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Abstract—In this paper, we study the problem of detection of
underwater minefields amidst dense clutter as that of statistical
inference under a spatial point-process model. Specifically, we
model the locations (mine and clutter) as samples of a Thomas
point process with parent locations representing mines and chil-
dren representing clutter. Accordingly, the parents are distributed
according to a homogeneous Poisson process and, given the parent
locations, the children are distributed as independent Poisson
processes with intensity functions that are Gaussian densities
centered at the parents. This provides a likelihood function for
parent locations given the observed clutter (children). Under this
model, we develop a framework for penalized maximum-likeli-
hood (ML) estimation of model parameters and parent locations.
The optimization is performed using a combination of analytical
and Monte Carlo methods; the Monte Carlo part relies on a
birth—-death-move procedure for adding/removing points in the
parent set. This framework is illustrated using both simulated
and real data sets, the latter obtained courtesy of Naval Surface
Warfare Center Panama City Division (NSWC-PCD), Panama
City, FL, USA. The results, evaluated both qualitatively and
quantitatively, underscore success in estimating parent locations
and other parameters, at a reasonable computation cost.

Index Terms—Maximum-likelihood estimation, simulated an-
nealing, spatial point process, synthetic aperture sonar, Thomas
process.

1. INTRODUCTION

NDERWATER mines are unspent, explosive devices that

have been left unattended on the ocean floor from past
wars and other related efforts. They can be potentially cata-
strophic for passenger and merchant ships, and other marine
vehicles, that have to navigate through mined terrains. The
problem of detecting and neutralizing underwater mines is
very important from many perspectives, including transport,
commerce, nature preservation, and national defense. The
main sensor for detecting underwater mines is sidescan sonar,
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a (sound-based) imaging device that scans the ocean floor
and generates image maps of the observed terrain. A sonar
device emits sound waves in different audio frequencies and
measures the waves reflected/scattered by different objects
in an observation space; the strengths of these returns form
pixel values in resulting images. Scientists and engineers study
patterns of pixels in these images to detect the presence of
mines amidst a tremendous amount of natural and artificial
debris that is littered across the ocean floor. The approaches/al-
gorithms for detecting mine occurrences using image pixels
are generically termed as automated target recognition (ATR).
A large number of ATR procedures have been proposed over
the years, relying on a variety of ideas ranging from signal
processing, machine learning, and statistical modeling (see [1]
for description of the state of the art). The general goal of ATR
algorithms is to detect, recognize, and help neutralize mines
using sonar images. However, despite significant progress, the
ATR performance remains mediocre in general conditions and
one requires additional ideas to achieve further improvements
in mine detection performance.

The biggest challenge in mine detection comes from mine-
like objects that are present in imaged areas but are not mines.
These include artificial debris (bottles, boxes, fish traps, etc.)
and natural objects (fish, rock, coral, etc.) that have appearances
(pixel values, object size, and pixel patterns) similar to mines
in sonar images. Since ATR algorithms rely on pixel patterns
to perform mine detection and classification, this often leads
to an ATR algorithm generating a large number of false detec-
tions over the search space, and it becomes difficult to distin-
guish mines from these false detections, also termed “clutter.”
Since we are interested in detecting minefields, and not just
isolated mines, we can exploit patterns formed by locations of
mines in a minefield. Our goal is to model the occurrences of
mines and clutter using spatial point processes and use these
larger spatial patterns in the data to help separate mines from
clutter. This approach is further justified by the fact that the
spatial extent of most mines in sonar images is typically a few
pixels—ranging from tens to hundreds—but not more, due to
the size of mines relative to the bandwidths used in synthetic
aperture sonar (SAS) imaging. Thus, the limited spatial extent
of mines allows us to treat them as individual points in the ob-
served spatial domain, and the focus shifts from appearance-
based pixel patterns to location-based spatial patterns. We can
also assume the availability of an ATR score, a real-number as-
sociated with each point, that quantifies the confidence an ATR
algorithm has about presence of a mine at that point. In this
paper, however, we threshold the observed points according to
their ATR scores and ignore the ATR score of the selected points

0364-9059 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

while focusing only on modeling their positions. This thresh-
olding can be treated as an initial screening to reduce clutter in
the data which is then analyzed using statistical techniques. We
remark that this setting is quite different from the problem of
detecting isolated, individual mines where the spatial patterns
are not available for help in mine detection.

The next question is the choice of point process model for
this problem. While there are a variety of choices available for
modeling mine location patterns, the use of cluster processes is
natural here. This is motivated in part by the observation that
clutter points are often attracted toward mines, and these points
form clusters rather than being homogeneously scattered over
the spatial domain. Also, it is observed that the individual mines
themselves do not cluster together but are generally positioned
away from each other. This can be reasoned from the perspective
of an enemy minelaying process where the mines are uniformly
spread along the minelayer trajectory, rather than being concen-
trated in one small area, for maximal coverage of the shipping
channel.

Clusters arise in the data for two reasons. First, since the ATR
system scans the seafloor in straight line paths of a uniform
spacing that is less than the range of the onboard sonar, it ob-
tains multiple looks at the same location. Each time the sonar
images a detectable target, the ATR algorithm will assign a con-
tact to that target regardless of any previous duplicate detections.
Due to slight global positioning system (GPS) location errors,
a multiply detected target will be represented by several points
clustered around the same location with some given variance. A
second source of clustering in the data arises from curious ma-
rine life investigating the targets in the test field. Oftentimes the
ATR algorithm fails to distinguish the acoustic returns of fish,
rays, sharks, etc., from those of actual targets hence contributing
to the clustering of data points about the true target location.

Based on these considerations, we choose a specific cluster
process—the Thomas process—as a model for the mines and
clutter. In the Thomas process, the mine locations are viewed as
observations of a parent process and the clutter locations (condi-
tional on the mine locations) as observations of a child process.
Here we do not emphasize the statistical model underlying the
parent process, and regard the mine locations simply as parame-
ters to be estimated; we work mainly with the conditional distri-
bution of the clutter given the mine locations, which forms our
likelihood function. There are a number of sources that cover
mathematical formulation and certain statistical analyses asso-
ciated with a Thomas process: [2, Ch. 5], [3]-[5], [6, Ch. 5], [7,
Ch. 3], [8], and [9], and we refer readers to those sources for
background material.

A number of papers in recent years have treated the problem
of mine detection, albeit in the context of landmines imaged
aerially, using tools from spatial point processes. For example,
Walsh and Raftery [10] study the problem of ascertaining
whether mines are present in a certain point-location data.
They model the mine locations as a Strauss process and the
background clutter as a Poisson process and develop a hy-
pothesis test based on the ratio of Bayes factors. A similar
problem is studied in [11] using hierarchical models. Lake [12]
develops several sample statistics, such as the VC statistics
(named after Viktorova and Chistyakov; see references within
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[12]), for performing mine detection. In contrast, we focus
on the problem where the mines are known to be present and
our goal is to detect mine locations in the presence of clutter.
Our model is similar to [10] except we choose to work with
the Thomas process since it allows the clutter (children) to
be clustered. Priebe et al. [13] use the scan statistic, and its
computation using importance sampling, to test the hypothesis
of homogeneity versus inhomogeneity for a certain region. In
this context, inhomogeneity implies presence of mines. Byers
and Raftery [14] take a different approach and address the
problem of clutter by removing it. They use the K -nearest
neighbor distance as a statistic to identify clutter points and
remove them from the data. Walsh and Raftery [15] take yet
another approach where they assume that mines are laid out
in parallel tracks, amidst uniform clutter, such that the dis-
tances between mines are Gaussian and the angles made by
segments connecting mines are nearly equal. A similar notion
of collinearity is also used in [16] in detecting mines. Agarwal
et al. [17] use tools from clustering, in the form of marked
point processes, to decide between mines and clutter. Trang et
al. [18], [19] advocate the use of shape and spectral features,
as scores for computing “mineness” of detected points, in the
form of marked point processes for mine detection.

Once we have chosen a model, we pose the overall inference
problem—given observed points (treated as children), estimate
the location of parents—using an appropriate tool. While it is
possible that insights into the minelaying process might provide
a suitable prior distribution for mine locations and, thus, model
parameters, we pursue a frequentist approach in this paper and
seek a maximum-likelihood (ML) solution. The basic ML for-
mulation by itself is not sufficient as it always favors adding
new parent locations to the current estimates. To balance this
tendency we add a penalty term to the log likelihood that simply
penalizes the number of parent points in a linear fashion. A bal-
ance between increasing likelihood and complexity penalty pro-
vides the final solution. For solving the estimation problem, we
note that the objective function may be easily maximized with
respect to some of the model parameters, but is too difficult to
maximize analytically for the parent locations. By combining
analytic approaches for some parameters with a birth—death al-
gorithm (in the context of Monte Carlo simulated annealing) for
the parent locations, we optimize over the full set of unknown
parameters.

II. BACKGROUND: THOMAS PROCESS

We provide a basic summary of a Thomas process, a special
case of a doubly stochastic or a Cox process, on a bounded
subset W C RZ. A Cox process is a natural extension of a
Poisson process in that its intensity function is sampled from
a random field rather than having a fixed function definition. A
realization of the intensity function is defined from a so-called
“parent” point set C, which is sampled from a Poisson process
with intensity #(«). In a Thomas process, the realization of the
intensity function, say A(u), is given as a mixture of Gaus-
sians centered at each of the points in C. In this case, each
Gaussian has the same amplitude « and isotropic variance w?1.
The conditional point process X |C is Poisson with intensity
A{w), and a sample point set from this process forms Gaussian-
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Fig. 1. Simulated data with homogeneous background clutter and homogeneous parent location. (Left) The data X . (Right) Color-coded data—children (black),
background clutter (cyan), and unobserved parents (red).

TABLE I

INTENSITY FUNCTIONS USED IN VARIOUS THOMAS PROCESS MODELS

Parent Model

Observed Data Model

Homogeneous Poisson

with intensity k(u) = &

Without background clutter (Model 1):

Poisson with intensity A(u) = ape (u;w)

Inhomogeneous Poisson

with intensity £(u) = exp(v? z(u))

With background clutter (Model 2):

Poisson with intensity A(u) = apc(u;w) + 1

distributed clusters centered at the unobserved parent locations.
The Thomas process is therefore defined by the following hier-
archy. First, C' is sampled from the Poisson process with inten-
sity #(u). Then, X is sampled from the Poisson process with in-
tensity A(w), which depends on the locations C'. The following
equation shows the hierarchical model that defines a Thomas
process:

C ~ Poisson(k{u), W)

X|C ~Poisson{A(u), W). (D)

Due to this hierarchy we formulate two models, a parent model
and an observed data model, and investigate variations on each
of the respective models.

We consider two different parent models: one with homo-
geneously distributed parent locations and one with an inho-
mogeneous distribution. In the homogeneous case, the inten-
sity function (%) is defined simply to equal the constant scalar
# > 0. In the more complex inhomogeneous case, the inten-
sity function is defined as a function of spatial covariates via
w(u) = exp(vT z(u)), where z(u) = (1,21(u), ..., 25 ()

is the vector of covariate functions evaluated at the point %, and

This choice of k() is suggested by the form of a Poisson regres-
sion model. These covariate functions are selected beforehand
with knowledge of the real life mechanisms by which parents
arise and are distributed. For example, in the case of mine loca-
tions, these covariate functions could be given by water depth,

bottom type, bottom gradient, or formed from an a priori esti-
mate of the enemy’s most likely mine laying path.

We formulate two models for the observed data. Each model
consists of Gaussian distributed clusters centered at the parent
locations, the points of which are called “children,” however one
model additionally incorporates an independent, homogeneous
background clutter process. In the simpler case, henceforth re-
ferred to as model 1, the intensity function for the observed data
X|Cis givenas A(u) = o Z;Licp k(u—c;;w), where v, w > 0,
and k(- — ¢;;w) represents the Gaussian centered at ¢; with
covariance w?I. This is a special case of a mixture of Gaus-
sians model. In the case of the presence of homogeneous back-
ground clutter, henceforth referred to as model 2, the observed
data are the union of two independent processes: the Gaussian
mixture process and the background clutter process. Let n > 0
be the homogeneous rate of background clutter. Since indepen-
dent Poisson processes are additive, the intensity function for
this case is given as AMu) = « Z;g) k(u — ¢;;w) 4+ n. From
now on we let oo (u;w) = Z;pr k(u—cj;w). Table I summa-
rizes the intensity function definitions that arise from the above
scenarios.

Fig. 1 shows a simulation of the case of a homogeneous parent
model combined with an observed data model with background
clutter. The parameter values for the example in Fig. 1 are given
ask = o =15, w = 0.02,andn = 9 on W = [0,1] x
[0, 1]. In this particular realization the number of cluster centers
n(C') equals 15 by coincidence. The left plot shows the observed
data as black points. The right plot shows the structure of the
data by leaving the children as black points and changing the
background clutter to cyan points while additionally showing
the unobserved parents as red points.

1II. MAXIMUM-LIKELIHOOD ESTIMATION

There are a number of approaches to inference for Thomas
processes and related cluster processes. Quick estimates of the
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parameters {#, «,w) may be obtained by minimum contrast es-
timation (see [2, Ch. 10] and [6, Ch. 6]), which may be used
in conjunction with estimating equations for inhomogeneous
Thomas processes (see [4] and [5]). Computationally intensive
Monte Carlo Markov chain (MCMC) approaches exist for ob-
taining ML estimates or Bayes estimates, with the Bayesian
techniques also leading to natural estimates of the cluster cen-
ters C' via the posterior distribution for C' (see [20]-[22]). Once
given estimates of (k,q,w), estimates of the cluster centers
may always be obtained by using general Metropolis—Hastings
schemes to simulate from the conditional distribution of C given
X (see [2, Ch. 7]). In our work, we separate the Thomas process
parameter estimation into two steps by first estimating the pa-
rameters involved in the conditional process X |C, i.e., the ob-
served data model, and then estimating those that belong to the
parent process.

In the first step of estimation, we view the observed data
model as being essentially a Gaussian mixture plus background
clutter process parametrized by (C, &, w, 7). This differs from
other methods in that we perform inference on this conditional
process and treat C' as a model parameter rather than a random
variable. In other words, with regards to C, we assume no model
in this step, and we are only concerned with estimating the point
locations. Since C does not have a fixed dimension, we use a
penalized ML approach to prevent overfitting in our parameter
estimation. In Gaussian mixture models, parameters are often
estimated by performing a series of expectation—maximization
(EM)-type algorithms, varying the number of mixture compo-
nents, and then using a complexity penalty to choose among the
different solutions (e.g., in [23]). Other approaches are Bayesian
in nature and assume some sort of prior distribution in their
models. The simulated annealing algorithm we propose sup-
plies an alternative approach that simultaneously estimates the
number of clusters along with their locations (and the other pa-
rameters in our model) without the use of a prior. Our strategy
differs further from these other approaches in that we do not
cluster points—that is, we do not assign clutter points to spe-
cific clusters—but rather we focus only on estimating the cluster
centers along with the other model parameters. An additional
feature that we include beyond these other techniques is the
ability to estimate the rate of background clutter not belonging
to any particular cluster. This simulated annealing approach ob-
tains estimates of (C, a,w, 7) using the penalized ML estima-
tion (MLE) described in Section III-A with the detailed algo-
rithm given in Section I'V.

In the second step of estimation, we gain at least a rough idea
of the values of the parent model parameters by treating the esti-
mate of C' from the previous step as exact and using these data to
compute ML estimates of the parameters. In the homogeneous
case, we need only to estimate the scalar parameter #, and in
the inhomogeneous case, we estimate the regression parameter
vector v. Here, we use a relatively straightforward MLE tech-
nique, and Section III-C details our approach. This approach is
an alternative to the much more computationally intensive fully
Bayesian approach, which computes a posterior distribution of
the coefficient vector v.

IEEE JOURNAL OF OCEANIC ENGINEERING

A. Penalized ML for Observed Data Model

To set up the MLE, we first consider the density function of
the conditional process X |C, which is given by

n(X)

_H Azi) @)

where # is the vector of model parameters and X =
(#1,%2,...,Zn(x)). Let g be a function obtained by di-
viding the likelihood function f [see (2)] by the constant term

eI, A maximization of the function

log g(X|C,6) = Z log(A(z;)) — /1 , Au)du 3)

is thus equivalent to a maximization of f. Note that the ML fit
of (3) is given by n(X) delta functions centered at each point
x; of the data X . Thatis,if C = X,a=1,n=0,andw — 0,
then log ¢(X|C,0) — oc. To prevent this overfitting, we in-
troduce a penalty term which regulates the number of cluster
centers (parents); we instead maximize the penalized log-likeli-
hood function given by

F(X|C,8) = exp {|W| - '/W )\(u)du}

ha(x10.6) =togg(x[,6) 3 () + T )

That is, we solve

(C,8) = argmax {hs(X|C,0)}
CeC 00

where (3 > 0 is a user-specified penalty, C is the set of all fi-
nite point sets on W, and © is the appropriate model param-
eter space. Noting that each additional cluster center introduces
two more parameters, we see that the value 3 = 2 corresponds
to the well-known Akaike information criterion (AIC) penalty
[24], and 8 = log(n( X)) corresponds to the Schwarz Bayesian
criterion (SBC) or Bayesian information criterion (BIC) penalty
[25]. Setting 3 = 0 represents no penalty. Using AIC or SBC
penalty terms is a common approach to restricting the number
of parameters in a model.

B. Optimization Details

To reduce the computational complexity of the numerical
optimization, we reparametrize the intensity function and then
find a closed-form expression for the maximizer of one of
the parameters (fixing the others). This technique reduces
the dimensionality by 1 and thus speeds up the computation
time. Additionally, in this reparameterization, we eliminate
the positivity constraint on the components of # so that we
can perform an unconstrained optimization, thus further re-
ducing the complexity. Define o« = e?, w = e, n = e, and
¥ = n/a = e” . The reparameterized intensity function is
given as AM(u) = e¢®(pc(u;e”) + ). Now

n(X)
log g(X|C,0) = n(X)¢+ Y _ log(ioc (i e?) + 1)

=1

—e? / (oo (u;e?) + )du.
w
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Setting v, v, and C constant and maximizing over ¢, we come
to the expression

. n(X) >
= log .
¢ =log (fwmcw; &) + $)du
After substituting this expression back into the expression for

log g and setting 8 = (v, ¢), we can rewrite log g as

n(X)

Z log(pc(zi;e”) + 1)

—n(X)log (/;'(SOC(u; e’y + 1/))du)
+ n(X)(log(n(X)) — 1).

log g(X|C. 9)

(&)

Note that throughout, we refer to 6 as a general set of parame-
ters to be estimated, the precise definition of which can change.
Here, we have shifted to the assignment ¢ = (~,%), whereas
previously, the assignment was § = («, w, 7). Now we perform
the optimization over § € R2, i.e., we solve for

(C’é) = argmax {hg(X|C,0)}
CeC,0eR?

where hg is defined from the version of log ¢ given in (5) but
with the constant term (X )(log(n (X)) — 1) removed. To com-
plete the optimization, we obtain the estimated values of our
original parameters by computing & =n(X)/ [, (ec(ue?)+
Dydu, & = €7, and i = b,

C. ML for Parent Model

The first estimation step, given in Section III-B, does not per-
form any inference on the model from which the parents arise;
rather, it only provides an estimate of the point locations. This
section focuses on the second estimation step, which provides
a parametric estimation of the parent process intensity function
by considering C from the first estimation step as exact, both in
number and in location. The homogeneous case is straightfor-
ward, and the MLE is given as & = n(C')/|W|. The estimation
for the inhomogeneous case is as follows. Conditional on n.(C'),
the true centers C' = {c1,¢a, ..., ¢y} are independent iden-
tically distributed (i.i.d.) from the intensity #(wu) normalized to
be a density via

( ) 67}12(“')

T = Fowtds ™ T s

Thus, the conditional log-likelihood function is given by

n(C)

H fleslv)

log f(Clv) = log

n(C)

= Z v! z(c;) — n(C)log (/ e”TZ(S)ds> .
j=1 W

Again, by considering C to be exact, we compute the MLE of
the regression parameters as

0 = argmax,cgr+1 {10g f(é\qv)} .

Unlike the first estimation step, the parameters here have fixed
dimension, and thus we compute this optimization using stan-
dard numerical tools available in MATLAB (the fminsearch or
fminunc function).

IV. OPTIMIZATION USING SIMULATED ANNEALING

Simulated annealing is a procedure designed to find an ap-
proximation of the global optimum of a given function. The
process is inspired by that of annealing in metallurgy, whereby
a metal would be heated to its liquid state, then cooled slowly
enough so that its individual particles could arrange themselves
in a ground state with optimally low energy as it reformed back
to a solid. If the temperature were not lowered slowly enough,
then the metal would be frozen in a metastable state rather than
into the ideal ground state. Simulated annealing for function op-
timization is an analogous process that implements a series of
Metropolis algorithms evaluated at slowly decreasing values of
the control parameter—usually referred to as the temperature.
The procedure is typically designed to converge to the energy
minimizing state, or the argmin of the objective function (see
[26] for more information on simulated annealing). Here, we
set the energy function to be 2 = —hg from (4), the negative
penalized log-likelihood function, and thus, minimizing the en-
ergy is equivalent to maximizing the penalized likelihood.

One iteration of simulated annealing, i.e., the Metropolis al-
gorithm, is as follows. Given the current state s with energy
E(s), compute the energy F(s') of a perturbed state s’. Ac-
cept the perturbed state with probability 1 if E(s’) — E(s) <0
and with probability e~ (EGH=EGN/T otherwise, where T is the
current temperature. Initially, when the temperature is large, the
procedure is likely to accept more states, irrespective of whether
they increase or decrease energy, and as the temperature is de-
creased, the procedure becomes more selective toward states
that decrease energy. This design allows for a broad search area
and, with an appropriate cooling schedule, is guaranteed to con-
verge to the global minimum given infinite time. This is in con-
trast to, say, a gradient descent method, which can only lower
the energy at each iteration and consequently is only guaranteed
to converge to a local minimum.

Before we present the simulated annealing algorithm to es-
timate the parameters of the Thomas process with background
clutter, we must first define a mechanism to obtain a perturba-
tion of the current state to act as a candidate state. Here, we use
a birth—death-move algorithm to perturb the point set C'. A birth
is defined as C' +— C' U &, where £ ~ ¢, a given density func-
tion on W. A death is defined as C' — C\c;, where j ~ ¢4 is
a given discrete density on the index set of C. A move is de-
fined as C' +— (C\c;) U (, where j ~ g4 and ¢ ~ g, (-|c;),
a given density function on W that depends on the selection of
the move point ¢;. A new point set ¢ is generated from C via
the birth—death—move subroutine presented in Algorithm 1. Itis
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important to note that one can go from any point configuration
to any other using finite combinations of these perturbations.

Algorithm 1: Birth-Death-Move

Given C, ¢y, q4, and ¢,,
Generate v ~ Uniform|0, 1].
if 0 < u < 1/3 then
Perform a birth, i.e., sample £ ~ ¢, and let ' = C' UE.
elseif 1/3 < u < 2/3 then
Perform a death, i.e., sample j ~ ¢4 and let C' = C\¢;.
else
Perform a move, i.e., sample j ~ ¢a, ¢ ~ ¢m(-|¢;), and
let C" = (C\¢;) U C.
end if

S A A Tl b

o

In our implementation, we use the following densities: g, =
A / fW A, where A is a nonparametric estimate of the intensity
function of the conditional process X|C (see [2, Sec. 4.3.1]);
qa is equal to the discrete uniform density on {1....,n(C)};
and ¢,,,(-|c;) is set to equal A within B(r,¢;) N W, equal to
zero elsewhere in W, and then normalized. We use the notation
B(r, ¢ ) to refer to the ball of radius r centered at ¢;. Here, r is
a parameter that dictates the extent to which a point ¢; can be
moved in the birth—death-move algorithm. The full simulated

annealing algorithm is presented in Algorithm 2.

Algorithm 2: Simulated Annealing Algorithm

1: Given the data X on a domain W, a
penalty 3 > 0, a constant temperature decrease rate
0 < p < 1, and the initial values C(?, §(9 and 7(%),
2: Compute the energy E(®) = —h3(X|C©,6(0) [see (4)].
form =1: M do
Generate the candidate C’ from the birth—death-move
subroutine (Algorithm 1).
5:  Compute the candidate §' = argmingcpo{—h s (X|C", 6)}
via standard numerical techniques (the fininunc function
in MATLAB).

Rl

6:  SetE = —hg(X|C',¢).
7:  Set the temperature 70" = p7(m=1),
8:  Generate u ~ Uniform[0, 1].
9:  ifu < min{exp(—(E' — E(=1)/T() 1} then
10: Accept proposals and set C0™) = ¢/ #0™) = ¢’ and
E(m) = K.
11: else
12: Reject proposals and set (") = ¢{m—1)
e(m) — e(mfl), and E(m) — E(mfl)'
13: end if
14: end for

V. SIMULATION EXPERIMENTS

In this section, we present results obtained from Algorithm 2
on several data sets, including simulated and real mine-detection
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data sets. Although the algorithm returns the value § = (%, ),
we show the results as the estimated values of our original pa-
rameter definitions ¢, w, and 7 (when applicable) to provide
a direct comparison to the meaningful parameters used in the
simulation. For comparison, we supply parameter estimates ob-
tained by fixing C at C = C (the true centers) and then numer-
ically maximizing the penalized log-likelihood function over 6.
These estimates, which do not require the simulated annealing
routine to compute, are labeled as “opt” (for “optimum”) and
are expected to be close to the global maximizers of the penal-
ized log-likelihood function. By comparing the estimates from
our simulated annealing algorithm to these “opt” estimates, we
can ensure that the algorithm is achieving something close to a
global maximum.

For each data set, we run Algorithm 2 under four scenarios:
a) model 1 with AIC penalty; b) model 2 with AIC penalty; ¢)
model 1 with SBC penalty; and d) model 2 with SBC penalty.
Recall that model 1 is the observed data model without homo-
geneous background clutter and that model 2 is the observed
data model with homogeneous background clutter (see Table I).
Since # has different dimensionality across models, the inclu-
sion of dim(#)/2 in the penalty term within the formula for g4
[see (4)] allows us to directly compare values of hg obtained
from different models under the same penalty value. Therefore,
the maximum values of hz obtained from Algorithm 2 under
scenarios a) and b) are comparable, as well as those of ¢) and
d), and the scenario that produces the higher 44 value of the two
represents the better model fit.

To compare results across penalty values, we use a more in-
formal inspection of the estimated number of cluster centers
versus the true number of centers. Since our problem is that
of minefield detection, the number of cluster centers, or mines,
detected is the most important output of our algorithm. Typi-
cally, in model selection, restricting the number of parameters
according to the AIC penalty is more likely to overfit the data
with more model parameters; whereas, restricting according to
the stronger SBC penalty is less likely to overfit the data. That s,
under the AIC penalty Algorithm 2 should typically yield n(é )
greater than n{C'), and under the SBC penalty it should typically
yield n(C) approximately equal to or slightly less than n(C). In
minefield detection, it is generally more desirable to overesti-
mate rather than to underestimate the number of mines because
the consequences of a false alarm are less grave than that of a
missed detection. Therefore, the AIC penalty on average should
be the more desirable one, provided that it does not overfit the
data too much, yielding too many false alarms.

In all of the following computations, we use the annealing
temperature schedule determined by the parameters Ty = 15,
p = 0.996, and M = 2000. Also, the domain for each case
has been set to W = [0,1] x [0,1], and the move parameter
7 used in the density ¢,, within Algorithm 1 has been set to
7 = 0.1. Computation time, of course, varies with n(X), n(C),
and the temperature schedule, but for the following experiments
the average computation time for Algorithm 2 under model 1 is
about 30 min, and the average computation time for Algorithm
2 under model 2 is about 1 h. We ran our program in MATLAB
on a laptop with 2.53 GHz.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BRYNER ef al.: UNDERWATER MINEFIELD DETECTION IN CLUTTER DATA USING SPATIAL POINT-PROCESS MODELS 7
Model 1 Fit Model 2 Fit hs Evolution Model 1 Fit Model 2 Fit h; Evolution
e o Teox
% b % %
* *
Mo g | | Y < g
£, » g v £,
£ <
& s & s s o * R % e ioo 130 3000
AIC Iteration AIC lteration
- * FPWE ¥ Lo O i
L% L » ‘..":'i o L N Ry ¥ 10 ~ o
% b % d :‘!‘.sé‘é‘}" . L —# :}Q‘.‘&; HA
# % oF *, c e = 1000
“w " . { S = s
o4 @ B Y G T B ; “
A ‘ £ ow Ty cn | Ry |
‘ 13 ] " x & '4..‘ o A ) E1 L R e 1003 00 1000 1500 2000
3 4 A 0 500 1000 1500 2000 SBC Iierstioa
SBC| Iteration

Fig. 2. Results of Algorithm 2 on data set 1 simulated from case 1: homoge-
neous parents, and no background clutter (model 1).
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Fig. 3. Results of Algorithm 2 on data set 2 simulated from case 1: homoge-
neous parents, and no background clutter (model 1).

A. Simulated Data

To demonstrate the effectiveness of our algorithm in esti-
mating model parameters and selecting an observed data model,
we run Algorithm 2 under the four scenarios outlined above on a
total of six data sets simulated from various model assumptions,
or cases. In the first case, we generate two data sets from the ho-
mogeneous parent model and the observed data model without
background clutter. In the second case, we generate two data
sets from the homogeneous parent model and the observed data
model with background clutter. In the third case, we generate
two data sets from the inhomogeneous parent model with co-
variates of our selection and the observed data model with back-
ground clutter. Therefore, in the first case, the observed data is
simulated from model 1, and in the second and third cases, it is
simulated from model 2. Only in the third case do we proceed
to carry out the second stage of estimation, that of the inhomo-
geneous parent intensity parameters v. The covariate functions
we use in this case are simply 21 (1) = x and z2(u) = y, and we
choose to not include the constant scalar term in the model, set-
ting vo = 0 in our simulations and estimating only v; and vs.
The number of points n(X ) for each data set ranges between
218 and 475.

For each simulated data set, we carry out the following ex-
periment. For each scenario a)-d), run Algorithm 2 a total of ten
times, each with different random initializations of 77,((]0) =20
cluster center locations. Compute the mean and standard devi-

Fig. 4. Results of Algorithm 2 on data set 1 simulated from case 2: homoge-
neous parents, and with background clutter (model 2).
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Fig. 6. Results of Algorithm 2 on data set 1 simulated from case 3: inhomoge-
neous parents, and with background clutter (model 2).

ation of each set of ten final estimates of «, w, 7 (when appli-
cable), n(C ), and v (when applicable), as well as the set of ten
final values of h 3. Select the single run out of ten that yielded
the highest final value of %4, the so-called “best” run, and report
the final values of «, w, 7 (when applicable), n(C ), v (when ap-
plicable), and /4 for this run. Also compute and report the “opt”
and “true” values of each of these terms, where the “true” value
of hy is equal to the function evaluated at the true parameter
values and the true cluster centers.

Tables II-VII and Figs. 2-7 show results from this experi-
ment on each of the six respective simulated data sets for sce-
narios a)—d). Each figure consists of the following six plots: four
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Fig. 7. Results of Algorithm 2 on data set 2 simulated from case 3: inhomoge-
neous parents, and with background clutter (model 2).

TABLE II
RESULTS OF ALGORITHM 2 ON DATA SET 1 SIMULATED FROM CASE 1:
HOMOGENEOUS PARENTS, AND NO BACKGROUND CLUTTER (MODEL 1)

(a) AIC, model 1{(b) AIC, model 2{|(c) SBC, model 1/(d) SBC, model 2
Mean 16.22 16.62 18.54 18.57
Std 1.898 1.360 0.3580 0.1312
& |Best 17.74 15.83 18.71 18.51
Opt 18.68 18.68 18.68 18.68
True 20.00 20.00 20.00 20.00
Mean|  0.01969 0.02045 0.02036 0.02054
Std | 5.998 x 107* | 5.931 x 10~* | 2.605x 10~* | 6.701 x 10~*
& | Best 0.01980 0.02034 0.02028 0.02041
Opt 0.02018 0.02018 0.02018 0.02018
True 0.02000 0.02000 0.02000 0.02000
Mean 6.606 5.721
Std 6.552 5.822
7 | Best N/A 2.638 N/A 2.513
Opt 6.094 x 107° 6.094 x 107°
True 0 0
Mean 25.60 24.60 22.10 21.70
Std 3.340 2.675 0.3162 0.4831
n(C)| Best 23 26 22 22
Opt 22 22 22 22
True 22 22 22 22
Mean 2704.5 2661.5 2607.3 2574.2
Std 4.6312 7.9750 6.4461 6.9802
hs | Best 2712.4 2676.0 2615.3 2586.5
Opt 2706.8 2705.8 2615.4 2612.4
True 2705.8 2704.8 2614.4 2611.4

plots corresponding to each scenario a)—d) of the estimated cen-
ters ' (red) overlayed on the data X (black) and the true cen-
ters C' (green), one plot showing the evolution of /4 in Algo-
rithm 2 using the AIC penalty [scenarios a) and b)], and one
plot showing the evolution of 44 in Algorithm 2 using the SBC
penalty [scenarios ¢) and d)]. In each of these /3 evolution plots,
the result obtained from model 1 is given by the solid blue curve,
and the result from model 2 is given by the solid red curve.
The dashed cyan line represents the “opt” estimate of /5 under
model 1, and the dashed magenta line represents the “opt” es-
timate of /s under model 2. Again, for each penalty value, the
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TABLE IIT
RESULTS OF ALGORITHM 2 ON DATA SET 2 SIMULATED FROM CASE 1:
HOMOGENEOUS PARENTS, AND NO BACKGROUND CLUTTER (MODEL 1)

(a) AIC, model 1{(b) AIC, model 2||(c) SBC, model 1|(d) SBC, model 2
Mean 17.85 17.72 19.45 19.95
Std 0.5805 0.9223 0.3356 0.6089
& |Best 17.83 17.76 19.69 18.80
Opt 18.70 18.65 18.70 18.65
True 20.00 20.00 20.00 20.00
Mean|  0.02027 0.02098 0.02109 0.02200
Std | 3.937 x 107* | 7.361 x 107* || 3.703 x 10~* 0.001618
& | Best 0.01994 0.02015 0.02099 0.02079
Opt 0.02057 0.02038 0.02057 0.02038
True 0.02000 0.02000 0.02000 0.02000
Mean 1.252 4874
Std 0.8352 6.023
7 | Best N/A 1.098 N/A 1.505
Opt 1.192 1.192
True 0 0
Mean 27.90 28.20 25.40 24.50
Std 0.8756 1.549 0.5164 0.7071
n(C)| Best 28 28 25 26
Opt 27 27 27 27
True 27 27 27 27
Mean 3252.3 3223.7 3129.7 3088.1
Std 8.0193 21.035 8.4190 38.505
hs | Best 3265.2 3257.1 3142.0 3116.2
Opt 3256.2 3255.4 3139.6 3136.7
True 3254.4 3253.4 3137.8 3134.7

solid curve with the higher value of hg after M = 2000 itera-
tions represents the better model fit.

The general trends of the results shown in these tables and
figures are as follows. For all data sets in all cases, the value
of Ay output from Algorithm 2, under either penalty, is shown
to be higher when fitting the observed data model from which
the data were simulated. That is, our algorithm selects the cor-
rect observed data model (model 1 or model 2) for every data
set regardless of the selected penalty value. Under the correct
model, for both penalty values, the parameter estimates are, on
average, quite close to the “opt” estimates, and as expected,
results with the AIC penalty tend to overestimate the number
of centers slightly while the SBC results tend to underestimate
slightly. In the context of minefield detection, this result favors
the use of the AIC penalty; however, these favorable AIC re-
sults do come with an important caveat. Under the AIC penalty,
Algorithm 2 yields less consistent parameter estimates than that
of the SBC penalty, as seen by the higher standard errors. The
reason for this is because, with the weaker AIC penalty, it is
more likely to see outliers yielding an unusually high number of
cluster center estimates, while under the stronger SBC penalty
we do not see such outliers. Moreover, under the SBC penalty
it is less likely to see outliers yielding an unusually low number
of cluster center estimates since the penalty is not too strong.
Therefore, the tradeoff is consistency for desirable mean be-
havior. Since there is no definitive answer on which penalty to
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TABLE 1V
RESULTS OF ALGORITHM 2 ON DATA SET 1 SIMULATED FROM CASE 2:
HOMOGENEOUS PARENTS, AND WITH BACKGROUND CLUTTER (MODEL 2)

(a) AIC, model 1{(b) AIC, model 2||(c) SBC, model 1{(d) SBC, model 2
Mean 15.34 1575 31.58 16.83
Std 3.553 0.4271 6.090 0.5888
& |Best 7.565 15.92 25.83 16.93
Opt 22.30 15.46 22.30 15.46
True 15.00 15.00 15.00 15.00
Mean|  0.04513 0.02231 0.07198 0.02283
Std 0.007949 3.264 x 107* 0.007537 4.499 x 107*
& | Best 0.03135 0.02192 0.0652 0.02257
Opt 0.07207 0.02135 0.07207 0.02135
True 0.02000 0.02000 0.02000 0.02000
Mean 73.04 75.29
Std 1.300 1.855
7 | Best N/A 73.24 N/A 75.30
Opt 80.30 80.30
True 90 90
Mean 22.80 15.20 11.40 14.10
Std 7.627 0.4216 1.713 0.5677
n(C)| Best 43 15 13 14
Opt 15 15 15 15
True 15 15 15 15
Mean 1693.5 1840.4 1606.1 1778.3
Std 18.890 24373 3.7598 3.0737
hs | Best 1736.4 1844.3 1610.5 1783.6
Opt 1620.9 1837.6 1561.0 1775.8
True -34.270 1836.5 -94.158 1774.7

select for all situations, we examine the outcome of our esti-
mation on real data sets for which we have ground truth target
locations.

B. Real Data

We test our estimation procedure on two data sets of contacts
obtained from an automatic target recognition (ATR) system
developed by the Naval Surface Warfare Center Panama City
Division NSWC-PCD), Panama City, FL, USA. Acoustic data
were collected from an autonomous underwater vehicle (AUV)
equipped with a high-resolution, high-frequency, synthetic aper-
ture sidescan sonar. The vehicle traveled in a uniform spaced
search pattern to cover the entire test field, which was approx-
imately one nautical square mile and contained 19 targets of
interest laying on the seafloor. The raw sonar data were then
postprocessed to form a complex-valued image via a k-space
or wave number beamformer (see [27, Ch. 6]). The sonar im-
agery was then fed to an onboard ATR algorithm that detected
and output all potential target locations, or contacts. Associ-
ated with each contact, the algorithm also output a classification
score from O to 1 indicating the likelihood of it being a target
of interest. We direct the reader to [28] and [29] for more in-
formation on the detection and classification procedures within
the ATR algorithm. The data in black seen in Fig. 8 represent
the contact locations from these two data sets that have a score

TABLE V
RESULTS OF ALGORITHM 2 ON DATA SET 2 SIMULATED FROM CASE 2:
HOMOGENEOUS PARENTS, AND WITH BACKGROUND CLUTTER (MODEL 2)

(a) AIC, model 1{(b) AIC, model 2||(c) SBC, model 1{(d) SBC, model 2
Mean 31.01 15.95 70.68 16.12
Std 5.794 0.5562 23.63 0.05687
& | Best 27.96 16.17 56.36 16.08
Opt 31.11 16.22 31.11 16.22
True 15.00 15.00 15.00 15.00
Mean 0.09689 0.01917 0.1663 0.01923
Std 0.009824 1.719 x 107* 0.02724 1.863 x 107*
@ |Best 0.09062 0.01905 0.1437 0.01899
Opt 0.1148 0.02010 0.1148 0.02010
True 0.02000 0.02000 0.02000 0.02000
Mean 88.95 89.04
Std 0.3154 0.4548
7 | Best N/A 88.64 N/A 89.35
Opt 88.22 88.22
True 90 90
Mean 8.600 8.100 4.500 8.000
Std 1.506 0.3162 0.7071 0
n(C)| Best 9 8 5 8
Opt 8 8 8 8
True 8 8 8 8
Mean 1015.9 1201.6 984.53 1169.0
Std 2.7070 1.8538 3.8459 2.1840
hg | Best 1018.9 1203.8 987.84 1170.9
Opt 999.61 11933 969.15 1161.2
True -2365.7 1193.0 -2396.2 1160.8

greater than 0.5, i.e., those contacts with a positive target classi-
fication, and the data in green represent the ground truth target
locations.

Data sets 1 and 2 differ in the following ways: they were col-
lected from different locations, the target fields were different,
and a different sonar system was used in each case. All of these
factors contribute to a greater occurrence of background clutter
in data set 2 compared to that of data set 1, thus making for an
interesting comparison of results from our algorithm. Since we
have no meaningful covariate functions z; available that are at-
tributed to these data sets, and since by inspection the cluster
centers appear to have a homogeneous distribution, we only use
the homogeneous parent model in our analysis. We compare re-
sults for each data set under the four scenarios a)-d) as in our
simulation experiments. However, since we do not have true pa-
rameter values available to us other than the cluster center loca-
tions, we cannot display any true parameter values in Tables VIII
and IX in this section. Moreover, we only run Algorithm 2 once
for each scenario instead of ten times as in our simulation ex-
periments, and thus, these tables also do not include entries for
the mean and standard deviation of parameter estimates. Figs. 9
and 10 are analogous to the figures associated with the simula-
tion experiments presented in Section V-A.

For both real data sets the value of 44 output from Algorithm
2, under either penalty, is shown to be higher when fitting model
2 than when fitting model 1. That is, our algorithm selects the
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TABLE VI

RESULTS OF ALGORITHM 2 ON DATA SET 1 SIMULATED FROM CASE 3:
INHOMOGENEOUS PARENTS, AND WITH BACKGROUND CLUTTER (MODEL 2)

(a) AIC, model 1{(b) AIC, model 2||(c) SBC, model 1|(d) SBC, model 2
Mean 63.14 16.13 239.6 19.12
Std 12.58 1.037 142.9 1.464
& | Best 35.53 15.52 95.40 21.15
Opt 33.92 16.36 33.92 16.36
True 15.00 15.00 15.00 15.00
Mean 0.1526 0.02133 0.2438 0.02339
Std 0.01671 7.025 x 1074 0.07873 9.158 x 1074
@ |Best 0.1144 0.02065 0.1581 0.02435
Opt 0.2075 0.02123 0.2075 0.02123
True 0.02000 0.02000 0.02000 0.02000
Mean 94.58 94.85
Std 1.167 1.897
7 | Best N/A 95.84 N/A 93.08
Opt 96.85 96.85
True 90.00 90.00
Mean 10.00 18.50 4.500 15.60
Std 1.944 1.080 1.581 1.265
n(C)| Best 15 19 6 14
Opt 18 18 18 18
True 18 18 18 18
Mean 4.209 5.177 12.97 5.004
Std 0.7385 0.1601 10.15 0.1555
1 | Best 3.058 5.182 3.978 4.797
Opt 5.243 5.243 5.243 5.243
True 4.000 4.000 4.000 4.000
Mean 0.01239 0.7777 0.1810 0.6834
Std 0.1199 0.1568 0.5990 0.2719
D2 | Best -0.08427 0.8970 -0.3189 0.6781
Opt 0.7142 0.7142 0.7142 0.7142
True 1.000 1.000 1.000 1.000
Mean 2055.2 2318.1 2014.8 2237.5
Std 1.4369 3.6245 5.1244 3.6115
hg | Best 2059.2 2324.5 2021.2 2243.7
Opt 1980.9 2321.9 1906.0 2244.9
True -6128.9 2319.5 -6203.9 22425
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TABLE VII
RESULTS OF ALGORITHM 2 ON DATA SET 2 SIMULATED FROM CASE 3:
INHOMOGENEOUS PARENTS, AND WITH BACKGROUND CLUTTER (MODEL 2)

observed data model that includes homogeneous background
clutter for both data sets, which is sensible for the true nature of
the data. Under the AIC penalty, for both models and for both
data sets, the simulated annealing procedure yields an estimate
for the number of cluster centers that is more than two times the
true number of centers; hence, the other remaining model pa-
rameter estimates are not close to the “opt” estimates. However,
the results from scenario d—SBC penalty and model 2—are
quite accurate, with an estimation very close to the “opt” pa-
rameter values in both data sets. In data set 1, the number of
estimated centers is only one more than the true number of cen-
ters, and in data set 2, the number of estimated centers is exactly
the same as the true number. In the context of minefield detec-
tion, this result favors the use of the SBC penalty since it does

(a) AIC, model 1{(b) AIC, model 2||(c) SBC, model 1|(d) SBC, model 2
Mean 15.19 15.11 42.54 19.78
Std 5.873 0.7073 3.587 2410
& | Best 10.75 15.15 34.85 18.14
Opt 21.71 14.68 21.71 14.68
True 15.00 15.00 15.00 15.00
Mean 0.04404 0.02281 0.06919 0.02620
Std 0.007977 8.067 x 10~* 0.003399 0.002531
@ |Best 0.03656 0.02174 0.06103 0.02411
Opt 0.08180 0.02167 0.08180 0.02167
True 0.02000 0.02000 0.02000 0.02000
Mean 78.09 75.38
Std 2.762 2.923
7 | Best N/A 83.09 N/A 75.94
Opt 78.69 78.69
True 90.00 90.00
Mean 31.70 21.60 11.60 17.00
Std 7.072 1.075 1.075 1.633
n(C)| Best 40 21 14 18
Opt 22 22 22 22
True 22 22 22 22
Mean 1.850 3.172 1.346 3.174
Std 0.2912 0.2138 0.3062 0.1792
01 | Best 1.564 3.356 0.7244 2.950
Opt 3.120 3.120 3.120 3.120
True 4.000 4.000 4.000 4.000
Mean 0.6403 0.8870 0.4287 0.8561
Std 0.1809 0.1421 0.1884 0.1011
2 | Best 0.5208 0.7933 0.7974 0.8146
Opt 1.039 1.039 1.039 1.039
True 1.000 1.000 1.000 1.000
Mean 2305.1 2453.6 2202.4 2359.3
Std 17.064 5.796 2.7949 9.6393
hg | Best 2323.0 2461.9 2206.3 2372.6
Opt 2167.5 24529 2075.8 2359.2
True -176.65 2450.4 -268.33 2356.7
ool
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Fig. 8. Real data sets 1 and 2 with ground truth target locations (green).

not underfit the data and since the AIC penalty allows for too
many false alarms.
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Fig. 9. Results of Algorithm 2 on real data set 1.
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Fig. 10. Results of Algorithm 2 on real data set 2.

TABLE VIII
Results From Algorithm 2 on Real Data Set 1
(a) AIC, model 1{(b) AIC, model 2||(c) SBC, model 1|(d) SBC, model 2
& [Best 10.84 11.54 17.04 21.21
Opt 28.05 21.50 28.06 21.50
@ |Best 0.009607 0.006408 0.01230 0.005991
Opt 0.02012 0.004533 0.02012 0.004533
7 |Best N/A 49.92 N/A 95.26
Opt 111.6 111.6
n(C)|Best 44 37 28 18
Opt 17 17 17 17
hg |Best 3946.7 4002.3 3721.7 3883.2
Opt 3461.7 4062.7 3386.7 3985.6

VI. CONCLUSION

We have presented a statistical framework for mine detec-
tion in a spatial region. In this framework, the mine locations
are modeled using a spatial point process, a Thomas process,
with a certain cluster structure that is hierarchical—the loca-
tions of mines are modeled as parents while the marine life and
other false detections are treated as children and clutter, respec-
tively. Given the parents, the children locations are modeled as
isotropic normal around the parents, and the remaining clutter
follows an independent Poisson process. We have introduced a
simulated annealing procedure for finding ML estimates of the

TABLE IX
Results From Algorithm 2 on Real Data Set 2

(a) AIC, model 1|(b) AIC, model 2{|(c) SBC, model 1|(d) SBC, model 2
Best 14.72 8.155 4159 14.06

Opt 35.14 13.54 35.14 13.54

Best 0.03377 0.01176 0.2713 0.01186

Opt 0.09316 0.01096 0.09316 0.01096

7 |Best N/A 216.2 N/A 321.8

Opt 3324 3324
n(C')[Best 43 46 3 19

Opt 19 19 19 19

hs |Best 3433.4 3703.6 3164.1
Opt 3148.2 3632.0 3060.6

o

£

model parameters. These parameters include parent locations
that provide an estimate of mine locations despite being im-
mersed in heavy clutter. The results obtained using both simu-
lated and real SAS-based detections support the effectiveness of
this framework in situations where observed contacts are clus-
tered around mine locations.

As future work, we plan to extend this framework to situa-
tions where mine locations can be both clustered and scattered.
Another possibility is to include ATR scores as a real-valued
“mark” in addition to the location information in the inference
process. One can also focus on scenarios where the quantity of
clutter (false detections) compared to the number of mines in a
scene is an order of magnitude higher than in the data sets given
here.
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