yn2(t))′ are generated by Eq. (12) and (13), respectively,

Yi1(t) =
∫t
−∞

1���
2π

√
xi1

e
− 1
2x2
i1

u2

du (12)

Yi2(t) = xi1 sin (xi2t) (13)

For computational purposes, we evaluate a large number of
observations, nt, over the domain t of each function, generating
an n× nt observation matrix for each response variable Y1(t) and
Y2(t). Figure 2 plots Y1(t) for t∈ (− 4, 4), with each line colored
by its respective x1 value. Figure 3 plots Y2(t) for t∈ (−2, 2),
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with each line colored by its respective x2 value. Inspection of these
plots shows clearly the relationship between the shape of the
response function and the value of the independent variable.
We fit both a functional linear and a MARS forward model

using the two independent variables and a basis representation
of the two observation matrices. In this example, the n× 2
matrix of response values used in the computation are given by
the scores from the first axis of an fPCA decomposition of the
two observation matrices (although other basis representations
can be used). To compare the FIP model to a model that doesn’t
consider the functional nature of the data, we also used the
simple row means of the two n× nt observation matrix, concate-
nated into an n× 2 matrix, as the response. The row mean is the
discrete equivalent of the expected value of the function that

generated the observations,
	
t Y(t)dt. The mean-only model is

equivalent to the usual multiple regression model for the linear
model case, or a standard MARS model, neither of which
account for correlation in the response data due to “nearness” on
the functional domain t.
Table 1 shows the RMSE of the IP evaluated using LOOCV. The

left side shows results for the functional model and the right side
shows results for the mean-only model, with prediction standard
errors in parentheses. The mean-only model fails to recover the rela-
tionship between Y(t) and x, while the functional model performs
well. Both the linear and MARS models show good prediction per-
formance on x1, but x2 is more difficult. MARS outperforms the
linear model in both cases, as expected since the generating func-
tions are non-linear. The prediction standard errors for the FIP

Fig. 2 Simulated functional responses Y1(t), each colored by its respective x1 value. Gener-
ated according to Eq. (12).

Fig. 3 Simulated functional responses Y2(t), each colored by its respective x2 value. Gener-
ated according to Eq. (13).
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model are consistent across the linear and MARS forward models,
with very little error in predicting x1.
In this simple example, taking the mean of the response and

ignoring the functional nature of the data would lead to extremely
poor inverse predictions. The next section applies the FIP frame-
work to real data.

5 Applications
In this section, we apply the FIP framework to two empirical

datasets: the Canadian weather data presented in Ref. [18], and orig-
inal data collected for a nuclear forensics FIP project. In both
applications, we compare FIP to the mean-only method described
in Sec. 4.

5.1 Canadian Weather. Average daily temperature and pre-
cipitation values from 35 cities in Canada are included in the R
package fda [24]. Figure 4 displays average monthly temperatures
colored by the latitude of the respective city, while Fig. 5 displays
monthly averages for precipitation. Using the FIP framework, we
would like to determine through inverse prediction the latitudes
and longitudes of the 35 cities.
Let Yi1(t) be the average monthly temperature for city i, i= 1,…,

35, Yi2(t) is the average monthly precipitation for city i, xi1 is the
latitude of city i, and xi2 is the longitude of city i. We first obtain
fPCA representations of the temperature and precipitation functions
and use the first four principal components to fit both a linear and
MARS functional forward model. As in Sec. 4, we also fit a mean-

only model for comparison. Latitudes and longitudes were stan-
dardized to make interpretation of the RMSE values easier.
Table 2 displays RMSE values and prediction standard errors for

the inverse predictions using LOOCV and bootstrapping. Overall,
the functional approach generates more accurate predictions and
smaller standard errors than the mean-only model. Latitude predic-
tions are better than longitude predictions for both modeling
approaches and both forward model types. The linear model actu-
ally performs better than the flexible MARS model, indicating
that the more complex model may overfit the data, even after
penalization.

5.2 Nuclear Forensics. Nuclear forensics is a field of foren-
sics which focuses on identifying and attributing to a set of process-
ing conditions interdicted special nuclear materials such as
Plutonium (Pu). Knowing the processing conditions used to
produce, the interdicted material is helpful in determining where
the material originated. We apply the FIP framework to several
types of functional data generated by this nuclear forensics applica-
tion, showcasing several ways to cast difficult data structures into
functional space.
Experts at Pacific Northwest National Laboratory conducted an

experiment which replicated historical and modern Pu processing
methods and conditions. We analyze a subset of the data consisting
of 24 runs, where each run employed the same set of three process-
ing conditions (independent variables) whose values varied across
runs. We denote the processing conditions Condition 1, Condition
2, and Condition 3. For each run, the resulting Pu material was
imaged with a scanning electron microscope (SEM) to generate
images of the Pu particles. Each run i produced ni images, and
each image contained np particles. The minimum number of parti-
cles imaged per run was 118 and the maximum was 831.
The images were segmented using Los Alamos National Labora-

tory’s Morphological Analysis for Material Attribution (MAMA) soft-
ware [25]. Segmentation post-processing extracts the unique
particles and generates measurements for characteristics such as
particle area and aspect ratio. Figure 6 shows an example SEM
image from the PNNL experiment containing multiple particles.

5.2.1 Particle Characteristics. For each particle, MAMA mea-
sures particle area, aspect ratios, convexity/circularity, and gradi-
ent/shadings. As mentioned in the previous section, each

Table 1 RMSE for IP of simulation study. Left side has results
for functional model and right side for mean-only model,
standard errors are in parentheses

Functional Mean only

x1 x2 x1 x2

Linear 0.06 (0.04) 0.57 (0.26) 1.80 (1.27) 1.56 (1.20)
MARS 0.02 (0.04) 0.51 (0.26) 0.97 (1.28) 0.97 (1.18)

Note: Mean-only model fails to see relationship between Y(t) and x while
functional model performs well.

Fig. 4 Monthly average temperatures for 35 cities in Canada, colored by the latitude of the city

011002-6 / Vol. 23, FEBRUARY 2023 Transactions of the ASME



experimental run contains multiple images with multiple particles in
each image, resulting in hundreds of MAMA measurements for a
single experimental run and set of processing conditions. These
hundreds of observations can be conceptualized as a probability dis-
tribution of responses, and the functional analysis relates the cumu-
lative distribution function (CDF) of the observations Y, Fy(t)=P(Y
≤ t), to the set of processing conditions employed during each run.
The center, spread, and shape of various MAMA measurements can
then be related to the processing features instead of only the
mean. An approach introduced by Ref. [3] uses the distribution
data by developing a forward model that regresses the CDFs of
MAMA measurements on their respective processing conditions
through functional regression.
To convert distributional data to functional, let {Yijk}

ni
k=1 be a

vector of observations from experimental run i= 1, …, n and
response variable j= 1, …, q of length ni corresponding to a
vector of processing conditions xi. To compare distributions
across runs, the empirical CDF of {Yijk}

ni
k=1 can be estimated using

Yij(t) =
1
ni

∑ni
k=1

I(Yijk ≤ t) (14)

where Yijk represents the kth element in Yij, t is the domain for the
CDF of Yij, and I(·) is the indicator function. To visualize the rela-
tionship between distributions and processing conditions, Fig. 7
shows the CDFs of particle area convexity for each run, colored
by the value of processing Condition 1. Certain relationships are
visible; for example, higher values of Condition 1 lead to stronger
convexity in the response curve.

5.2.2 Particle Shape. An alternative approach to relating dis-
tributions of particle characteristics to processing conditions is by
using the particle’s shape, since different values of the processing
conditions can result in different particle shapes. Shape analysis is
a relatively new field, and we direct interested readers to
Ref. [19] for a detailed introduction.
The MAMA segmentations extract the boundaries (shape) of each

particle, and these 2D boundaries are analyzed using the elastic
shape framework described in detail in the Appendix. In
summary, particle shapes within a run are aligned to their Karcher
mean, a process which returns a set of warping functions describing
the sampling variability along the curves and a set of rotation matri-
ces representing rotational variability of the curves. This has the
effect of stretching/compressing and bending parts of the curves
to match each other in an optimal fashion.
The optimally aligned and rotated curves are represented using

the square-root velocity functions, qika(t) for particle a in image k,
k= 1, …, ni from experimental run i, which removes the effect of

Fig. 5 Monthly average precipitation for 35 cities in Canada, colored by the latitude of the city

Table 2 RMSE for IP Canadian weather application

Functional Mean only

Latitude Longitude Latitude Longitude

Linear 0.47 (0.22) 0.70 (0.53) 0.52 (0.32) 0.99 (0.73)
MARS 0.50 (0.37) 1.07 (0.74) 0.84 (0.46) 1.83 (0.90)

Note: Left side has results for functional model and right side for mean-only
model, standard errors are in parentheses. The mean-only model fails to see
relationship between Y(t) and x while the functional model performs well.

Fig. 6 Example of SEM image of Pu from PNNL experiment
showing multiple particles
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scale. For each shape, a shape-PCA is computedwhere the functional
principal shape components are used as a basis for the forward
model. Note that, in contrast to the particle characteristics described
in the previous section, the analysis of particle shapes is conducted at
the particle level rather than the run level. The response matrix there-
fore contains

∑n
i=1 ni rows, and in the matrix of independent vari-

ables (processing conditions), the values for each run i are repeated
ni times. This framework results in metrics, statistics, and models
that are invariant to arbitrary rotation, scaling, translation, and
re-parametrization of individual curves. For a more complete
review, the reader is referred to Refs. [19,26]. This technique is an
extension of the functional work in Refs. [27,28] and provides the
same advantage of simultaneous registration and comparison of the
shapes of the curves with respect to the elastic metric. Figure 8
shows the first four principal directions for one of the experimental
runs. The modes of shape variation can be seen with respect to the
black middle shape, the overall mean.

5.2.3 Particle Texture. Crystal structure and habit can be
linked to varying processing conditions associated with final Pu
material. Texture, as captured by SEM imagery, is characterized
by local and non-local features that are a function of the intensity

of the pixels in the images. Collectively, these features define a
potential texture “signature” related to the processing conditions
under which the material was produced. An example showing par-
ticle images from two different processing conditions is shown in
Fig. 9. Informally, the two particle textures may be described as
“rough” and “flat.”
The texture model uses a dataset of segmented SEM images

taken over the 24 runs in the experimental design. The particle
images within each run capture the distribution of Pu texture char-
acteristics produced under those conditions. The three particles in
Fig. 6, for example, were produced from the same experimental
run and therefore three particle-level texture samples for those pro-
cessing conditions.
Image filters used as a preprocessing step can capture features of

particle texture that may not be reflected in the raw pixel intensities
of the SEM image. A standard deviation (SD) filter, which calcu-
lates the SD of nearby pixel values in a neighborhood around an
input pixel, acts as an edge detector highlighting neighborhoods
of high variance with the images. Formally, let Zhw be the raw
value of some input pixel z from an SEM image with dimension
H×W. The local standard deviation around this input pixel is
calculated using the raw pixel values from a square neighborhood
around z, that is, the set of pixels zh′w′ where h′ = h− u, …, h+ u
and w′ =w− u, …, w+ u. We let u= 1, resulting in a 9 × 9 pixel
neighborhood, with the input pixel for which the SD is calculated
in the center. For pixels along the image’s border, padding values
are added using a mirror reflection. Using this procedure, each
input pixel z from image k, k= 1,…, ni from run i has a correspond-
ing local SD value Yikz. The CDF of these SD values (Eq. (14)) for
each particle can then be used as a response function.
Considering the images in Fig. 9, the “rough” particle has more

high-variance neighborhoods (i.e., more “edges’) than “flat parti-
cles,” resulting in characteristically different CDFs of local SD
values. As a result, empirical CDFs estimated from the local SD
values can be used effectively as a response function which
relates back to the material processing conditions. However,
unlike the estimation procedure for empirical CDFs described in
Sec. 5.2.1 in Eq. (14), the functional response from the local SD
values are CDFs produced at the particle level rather than the run
level, similar to the procedure for shape analysis.

5.2.4 FIP Framework Applied to Nuclear Forensics
Responses. For this application, we use an fPCA basis, choosing

Fig. 7 Run level CDFs of MAMA measurements used in model colored by value of Condition 1

Fig. 8 First four principal directions of the shape PCA: (a) PC 1,
(b) PC 2, (c) PC 3, and (d) PC 4
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the number of fPC basis functions to ensure >90% of the variability
is explained by the fPCs. In the case of the particle characteristics
analysis, the first three fPCs of the CDFs of the four response var-
iables for each run are used as the model response. For the particle
shape analysis, the first 74 fPCs from the shape of each particle are
used as the model response. Finally, for the particle texture analysis,
the first five fPCs from the CDF of texture of each particle are used
as the model response. For the forward models, we implement both
the functional and mean-only linear andMARS models described in
Sec. 3.2.2. The general inverse prediction procedure is the same for
both linear and MARS forward models, and both are optimized
using squared error loss as in Eq. (10).

5.2.5 Results. We evaluate model performance using metrics
of predictive ability as in Sec. 3.5 and generate prediction uncertain-
ties as described in Sec. 3.4. A slight modification to the bootstrap
procedure was made due to the small sample size: the
Fractional-Random-Weight Bootstrap [29] samples weights from
a Dirichlet distribution that sum to the sample size, and these
weights are assigned to each observation for the forward model esti-
mation, for each bootstrap sample. This allows for the original
experimental design and still measure uncertainty without extrapo-
lation. Tables 3 and 4 show RMSE for the linear forward model and
the MARS forward model, respectively, for each of the characteris-
tic response functions. Standard errors for predictions are in

parentheses. Overall, the functional response model that uses the
cumulative distribution function performs best, with similar
RMSE for linear and MARS forward models. In general, the
more flexible MARS does not perform better than the linear
model. The results from the FIP framework compared to the mean-
only model show some evidence that the functional representations
of the data at the run level are informative for IP. However, the rel-
atively large prediction errors for all models indicate that this data is
noisy. The poor performance of the particle-level approaches could
be due to the considerable particle-to-particle variation, and a more
complex model that includes a random effect for run may improve
performance.

6 Discussion
The simulation study and applications demonstrated the FIP

framework in use, and how a functional approach compares to a
simple aggregation of the data through the mean summary statistic.
The FDA approach to IP improved predictive performance, uncer-
tainty quantification, or both. This framework is useful not only in
situations where IP is needed but can also be used as a tool in scien-
tific inference, as FIP models which perform well can suggest new
scientific hypotheses about relationships seen empirically in strong
IP results.
There are several avenues for future work on this framework. The

basis representation of the functional response does not consider the
error in the choice of basis functions or the basis approximation of
the response function; this error could propagate forward to increase
the prediction uncertainties. Future modifications of the framework
will allow for multivariate response models that account for corre-
lations among response functions, as addressed in Sec. 5.2.5, allow-
ing the framework access to more data to improve predictions and
uncertainty estimates. Extending FIP to a Bayesian framework
would also be useful, as posterior distributions can be used to esti-
mate precision without the need for bootstrapping, and subject
matter knowledge can be incorporated through priors.

7 Conclusion
This paper presented a framework for inverse prediction in sce-

narios where response data are functional. The FDA approach max-
imizes the information contained in the data to provide the inverse
model with greater prediction power. The framework was created to
be flexible and customizable to many different problems and appli-
cations. Different methods for representing functional data through
basis functions are introduced, and the FIP framework does not

Fig. 9 Particle textures from two different processing: (a) flat particle and (b) rough particle
conditions

Table 3 RMSE of inverse predictions for linear models using CV
with standard errors in parentheses

Measure Condition 1 Condition 2 Condition 3

Distributional 0.84 (0.32) 0.73 (0.28) 0.96 (0.27)
Shape 1.34 (0.16) 1.19 (0.13) 1.19 (0.20)
Texture 1.18 (0.07) 1.45 (0.10) 1.17 (0.08)
Mean-only 1.40 (0.13) 0.84 (0.08) 1.16 (0.10)

Table 4 RMSE of inverse predictions for MARS models using
CV with standard errors in parentheses

Condition 1 Condition 2 Condition 3

Distributional 0.94 (0.17) 0.82 (0.26) 0.96 (0.09)
Shape 1.00 (0.69) 1.28 (0.25) 0.97 (0.60)
Texture 1.24 (0.39) 1.19 (0.11) 1.25 (0.30)
Mean-only 0.94 (0.07) 0.99 (0.23) 1.10 (0.30)
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force a particular specification. Examples of methods to represent
the data as functional are given in both the simulation study and
in applications to weather and nuclear forensics. The forward
model, which is sometimes thought of as representing the “cause
and effect” relationship, is also left to the analyst to tailor to the
application; we present two options but many others are available.
For the inverse model, we present a general optimization procedure,
but again allow for customization through different loss functions.
Finally, the FIP framework quantifies uncertainty using bootstrap
procedures, providing prediction intervals for inverse predictions.
The framework presented for inverse prediction modeling with
functional data provides researchers with a straightforward,
general approach that can be applied to a variety of specialized
inverse prediction problems.
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Nomenclature
t = reserved as general argument for functional data
ŷ = a hat over a Latin letter indicates a predicted value

Y* = values with an asterisk indicate an unobserved or future
value (not used to train model)

Y(t) = values that show as a function of t are functional data
variables

θ = greek letters are unknown model parameters to be estimated
unless otherwise stated

θ̂ = a hat over a Greek letter indicates a parameter estimate

Appendix: Elastic Shape Analysis of Open Curves
Consider an absolutely continuous, parametrized curve

ξ : [0, 1] → R2. Define the set of all re-parameterizations as the
set of diffeomorphisms

Γ = {γ : [0, 1] → [0, 1]|γ(0) = 0, γ(1) = 1, γ increasing} (A1)

By definition, γ and γ−1 are absolutely continuous. Define a
re-parameterization of the curve ξ as the composition ξ ○ γ,
where γ∈Γ. A major problem that arises under this framework is
if the distance between two curves ξ1 and ξ2 are taken using

standard metrics. Most papers use the standard L2 metric ‖ξ1−
ξ2‖ to find the distance. However, the standard L2 metric is not iso-
metric with respect to the group action of Γ. That is, for γ∈Γ,
‖ξ1 − ξ2‖ ≠ ‖ξ1 ◦ γ − ξ2 ◦ γ‖. Since there is the desire to be invari-
ant to re-parameterization and the L2 metric is not isometric with
respect to the group action, it is not possible to compute distances
that are invariant to re-parameterization. In order to achieve this
property, Srivastava et al. [26] introduced a novel representation
of curves. They represent a shape by its square-root velocity func-
tion (SRVF)

q(t) =
ξ̇(t)������
|ξ̇(t)|

√ (A2)

The warping of q is given by group action as (q, γ) ≡ (q ◦ γ) ��̇
γ

√
. It is

easy to show that for two SRVF’s q1 and q2, ‖q1− q2‖= ‖(q1, γ)−
(q2, γ)‖. Therefore, the action of the group Γ is isometric on the
space of SRVFs.
Another important motivation for the SRVF representation is that

elastic Riemannian metric (a metric that measures a combination of
stretching and bending to optimally deform on curve into another) is
equal to the standard L2 metric, and therefore much simpler and
easier to compute. Since |q(t)|2 = |ξ̇(t)|, the square of the L2-norm
of any SRVF is equal to the length of the corresponding curve ξ.

That is, ‖q‖2 = 	1
0|q(t)|2 dt =

	1
0|ξ̇(t)| dt = Lξ. Therefore, the L2

norm of SRVF’s of unit-length curves is one, and the space of
such curves is a Hilbert Sphere (unit sphere in infinite dimensional
function space)

S
∞ = {q ∈ L2([0, 1], R2)|‖q‖ = 1} (A3)

The space S∞ represents the SRVF’s of all unit-length open curves,
and once endowed with the L2 Riemannian metric, becomes a Rie-
mannian manifold.
A geodesic on a Riemannian manifold is defined as shortest

length path with respect to the chosen metric between two points
on the manifold. Geodesic distance is the length of the path that
is used as the distance between shapes. Since the geometric struc-
ture of the manifold is known, S∞, the geodesic can be expressed
analytically. With respect to the L2 metric, the geodesic between
two points on the unit sphere is defined as the arch segment of
the great circle that passes through those two points. Therefore,
the geodesic distance is the arc length of this path and mathemati-
cally the geodesic path ν : [0, 1] → S∞ with ν(0)= q1 and ν(1)=
q2 is given by

ν(τ) =
1

sin (θ)
[ sin ((1 − τ)θ)q1 + sin (τθ)q2] (A4)

where θ= cos −1(〈q1, q2〉) is the arc length between q1 and q2 and
〈·, ·〉 is the L2 inner product. Therefore, the geodesic distance is
defined as dS∞ = θ. Figure 10 shows a diagram of a geodesic
path and distance between two points on S∞.
The space S∞ is called the pre-shape space of elastic curves, as

the invariants of translation and scaling have been removed.

Fig. 10 A geodesic between two points on S
∞
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However, the rotation and re-parameterization have yet to be
removed. The rotation, or special orthogonal group, SO(2) defines
the usual two-dimensional rotations around a point and acts by
isometries with respect to the L2 metric. Therefore, the quotient
space SOs = S

∞
/(SO(2) × Γ) is the similarity invariant, elastic

shape space of open curves. Elements of the quotient space are
equivalence classes [q] = closure{O(q, γ)|O ∈ SO(2), γ ∈ Γ},
where q ∈ S

∞. Therefore, the distance between orbits [q1] and
[q2] in the shape space is

dSOs ([q1], [q2]) = inf
O∈SO(2),γ∈Γ

dS∞ (q1, O(q2, γ)) (A5)

and dS∞ is the geodesic distance. The optimization in Eq. A5 is per-
formed via Procrustes rigid body alignment for SO(2) and via
dynamic programming in the case of Γ. Both of these methods
are described in Ref. [26], and the reader is referred to that paper
for more details of this framework.
Given that there is a distance between orbits, the Karcher Mean

curve can be calculated given a set of curves {ξ1, …, ξN} and their
corresponding SRVFs, {q1, …, qN}. This computation is found
finding the orbit that minimizes the sum of squared distances, i.e.,

u = argmin
[q]∈S∞

∑N
i=1

dSOs ([q], [qi])
2 (A6)
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