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Abstract
The problem of statistical analysis and modeling of data in process control is important in deter-

mining when a production has moved beyond a baseline. Recently, the use of functional data has
become an interest in statistical process control. The observations here are time samples of real-
valued functions on an observation interval, and to perform effective data analysis it is desirable to
have a generative, probabilistic model for these observations. The model is expected to properly
and parsimoniously characterize the nature and variability in the baseline data. It should also lead to
efficient procedures for conducting hypothesis tests, performing bootstraps, and making decisions.
We wish to perform statistical process control (SPC) using functional data. We present a technique
that takes into account both amplitude and phase variability in the data using the square-root slope
framework. In this work we present metrics that are defined to measure both types of variability and
show demonstration when the data has gone beyond the control limits.

Key Words: Compositional noise, functional data analysis, functional statistical process control,
functional principal component analysis

1. Introduction

A significant amount of data collected in process monitoring is in the form of “functional
data”; that is, a collection of data over some index (e.g., time, frequency). It is often the case
that, for the purpose of analysis, this functional data is discretized in some manner, with
only the key features of the curve being retained. Some examples include the maximum
peak, minimum peak, number of peaks, or rate of change at a particular point in the curve.
There has been a recent push across industrial statistics for ways to analyze functional
data in its entirety. Methodology that involves such analysis is known as functional data
analysis. An excellent introduction and reference to this field is the book by Ramsay and
Silverman (2005) and we refer interested readers there for more details. Some data analysts
may be averse to updating their analysis methodology into working with functional data due
to the complicated dependence structure often present in such data. However, ignoring this
dependence structure can result in faulty conclusions as it is an integral part of the data and
the process that generated it.

One of the methods to perform effective data analysis is to have a generative, proba-
bilistic model for these observations. The model is expected to properly and parsimoniously
characterize the nature and variability in the data. It should also lead to efficient procedures
for conducting hypothesis tests, performing bootstraps, and making forecasts. An interest-
ing aspect of functional data is that underlying variability can be ascribed to two sources.
In a sample data the given functions may not be perfectly aligned and the mechanism for
alignment is an important topic of research. The variability exhibited in functions after
alignment is termed the amplitude (or y or vertical) variability and the warping functions
that are used in the alignment are said to capture the phase (or x or horizontal) variabil-
ity. Capturing this variability is crucial when modeling and monitoring functional data in a
process control architecture.

Hypothesis testing and inference methods have been developed for functional data
(Horváth and Kokoszka, 2012). Specifically, Horváth developed a number of statistical
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tests, with corresponding distributions, for testing shifts from a mean function and other
statistical tests. James and Sood (2006) developed a hypothesis testing procedure for test-
ing the shape of functions by testing the permuted residuals when a smooth function is fitted
to the data. Hall and Van Keilegom (2007) developed a two-sample test for smoothing the
discrete measurements to form the functional. Recently, Storlie et al. (2013) developed a
method to tests the shape of population of curves using a B-Spline basis test and hierarchi-
cal Gaussian process approach.

Most of these methods for functional statistical process control (SPC) do not take into
account the amplitude and phase variability. Most assume there is a pre-alignment step
of the data and then the tests are conducted. We believe that it is imperative that any
technique for SPC using functional data should take both these variabilities into account
as part of the testing procedure. In order to make a decision when the data has moved
outside the control limits, we need to account for this variability. A prominent example
of the situation of when this variability is ignored is in modeling functional data using
function principal component analysis (fPCA) (see Tucker et al. (2013)). Moreover, we
can use metrics defined to measure this variability in order to determine when we have
gone beyond the control limit.

In this paper, we present two methods for implementing statistical process control using
functional data while accounting for both of these variabilities. We base our tests on the
elastic functional data analysis framework presented in (Kurtek et al., 2011; Srivastava
et al., 2011b; Tucker et al., 2013). The first method is based on the elastic amplitude
and phase distance (Tucker et al., 2014) where the distances are calculated from a known
template function (mean) and any distance above a certain control limit (threshold) the
sample is flagged. The second method uses vertical and horizontal fPCA (Tucker et al.,
2013) where a model is constructed taking the variability into account. The principal scores
are then monitored and any sample above or below the control limit is flagged for each of
the fPCA models.

The rest of this paper is organized as follows: Section 2 presents the elastic distance
approach. Section 3 presents the functional principal component analysis approach. Re-
sults using simulated and real data are provided in Section 4. Finally, conclusions and
observations are offered in Section 5.

2. Statistical Process Control using Elastic Distances

Let f be a real-valued function with the domain [0, 1]; the domain can easily be transformed
to any other interval. For concreteness, only functions that are absolutely continuous on
[0, 1] will be considered; let F denote the set of all such functions. In practice, since
the observed data are discrete, this assumption is not a restriction. Also, let Γ be the set
of boundary-preserving diffeomorphisms of the unit interval [0, 1]: Γ = {γ : [0, 1] →
[0, 1]| γ(0) = 0, γ(1) = 1, γ is a diffeomorphism}. Elements of Γ play the role of warping
functions. For any f ∈ F and γ ∈ Γ, the composition f ◦ γ denotes the time-warping of
f by γ. With the composition operation, the set Γ is a group with the identity element
γid(t) = t. This is an important observation since the group structure of Γ is seldom
utilized in past papers on functional data analysis.

We know from Tucker et al. (2013) that there are two metrics to measure the amplitude
and phase variability of functions. These metrics are proper distances, which means they
are symmetric, isometric, and obey the triangle inequality. The amplitude or y-distance for
any two functions f1, f2 ∈ F is defined to be

da(f1, f2) = inf
γ∈Γ

‖q1 − (q2 ◦ γ)
√
γ̇‖, (2.1)
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where q(t) = sign(ḟ(t))
√

|ḟ(t)| and is known as the square-root slope function (SRSF)
and q ∈ L2. For the properties of the SRSF and the reason for its use the reader is referred
to Srivastava et al. (2011a). Moreover, it can be shown that for any γ1, γ2 ∈ Γ, we have
da(f1 ◦ γ1, f2 ◦ γ2) = da(f1, f2).
Optimization Over Γ: The minimization over Γ can be performed in many ways. In case
Γ is represented by a parametric family, then one can use the parameter space to perform
the estimation as Kneip and Ramsay (2008). However, since Γ is a nonlinear manifold,
it is impossible to express it completely in a parametric vector space. One method is to
use the standard Dynamic Programming (DP) algorithm (Bertsekas, 1995) to solve for an
optimal γ. It should be noted that for any fixed partition of the interval [0, 1], this algorithm
provides the exact optimal γ that is restricted to the graph of this partition. Recently, Huang
(2014) developed an optimization method of performing optimization methods on Rieman-
nian manifolds, with one method being the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm. The RBFGS algorithm was developed to solve for γ and is a faster alternative to
DP. Additionally, Cheng et al. (2013) has developed a solution using a Bayesian approach
where they use a Dirichlet prior on the warping functions and a Markov chain Monte Carlo
algorithm.

The second metric from Tucker et al. (2013) is a measure on the phase-variability which
is captured by γ using

dp(γ) = cos−1

(∫ 1

0
ψ2(t) dt

)
(2.2)

where ψ =
√
γ̇. One important advantage of the above transformation is that since ‖ψ‖2 =∫ 1

0 ψ(t)
2dt =

∫ 1
0 γ̇(t)dt = γ(1) − γ(0) = 1, the set of all such ψs is a Hilbert sphere

S∞, a unit sphere in the Hilbert space L2. In other words, the square-root representation
simplifies the complicated geometry of Γ to a unit sphere.

We can then use these distances to monitor samples that have deviated from the Karcher
Mean or centroid function. We will assume that the Karcher mean has been established on
a baseline data set using Algorithm 1 from Tucker et al. (2013) and will denote it as µq.
Then for each new sample function fi, we convert to its corresponding qi and calculate da
using (2.1) and dp using (2.2). If either da, dp, or both cross a pre-determined threshold we
mark the test function as out of limits. One could also use the weighted combination of

dτ = (1− τ)da + τdp, τ ∈ [0, 1]

which, depending on the value of τ , would give preference to either amplitude or phase,
or both. By monitoring dτ one number can be monitored for when a sample is in-control,
depending on a pre-determined threshold.

3. Statistical Process Control using Elastic fPCA

The next method we can use for fSPC is by performing vertical and horizontal fPCA
(Tucker et al., 2013). Vertical fPCA is performed using the aligned SRSF’s which are
product of the Karcher Mean calculation.

Let f1, . . . , fn be a given set of functions, and q1, . . . , qn be the corresponding SRSFs,
µq be their Karcher Mean, and let q̃is be the corresponding aligned SRSFs using Algorithm
1 in Tucker et al. (2013). In performing vertical fPCA, one should not forget about the
variability associated with the initial values, i.e., {fi(0)}, of the given functions. Since
representing functions by their SRSFs ignores this initial value, this variable is treated
separately. That is, a functional variable f is analyzed using the pair (q, f(0)) rather than
just q. This way, the mapping from the function space F to L2 × R is a bijection. In
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practice, where q is represented using a finite partition of [0, 1], say with cardinality T , the
combined vector hi = [qi fi(0)] simply has dimension (T + 1) for fPCA. We can define a
sample covariance operator for the aligned combined vector h̃ = [q̃1 fi(0)] as

Kh =
1

n− 1

n∑
i=1

E[(h̃i − µh)(h̃i − µh)
T
] ∈ R(T+1)×(T+1) , (3.1)

where µh = [µq f̄(0)]. Taking the SVD, Kh = UhΣhV
T
h we have the singular vectors and

singular values {σh,k}.
We then can set the control limits to be the following

UCL = 3
√
σh,k

CL = 0

LCL = −3
√
σh,k

for a chosen singular value. The scores for each observation function are computed and
those functions beyond the control limits are marked.

ψid

vi

ψi

Figure 1: Depiction of the SRSF space of warping functions as a sphere and a tangent
space at identity ψid.

Additionally, we should monitor the scores produced from horizontal fPCA. First, we
find the Karcher mean of the set of warping functions as described in Algorithm 2 (Tucker
et al., 2013). These are the warping functions produced from aligning the baseline set
of functions. Horizontal fPCA is performed using ψ which the space of all {ψi} is a
Hilbert sphere, S∞. However, since S∞ is a nonlinear space (a sphere), one cannot perform
principal component analysis on it directly. Instead, we choose a vector space tangent to the
space, at a certain fixed point, for analysis. The tangent space at any point ψ ∈ S∞ is given
by: Tψ(S∞) = {v ∈ L2|

∫ 1
0 v(t)ψ(t)dt = 0}. In the following, we will use the tangent

space at µψ to perform analysis. Note that the outcomes of Algorithm 2 include the Karcher
mean µψ and the tangent vectors {vi} ∈ Tµψ(S∞). These tangent vectors, also called the
shooting vectors, are the mappings of ψis into the tangent space Tµψ(S∞), as depicted in
Figure 1. In this tangent space we can define a sample covariance function: (t1, t2) 7→
1

n−1

∑n
i=1 vi(t1)vi(t2). In practice, this covariance is computed using a finite number of
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points, say T , on these functions and one obtains a T×T sample covariance matrix instead,
denoted by Kψ. The singular value decomposition (SVD) of Kψ = UψΣψV

T
ψ provides the

estimated principal components of {ψi}: the principal directions Uψ,j and the observed
principal coefficients 〈vi, Uψ,j〉.

Using the singular values, {σψ,k} and the following control limits,

UCL = 3
√
σψ,k

CL = 0

LCL = −3
√
σψ,k

for a specified singular value. For each new observation, the function is aligned to µq
forming the corresponding warping function, γ. The SRSF of γ (ψ) is formed and the
corresponding shooting vector is found. From the shooting vector, the score is formed and
checked against the control limits and those shooting vectors with scores beyond the control
limits are marked.

4. Results

In this section we test the distance and fPCA approach to functional statistical process
control on a simulated data and a real data set. The real data is the shockwave curves,
also known as “onionskin” curves, from Storlie et al. (2013). In both data sets using the
provided fSPC approaches we measure the shape of the functions and if they change from
a specified mean.

4.1 Numerical Simulation

To illustrate the developed methods for functional statistical process control, we evaluated
each method on a simulated data set constructed from a mean function

µf (t) = 0.2
√
2 sin(t) + 0.4

√
2 cos(t)

where t ∈ [0, 2π]. The data then was constructed from µf using

fi(t) = ci(µf ◦ γi)

where ci ∼ N (1, 0.05) for in-control data and ci ∼ N (1, 0.4) for out of control data.
For both cases the data was randomly warped as described in Tucker et al. (2014) where
the warping was increased for the out of control case. There are a total of 40 functions
generated with 20 from both cases. The functions {fi} and the corresponding SRSF’s {qi}
are presented in Figures 2a and b, respectively. The mean function µf and mean SRSF
µq which were found from the 20 in-control samples using elastic functional alignment
algorithm (Srivastava et al., 2010) are presented in in Figures 3a and b, respectively.

First, we calculated the distances da and dp from µq as defined in (2.1) and (2.2), respec-
tively. Figure 4 presents the distances for each of the 40 functions with orange representing
da and the purple representing dp. A threshold was set at 0.16 for da and 0.05 for dp and any
function that was above this threshold was flagged and marked in red in the figure. Almost
all of the 40 out of control samples were flagged, there was one in which the da did not flag
it however, the corresponding dp was over the threshold. This demonstrates the power of
the two metrics and the ability to measure the two types of variability. Depending on the
desire of the user we can give priority to one or the other. Moreover, by using the warping
function, γ, we can demonstrate where in time the function was out of control as well. The
thresholds in this case were set tight and could be relaxed given the users requirement.
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Figure 2: Original simulated data which contains variation in amplitude and phase showing
both the original functions and SRSFs.
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Figure 3: Mean function and SRSF found using Elastic Functional Alignment for the sim-
ulated data

Second, we performed vertical and horizontal fPCA as described in Section 3. The
control limit (CL) was determined for the simulated data to be 2.12 for the vertical and
0.269 for the horizontal based on the in-control samples. The first eigenvalue was used
in both methods to set the control limits. Figure 5 presents the control plot with the CLs
shown as the black horizontal lines for the vertical fPCA. Any function that was found
to be outside the control limit is marked in red. Two of the out of control samples were
determined to be in control, which is slightly different than the distance measurements.
Additionally, one of the in control samples was right at the CL and was flagged. This
method is similar to standard SPC methods based PCA, however it incorporates amplitude
and phase variability found in functional data.

Figure 6 presents the control plot with CLs shown as the black horizontal lines for the
horizontal fPCA. Most of the 20 out-of control samples were flagged as out of limits. Those
that were not had a warping similar to the original 20 functions and should not have been
flagged as they the phase was similar to the original model. Therefore, depending on what
one wishes to monitor, amplitude or phase, would determine the model you would use.
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Figure 4: The distances da and dp calculated for the simulated data and out of control
samples marked as red.
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Figure 5: Vertical fPCA scores for the simulated data with the control limits shown and
samples outside the control limits marked with red.

4.2 Real Data

Next we demonstrate the elastic fSPC methods on shock wave curves collected at Los
Alamos National Laboratory (Storlie et al., 2013). These curves are known as “onionskin”
curves and are a recording of a shock wave as it arrives at a streak camera. The challenge
with these curves is to characterize the population of the curves and compare them data
from tests to a baseline set of curves for changes in shape. Changes in shape of the curves
are related to a change in the quality of explosive material.

The curves were smoothed using a 3rd order B-Spline basis and Figure 7a presents 9
onionskin curves that are considered the baseline from historical tests. Figure 7b presents
4 onionskin curves from a different detonator (an LX07 detonator). Because of the change
in the detonator, the shape and amplitude are different from the baseline curves and the
question is how different are they.

The original onionskin curves were aligned using the elastic function alignment and the
computed mean function is presented in Figure 8. Next, we calculated the distances da and
dp from µq as defined in (2.1) and (2.2), respectively. Figure 9 presents the distances for
the 13 onionskin curves with orange representing da and the purple representing dp. The
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Figure 6: Horizontal fPCA scores for the simulated data with the control limits shown and
samples outside the control limits marked with red.
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(a) Baseline onionskin shock wave curves from
historical tests.
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(b) New set of onionskin curves from a new
LX07 detonator.

Figure 7: Onion Data

first 9 are the original curves and the last 4 are thew new curves. A threshold was set at 0.2
for da and dp and any function that was above this threshold was flagged and marked in
red in the figure. All four new curves were marked out of control by da due to their large
amplitude differences and the last 3 were marked out of control by dp with the last two
being on the edge of the threshold. These results coincide with the results obtained by Los
Alamos National Laboratory.

We then performed vertical and horizontal fPCA on the onionskin data with models
being formed using the baseline 9 curves. The control limit (CL) was determined to be
2.24 for the vertical and 0.9095 for the horizontal. The first eigenvalue was used in both
methods to set the control limits. Figure 10 presents the control plot with the CLs shown
as the black horizontal lines for the vertical fPCA. The second function of the LX07 was
flagged above the control limits, through the first and third are very close the UCL. Overall,
the functions are very close to being different in amplitude from the baseline set.

Figure 11 presents the control plot with CLs shown as the black horizontal lines for
the horizontal fPCA. The second curve is flagged again as out of the control limits. This
would relate to a large change in shape and the other three curves are similar in phase to
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Figure 8: Mean onionskin curve calculated using elastic function alignment.
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Figure 9: The distances da and dp calculated for the onionskin data and out of control
samples marked as red.

the baseline.
The PCA-based approach does not flag as many functions as the distance based ap-

proach. This has to do with how high or low we set the CLs. Overall, both methods
provide a way to measure the shape of the curves and monitor as curves are sampled from
a process.

5. Conclusions

The statistical modeling and monitoring of functional data for process control is difficult
task. We have proposed an approach that solves the problem of monitoring a process using
functional data that takes into account both amplitude and phase variability of the data.
The main idea is to use an elastic distance to separate the given functional data into phase
and amplitude components, and to develop individual models for these components. Then
based on those models set control limits and monitor the elastic distance or fPCA score
for samples whose function go beyond those limits. The strengths of these models are
illustrated in two ways: simulated and real data. In both cases, each method was able
to identify when there were changes in the data in both amplitude and phase, essentially
detecting when the shape of the function has changed. This in turn relates to a change in
the process being monitored.
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Figure 10: Vertical fPCA scores for the simulated data with the control limits shown and
samples outside the control limits marked with red.
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Figure 11: Horizontal fPCA scores for the onionskin data with the control limits shown
and samples outside the control limits marked with red.
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