
Assessing Extreme Value Analysis to predict rare events from the Global
Terrorism Database

Lekha Patel∗ Lyndsay Shand∗ J. Derek Tucker∗ Gabriel Huerta∗

Abstract
Extreme value methods have commonly been used to predict and quantify uncertainty

around environmental or climatological events that could have high impact on human ca-
sualties or costs (e.g. earthquakes, hurricanes, flooding, wildfires). In this work, our focus
is to study the number of casualties as the variable of interest, from the Global Terrorism
Database (GTD) for a particular region and time frame and characterize events via finding
extreme observations and fitting both a Generalized Extreme Value (GEV) and General-
ized Pareto Distribution (GPD) to this data. We assess whether the goodness of fit of the
GEV and GPD parameters are adequate for our framework. For the latter, we also provide
graphical representations of predicted 95% and 99% quantiles based on our models and
compare these to the actual data. The results of these analyses are a building block into
the development of a representative Bayesian hierarchical model that fully characterizes the
spatial-temporal relationships present in extreme events from the GTD.

Key Words: Extreme value analysis, Global Terrorism Database, Generalized Pareto
distribution, Generalized Extreme Value

1. Introduction

Threats to our national security can be reduced by the detection, prevention and
deterrence of unlikely extreme events. It is well understood that it is not the obvious
likely events that cause distress, but the rarest unanticipated events such as a new
terrorist group arising where no one is looking. Predicting the occurrence of a rare
event that has never been seen before is an extremely challenging problem, yet
to be solved. A feasible approach to anticipating the unlikely is to quantify the
probability of an extreme event and the related uncertainty or risk for long term
monitoring and integration into decision making. This approach aims to reduce the
severity of the “surprise” events and would allow time for decision makers to have
options available when needed.

In this paper, our aim is to assess the viability of extreme value analysis to
extreme terrorism events and discuss potential research avenue for their statistical
quantification. While traditional statistical models seek to describe the overall
distribution of such events, extreme value analysis is concerned with characterizing
events that lie in the tails or margins of these distributions. Extreme value methods
have commonly been used to predict and quantify uncertainty around environmental
or climatological events that could have high impact on human casualties or costs
(e.g., earthquakes, hurricanes, flooding, wildfires), see for example, Coles (2001).
From a statistical point of view, extreme value data can be modeled with two
types of approaches. The first, relies on calculating a sequence of maximum (or
minimum) values over blocks of data, e.g. monthly or yearly maxima (minima) and
then fitting it to its large sample distribution, the Generalized extreme value (GEV)
distribution. The second, finds observations that exceed a given threshold (or are
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below a threshold) and fits the well approximated Generalized Pareto Distribution
(GPD) to these exceedance values. The latter method is also known as a Peaks
over Threshold (PoT) approach and can be a more efficient use of the raw data
rather than only modeling the block maxima. The utilization of both methods
are application specific but have not been considered extensively to assess risks of
extreme events with national security implications. In this work, we aim to utilize
extreme value theory to this application in a spatio-temporal manner by assessing
empirical goodness of fit. This model is therefore intended to quantify and predict a
future extreme national security event in space and time and characterize the rarity
of the event.

1.1 Global Terrorism Database

To motivate the proposed framework, we focus our work on the Global Terrorism
Database (GTD)1. The GTD includes information on more than 190,000 terrorist
attacks from 199 different countries occurring from 1970 through 2018. Along with
the attack time (day, month and year) and location (latitude and longitude) of each
recorded terrorism event, detail is also given on the attack type, weapon(s) used,
nature of the target, casualties, injuries, and the group responsible (when available).
While extreme value theory has been shown to be a valid approach for predicting the
risk of catastrophic terrorism events in Mohtadi and Murshid (2009) using a more
limited data set than the GTD, analysis has not been extended to appropriately
incorporate spatial or other critical descriptive information of the terrorism events.
In order to be able to develop a modern framework of extreme value analysis that
integrates the temporal and spatial effects of GTD variables through an appropriate
statistical model, it is important to first analyze the viability of extreme valued
distributions to extreme events described in this database.

In order to model global terrorism attacks using either the GEV or GPD distri-
butions, we first require an extreme event to be defined. Depending on the question
of interest, an extreme attack could either be characterized as occurring in an un-
usual or unexpected space-time location, or as an extremely rare type such as an
event perpetrated by a new terrorist group or an event reporting a high magnitude
of fatalities or causalities. The former of the two requires a further definition of
what constitutes as an “unexpected” space-time location and could therefore be
difficult to formally formulate in comparison to the latter. We therefore turn to
rare type modeling and begin, in a similar manner to Mohtadi and Murshid (2009),
by defining an extreme attack as one that results in a high reporting of casualties.
The number of casualties here is calculated as the number of deaths and injuries
resulting from an attack.

Figure 1a shows a histogram of the total number of casualties reported from
the GTD (across all space-time events), with its respective Q-Q plot (Figure 1b)
indicating a zero-inflated heavy tailed distribution.

On a country specific level, the countries which have quoted the most deadly at-
tacks in the GTD are: Iraq, Pakistan, Afghanistan, India and Colombia (see Figure
2). Calculated empirical CDFs (Figure 3a) and quantile plots (Figure 3b) suggest
that the distributions between pairs of the most deadly countries (Iraq/Afghanistan,
India/Pakistan/Colombia) are similar and heavy tailed. These exploratory plots
indicate first that extreme valued distributions seem applicable (using our defini-
tion of an extreme attack) for this dataset, and second, that there appears to be

1This is an open-source database which can be downloaded at https://www.start.umd.edu/gtd/.



(a) Histogram of all casualties.

(b) QQ-plot of all casualties.

Figure 1: Plots of all global casualties during 1970-2018.

a spatio-temporal contribution on the underlying distribution of extreme events in
any one country. This effect may be heightened by specific spatio(temporal) regions
in specific countries, enabling site specific attack regions to be either identified or
incorporated in any corresponding analysis.

1.1.1 Data challenges

Although the GTD contains numerous accounts of attacks, the quality of this data
may affect subsequent extreme value analysis of extreme events. For example, there
are many missing entries on one or more of the explanatory covariates, number of
casualties and the time stamps of events. Furthermore, many of spatial locations
of events are also non-exact, with many entries’ exact locations either incorrect or
being approximated to the longitudes and latitudes of their nearest cities. Fur-
thermore, it is also evident that many countries, especially those with attacks from
before 2000, have underreported the data, in terms of intensity and number of
reported causalities. This would cause obvious problems with analysis conducted



Figure 2: Histogram of causalities per country.

(a) Empirical CDF on log scale. (b) Empirical quantiles on log scale.

Figure 3: CDF and quantile plots of casualties in the five most deadly countries
during 1970-2018.



during these time periods. Although the number of attacks reported for the most
deadly countries (see Figure 2) is seemingly large enough for statistical inference,
data limitations make EVA difficult for other countries e.g. the USA and UK from
which there is not enough data to pursue significant analysis. This therefore limits
our focus to country (or site) specific regions in the world where resulting analyses
can provide meaningful interpretations.

1.1.2 Structure

The outline of this paper is as follows. In Section 2, we mathematically formulate
the Generalized Extreme Value (GEV) and Generalized Pareto distribution (GPD)
appropriate for conducting extreme value analysis. In Section 3, we assess goodness
of fit of these distributions applied to spatio-temporal casualty data resulting from
extreme attacks analyzed in the five more historically attacked countries, as given
by the GTD. Finally, in Section 4 we conclude with a discussion on future research
directions that incorporate extreme value analysis for this dataset.

2. Preliminaries

In this section, we describe the relevant mathematical background that form the
basis of typical extreme value analyses. Specifically, the Generalized Extreme Value
(GEV) distribution is formulated for block maxima models and the Generalized
Pareto distribution (GPD) for threshold based models.

2.1 Block maxima models

Letting X1, X2, . . . , Xn be a sequence of independent random variables having a
common distribution function F , block maxima models focus on the statistical
modeling of

Mn = max(X1, X2, . . . , Xn),

and a block is considered a period e.g. monthly or annually that each contain
observations of X1, . . . , Xn.

In practice, the distribution F is unknown. To circumvent this, the Fisher-
Tippett-Gnedenko theorem (Coles, 2001) states that if there exist a sequence of
constants (an, bn) with an > 0, then the limit

lim
n→∞

P
(
Mn − bn

an
≤ z

)
= G(z).

Here, if G is non-degenerate then G belongs to one of the Gumbel, Fréchet or
Weibull distribution families. These three families can be succinctly grouped into
the family of the Generalized Extreme Value (GEV) distribution. Specifically, if
Z ∼ GEV(µ, σ, ξ), then its CDF takes the form

G(z) := P(Z ≤ z) = exp

(
−
[
1 + ξ

(
z − µ

σ

)]−1/ξ
)
, (1)

defined on {z : 1 + ξ(z − µ)/σ > 0}. Here, µ ∈ R is the location parameter, σ > 0
is the scale parameter ξ ∈ R is the shape parameter. Furthermore, renormalization



implies that

P(Mn ≤ z) ≈ G

(
z − bn
an

)
= G∗(z),

which is another member of the GEV family (Coles, 2001).
This enables the distribution of block maxima (or minima) to be well approx-

imated by distributions from the GEV family, from which maximum likelihood
estimation is in general numerically straight-forward to recover the unknown pa-
rameters from given data.

2.2 Threshold models

While distributions from GEV family are subject to favorable asymptotic properties
(Coles, 2001), one of the main drawbacks from utilizing the GEV in this manner
is that the data in blocks X1, X2, . . . , Xn is often wasted via computation of their
maximum (or minimum), frequently resulting in insufficient data for the GEV to
be an accurate modeling tool. An alternative approach, which endeavors to utilize
data that are observed above a particular threshold, are threshold based models.

Letting X1, X2, . . . , Xn again be a sequence of independent random variables
having a marginal common distribution function F , threshold models define an
extreme event X from this sequence as that which exceeds some high threshold u.
Specifically, its conditional probability is given as

P(X > u+ x|X > u) =
1− F (u+ x)

1− F (u)
x > 0.

Since in practical applications the distribution F is commonly unknown, an ap-
proximation to P(X > u + x|X > u) is necessary. Coles (2001) uses the GEV
distribution defined in (1) for large n and u, to yield

P(X ≤ u+ x|X > u) = 1−
(
1 +

ξx

σ + ξ(u− x)

)−1/ξ

, (2)

defined on
{
x : x > 0,

(
1 + ξx

σ+ξ(u−x)

)
> 0
}

.
Re-parameterizing (2), the CDF of X ∼ GPD(u, σ, ξ) is given by

P(X ≤ x) =

1−
(
1 + ξ(x−u)

σ

)−1/ξ
for ξ 6= 0

1− exp
(
−x−u

σ

)
for ξ = 0,

(3)

where the support of X satisfies x ≥ u when ξ ≥ 0 and u ≤ x ≤ u− σ
ξ when ξ < 0.

Similarly to the GEV, σ > 0 is the scale parameter, ξ ∈ R is the shape parameter
and u ∈ R is the threshold or location parameter.

This enables the distribution of data over a pre-specified threshold or exceedances
to be well approximated by the GPD, from which maximum likelihood estimation
is in general numerically straight-forward to recover the unknown parameters from
given data. Analyzing threshold exceedances in this manner are commonly referred
to as peaks over threshold (PoT) models. Although these methods typically utilize
the data more efficiently than block maxima models, selecting a suitable threshold
for which the GPD remains a suitable model, without losing efficiency of the data,
is not straightforward and remains an active area of research in this field.

The interested reader is directed to Coles (2001) for further information of the
GEV distribution, GPD and other extreme valued type constructions.



Country Time period
Iraq 2004-2018

Pakistan 2002-2018
Afghanistan 2003-2018

India 2002-2018
Colombia 1977-1995

Table 1

3. Extreme value analysis

In order to analyze the viability of extreme value analysis across all space-time
terrorism attacks, it is important to assess its performance first at the country
level, i.e. in large regions of space where attacks can be viewed independently of
other regions and where temporal structures can be emphasized. In this section,
we look at the five most (historically) attacked countries, as described in Section 1,
within specific time periods that do not suffer too greatly from the data limitations
highlighted in Section 1.1.1. The countries analyzed in this section are summarized
in Table 1.

In Section 3.1, we use the block maxima approach and fit a GEV distribution
to monthly maxima of casualties, both spatially and temporally. In Section 3.2,
we use the peaks over threshold approach and fit a GPD distribution to threshold
exceedances, including a discussion on threshold selection methods.

3.1 Analysis of block maxima

In order to use the GEV distribution to GTD country level data, we computed
the monthly maxima of casualties over the time periods considered. A monthly
block for this dataset was favored over a daily block, which would have resulted
in too many null observations, and a yearly block which would have resulted in
too few data points. Using these datasets, the standard GEV distribution can be
fitted using maximum likelihood estimation, and goodness of fit plots (specifically
probability, quantile, density and return levels) that use the maximum likelihood
estimated parameters, can be assessed.

Figures 4-7 show the monthly maxima with the corresponding GEV goodness
of fit plots for Iraq, Pakistan, Afghanistan, India and Colombia. All countries seem
to suggest a good distributive fit with the (standard) GEV, although Pakistan and
Colombia yield the poorest of quantile fits.

Spatially, attack data can be analyzed for its clustering or inhibitive properties.
Estimates of Ripley’s K and pair correlation functions are provided in Figures 9a
and 9b for each country previously studied and highlight the high spatial cluster-
ing of attacks in comparison to a homogeneous (uniform) spatial Poisson process.
Furthermore, the GEV data within the time period 2002-2018 in the Middle East
region is plotted in Figure 9c, which further highlights attack clusters around cities
and regions of known political conflict.

3.2 Analysis of peaks over threshold

In order to use the GPD distribution to GTD country level data, we first observe
the casualties that exceed the 99%, 95% and 90% empirical quantiles over the time



periods considered. We then use mean residual life and parameter stability plots to
determine a suitable threshold for each country. Using these datasets, the standard
GPD distribution can be fitted using maximum likelihood estimation, and goodness
of fit plots (specifically probability, quantile, density and return levels) that use the
maximum likelihood estimated parameters, can be assessed.

Figure 10 shows the exceedances of the data at three empirical quantiles. It
is evident that, even in the case of the 99% quantile, the data seems to extremely
heavy tailed (with many points lying above this quantile), providing first evidence
of the suitability of PoT models.

In order to continue with the GPD fitting, it is necessary to define the threshold
u for each country, for which an attack is considered extreme. Threshold selection
is indispensable when using the GPD, since choosing a threshold which is too low
may invalidate the Generalized Pareto distributive assumption on the tails of the
observed data, while picking a threshold which is too large is likely to encounter
maximum likelihood convergence issues due to too few points exceeding it. Although
there are many methods (Bader et al., 2018) to aid us in doing so, we follow Coles
(2001) and use graphical tools. The three main plots we can consider are the mean
residual life plot, and the GPD scale and shape stability plots.

The mean residual life (MRL) plot utilizes the fact that for X ∼ GPD(u0, σu0 , ξ),
E(X − u|X > u) =

σu0+ξu
1−ξ , for all u > u0, ξ < 1. This expectation is a linear

function of u. This is important since the unbiased estimate of E(X − u|X > u),
the mean of all excesses above u, are therefore expected to change linearly in u
at levels of u for which the GPD is appropriate. This is exactly what the MRL
computes over different values of u.

On the other hand, the scale and shape stability plots use the fact that if the
GPD is valid at threshold u0, then excesses of a higher threshold u > u0 also follow
a GPD with identical shape parameter ξ and scale parameter σu = σu0 + ξ(u −
u0). This implies that the modified scale parameter σ∗ = σu − ξu is constant
with respect to u. The shape and scale stability plots therefore provide maximum
likelihood estimates for the shape and modified scale parameters across different
values of u, with a suitable threshold u0 being that which the parameter estimates
are approximately constant above.

A threshold can then be chosen once the MRL becomes approximately linear
and/or the shape/scale stability plots become constant. As stated above, it is
important to understand the bias/variance trade-off between picking a large enough
threshold to render the GPD appropriate, while also having sufficient data above it
for model fitting and selection.

Figures 11 - 15 show the MRL and shape/scale stability plots for the countries
considered. From these plots, it is evident that the GPD in general provides a
good fit at low thresholds with most countries, with the exception of Pakistan, from
which a poorer fit is observed. In this case, a larger threshold is required to ensure
parameter stability.

The thresholds selected for each country using these plots is given in Table
2. The corresponding GPD goodness of fit plots for Iraq, Pakistan, Afghanistan,
India and Colombia are shown in Figure 16. All countries seem to suggest a good
distributive fit with the (standard) GPD.

Similarly to the GEV data, estimates of Ripley’s K and pair correlation func-
tions are provided in Figures 17a and 17b for each country using GPD data and
analogously highlight the high spatial clustering of attacks. The data within the
same time period in the Middle East region shown in Figure 17c, however, highlights



Country Threshold
Iraq 100

Pakistan 60

Afghanistan 50

India 20

Colombia 10

Table 2

a much greater amount of data available through a PoT approach.

4. Conclusions and future work

In this paper, we analyzed the effectiveness of using extreme value analysis for the
number of casualties produced by global terrorist attacks provided by the Global
Terrorism Database (GTD). We first described the GTD and some of the chal-
lenges that arise from the available data. In order to apply extreme value analysis
to casualty data, we highlighted through empirical quantile and CDF plots, heavy
tailed properties for the five most attacked countries in the GTD: Iraq, Pakistan,
Afghanistan, India and Colombia. These countries then formed the basis of extreme
value analysis through block maxima and points over threshold (PoT) approaches.
The former was analyzed via the Generalized Extreme Value (GEV) distribution
over monthly blocks, from which attacks producing the highest number of casual-
ties over pre-specified time intervals bespoke to each country formed the data to
evaluate. The latter utilized the Generalized Pareto Distribution (GPD) above a
high threshold, which was computed via both high empirical quantile or threshold
selection methods for each country studied. Both the GEV and GPD showed high
spatial clustering of observed extreme attacks around cities or regions with known
political conflict at that time, however, also highlighted differences in the degree of
spatial clustering between the countries of interest.

While both block maxima and PoT methods provide compelling evidence that
modeling of the GTD can be done effectively using extreme value analysis, the data
accretion method resulted in the PoT being utilized with a greater amount of data
albeit with the added requirement of (pre-)determining the threshold to conduct the
analyses. Nevertheless, in terms of analyzing the risk associated with an extreme
attack occurring within a fine spatial-temporal resolution, the GPD would perhaps
provide more flexibility in understanding this behavior. With the spatio-temporal
analysis provided between countries, it is also evident that a more flexible approach
is required to fully recognize the differences in GEV/GPD parameter estimates.

Although hierarchical models for extremes have been extensively studied for
extremal data (Gaetan and Grigoletto, 2007; Ghosh and Mallick, 2011; Reich and
Shaby, 2012; Yadav, 2019), data challenges and structures may render regression
(Casson and Coles, 1999; Chen et al., 2020; Opitz et al., 2018) or copula (Ning,
2017) based approaches difficult. As a specific direction for future research with
this dataset and application, a marked spatio-temporal point process approach in
a Bayesian hierarchical setting may be more suitable. This method could more
flexibly specify the attack distribution in space-time and incorporate the distribution
of casualties through the marks, while also addressing the data challenges arising
from the GTD. The distribution of marks could be modeled both above and below



a threshold (MacDonald et al., 2011), using the analysis presented in this paper,
either with a random threshold (Bader et al., 2018) built into the model or fixed at
a particular value.
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(a) Iraq maximum casualties.
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(b) Iraq GEV plots.

Figure 4: Maximum monthly casualties in Iraq and its corresponding GEV goodness
of fit plots.



(a) Pakistan maximum casualties.
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(b) Pakistan GEV plots.

Figure 5: Maximum monthly casualties in Pakistan and its corresponding GEV
goodness of fit plots.



(a) Afghanistan maximum casualties.
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(b) Afghanistan GEV plots.

Figure 6: Maximum monthly casualties in Afghanistan and its corresponding GEV
goodness of fit plots.



(a) India maximum casualties.
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(b) India GEV plots.

Figure 7: Maximum monthly casualties in India and its corresponding GEV good-
ness of fit plots.



(a) Colombia maximum casualties.
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(b) Colombia GEV plots.

Figure 8: Maximum monthly casualties in Colombia and its corresponding GEV
goodness of fit plots.



(a) GEV: Ripley’s K function. (b) GEV: Pair correlation functions.

(c) GEV data plotted spatially.

Figure 9: Spatial analyses of block maxima (GEV) attack data.



(a) Iraq exceedances. (b) Pakistan exceedances.

(c) Afghanistan exceedances. (d) India exceedances.

(e) Colombia exceedances.

Figure 10: Observed exceedances (on log scale) at the 90% (black), 95% (blue) and
99% (red) quantiles.



(a) Mean residual life plot.

(b) Parameter stability plots.

Figure 11: Iraq: Threshold selection tools.



(a) Mean residual life plot.

(b) Parameter stability plots.

Figure 12: Pakistan: Threshold selection tools.



(a) Mean residual life plot.

(b) Parameter stability plots.

Figure 13: Afghanistan: Threshold selection tools.



(a) Mean residual life plot.

(b) Parameter stability plots.

Figure 14: India: Threshold selection tools.



(a) Mean residual life plot.

(b) Parameter stability plots.

Figure 15: Colombia: Threshold selection tools.
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(a) Iraq GPD fit.
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(b) Pakistan GPD fit.
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(c) Afghanistan GPD fit.

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability Plot

Empirical

M
od

el

50 150 250 350

0
20

0
40

0
60

0
80

0

Quantile Plot

Model

E
m

pi
ric

al

1e−01 1e+01 1e+03

0
50

00
15

00
0

25
00

0

Return Level Plot

Return period (years)

R
et

ur
n 

le
ve

l

Density Plot

x

f(
x)

0 200 600 1000

0.
00

0.
02

0.
04

(d) India GPD fit.
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(e) Colombia GPD fit.

Figure 16: GPD goodness of fit plots.



(a) GPD: Ripley’s K function. (b) GPD: Pair correlation functions.

(c) GPD data plotted spatially.

Figure 17: Spatial analyses of points over threshold (GPD) attack data.
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