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ABSTRACT OF THESIS

Coherence-based Underwater Target Detection for Side-Scan Sonar Imagery

Detection and classification of underwater objects in sonar imagery is a complicated

problem due to various factors such as variations in the operating and environmental

conditions, presence of spatially varying clutter, variations in target shapes, composi-

tions, and orientation. Also contributing to the difficulty of the problem is the lack of

a priori knowledge about the shape and geometry of new non-mine-like objects that

may be encountered, as well as changes in the environmental or operating conditions

encountered during data collection. The use of coherent information is proposed as

an excellent tool for detection and classification due to the fact when a target is

present in a region of interest within an image not only coherence changes allowing

for detecting the target, but also the way it changes is different than a non-target

hence enabling the target’s classification.

The problem of detection of underwater objects in sonar imagery can be cate-

gorized into two types. In the first case, only one sensor is used while the second

case involves dual disparate sensors both observing the same event but at perhaps

disparate locations, frequency, resolution, etc. In both cases coherent-based detection

can be exploited though in different forms.

To implement the coherent-based detector in these cases new formulations are

needed to extend the standard Gauss-Gauss detection to the two channel case that

can be used for both categories of target detection problems using sonar imagery.

This extension requires finding new expressions for the log-likelihood function and

J-divergence when the covariance matrices under the different hypothesis are differ-

ent. In this thesis, we have addressed this problem by developing a new two-channel

Gauss-Gauss detection framework that can be applied to single sonar as well as dual
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sonar platforms. This is done by relating the two-channel detector to the one-channel

case (standard). When applied to single sonar platforms channels are consecutive

columns in a region of interest and coherence between the columns provides indica-

tion of the presence of a target. For dual disparate sonars, the channels are blocks

from a pair of co-registered region of interests and coherence between the pair of

blocks provides indication of the presence of a target. The use of dual sonar types,

e.g. a high frequency high resolution sonar with good target definition and a low res-

olution broadband sonar with good clutter suppression ability significantly improves

the detection and false alarm rates over the single sonar case. A novel distributed

detection system that exploits multiple dual platforms detectors for more than two

sonar platforms situations is also developed. Distributed detection system provides

much better probability of detection and false alarm rates comparing to single or

dual platform cases, due to the fusion of multiple decisions being made about the

observations from the environment.

A comprehensive study is carried on the two-channel coherence-based detector

and a comparison is made on the detection and false alarm rate performance for

three different implementation cases on two data sets acquired from the Naval Sur-

face Warfare Center (NSWC) in Panama City, FL. The first data set contains high

frequency side scan sonar images obtained from one sonar with varying degree of

difficulty and bottom clutter. The second data set contains multiple sonar imagery,

namely one high frequency sonar and three broadband sonars registered over the same

region of the target field with varying degree of bottom clutter. Results illustrating

the effectiveness of the proposed detection tools are presented in terms of correct

detection and false alarm rates for various bottom difficulty conditions. It is observed

that the distributed detection that uses two dual disparate implementations provided

the best overall detection performance with 53 out of 53 detections and only 7 false

alarms per image.
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In realistic situations, only a limited number of data samples can be drawn from

the environment to design the Gauss-Gauss detector. To determine the effects of

the detector’s performance in such cases new expressions for the log-likelihood and

“signal-to-noise ratio” matrix are derived under both sample rich and sample poor

scenarios. We show that when the number of data samples is smaller than the dimen-

sion of the data channel, the eigenvalues of the signal-to-noise ratio matrix become

defective and the empirical J-divergence does not measure the actual separation be-

tween the two hypotheses. This is more critical when using a kernel version of the

detector owing to the high dimensionality of the mapped feature space. A numeri-

cal example is also presented which illuminates these properties of the Gauss-Gauss

detector under sample rich and sample poor conditions.

James Derek Tucker
Department of Electrical and Computer Engineering

Colorado State University
Fort Collins, CO 80523

Spring 2009
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement and Motivations

The problem of underwater object detection and classification in sonar imagery has

attracted a substantial amount of attention [1] - [16]. This problem is complicated

due to various factors such as variations in operating and environmental conditions,

presence of spatially varying clutter, variations in target shapes, compositions and

orientation. Moreover, bottom features such as coral reefs, sand formations, and veg-

etation may totally obscure a target or confuse the detection process. Consequently,

a robust detection system should be able to quantify changes between the returns

from the bottom and any target activity in sonar images, while at the same time

extract useful features for subsequent classification. Thus, a system designed without

the need to perform separate detection and feature extraction is highly desirable.

Normally, a single sensor (sonar, lidar, etc.) is used to detect and classify the ob-

jects based upon observations taken from the environment. From these observations,

the sensor will either make a local decision and transmit it to a central station or

record the entire sonar image for post mission analysis (PMA) at the central station

(see Figure 1.1). The issues faced with detection based upon one sensor is that the

detection process is limited to only one field of view. This makes the detection of

weak targets particularly challenging. Moreover, the structure of targets within an

image vary as a function of aspect, grazing angle, and range from the sonar which

makes detection difficult, especially if the target is in a disadvantaged position in re-

lationship to the sensor, e.g. partially obscured targets. Therefore, any improvement

of the detection results is limited due the limited amount of data and observations
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Figure 1.1: Single Sensor Approach.

from the environment.

Distributed sensor networks offer and new a promising solution to overcome the

shortcomings of the single sensor situations. The use of multiple sensors allows for

significantly better capture of the target characteristics due to the fact that the targets

are viewed from different aspects, grazing angles, ranges, frequencies, and sensor

modalities. In a surveillance area there could be multiple autonomous underwater

vehicles (AUV’s) each equipped with a wide variety of sensors including different types

of sonar, magnetics, or electro-optical systems or a single AUV equipped with multiple

sensors. Preliminary detection, feature extraction, and object classification can be

performed based upon the data collected using every sensory system on one or multiple

vehicles. A final decision-making usually takes places at the central station, either in

the standard PMA method or real-time network-centric sensor analysis (NSA) using

some type of decision-level or feature-level fusion. However, due to the increase in

the number of sensor the amount of bandwidth is increased by the number of sensors

requiring careful design of the detection method.
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In the PMA situation each sensor transmits the entire sonar image to the central

station, where all the low-level and high-level processing and fusion based upon the

transmitted images (see Figure 1.2(a)) take place. Since preliminary decisions and

feature extraction are typically carried out based upon independent sensor data, the

fusion may only have access to partial or incomplete information resulting in a loss

of detection performance.

In real-time NSA situations, multi-sensor collaboration among distributed sen-

sor reduces the uncertainty in decision making. Each sensor makes a local decision

based upon its observation and shares this observation and/or preliminary decision

to other sensors over a communication link. Each sensor then makes a final deci-

sion based upon several observations and/or preliminary decisions received and then

sends its decision to the central station (see Figure 1.2(b)). However, this situation

requires careful consideration of the local (sensor-level) computational requirements

and limited network communication between the sensor platforms and central station.

Therefore, a careful selection of what attributes of the observation should be sent due

to the very low bandwidth of the acoustic communication link is needed.

To allow collaborative decision-making among multiple sonar platforms, it is essen-

tial to detect and further scrutinize the information bearing parts of the data collected

by the various sensory systems. This involves detecting, isolating, and representing;

in terms of some pertinent attributes, the coherent, or mutual information among one

or multiple data sets. This is an extremely challenging problem due the disparate

nature of the problem and therefore to develop such a solution, new methodologies

are needed to: (a) collaboratively detect and agree on threats occurring within the

field of view of the sensors, (b) perform feature extraction to capture common target

attributes from multiple sensor platforms, (c) perform object classification and iden-

tification, (d) and finally develop a single integrated target assessment picture based

upon the detected, localized and classified targets from one or multiple disparate
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(a) PMA

(b) NSA

Figure 1.2: Multiple Disparate Sensor Application.
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sensors.

In this work we attempt to address these problems by designing a coherence-based

detector where the coherent information is found between multiple channels and is

used to detect objects from sonar imagery captured from one ore multiple sonar

platforms with a high degree of confidence.

1.2 Literature Review

Considerable research has been devoted to the development of different detector and

classification methodologies to detect and classify underwater objects from sonar im-

agery. Dobeck [4], [5] utilized a nonlinear matched filter to identify mine-size regions

that match the target template in a side-scan sonar image. For each detected region,

several features were extracted based on the size, shape, and strength of the target

template. A stepwise feature selection process was then used to determine the subset

of features that maximizes the probability of detection and classification. A k-nearest

neighbor and an optimal discrimination filter classifier were used to classify each fea-

ture vector and the decisions of the two classifiers were fused to generate the final

decision.

In [6], a method was proposed that first median filters the sonar image to reduce

the speckle noise present in the image. The image was then split into overlapping

range segments where the pixels in each segment were adaptively thresholded. The

threshold was determined from cumulative distribution function (CDF) formed from

a training set. The purpose of the thresholding is to identify the target structure

in the processed segments. Geometric features were then extracted from contiguous

target structure regions within the segment. The regions within the segment corre-

spond to the highlight and shadow structures of the target. Classification of each

region as target or non-target was done through a multi-level weighted scoring-based

classification system. The algorithm was extended in [17] to include a normalization
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algorithm to reduce the image speckle and reduce image artifacts. A quantization

was also applied to reduce the dynamic range of the pixel intensities [6]. The ad-

dition of the normalization algorithm had an overall reduction in the total number

of false alarm for the same probability of detection. The reason for reduction in the

number of false alarms is that the normalization step reduces the variability of the

background even for cluttered environments. Moreover, the normalization algorithm

provides better target definition which improves the shape features that are applied

to the classifier.

An adaptive clutter filter detector was presented in [3] which exploits the difference

in correlation characteristics between clutter and targets. After detection by the

adaptive clutter filter, features were extracted from the detection regions and then

orthogonalized. The orthogonalization is done by forming the overall scatter matrix

which is the sum of the individual scatter matrices for each of the individual classes.

A transformation matrix is then found such that when applied to the overall data

scatter matrix, the eigenvalues of the scatter matrix are unity. Classification is then

performed on the orthogonalized feature set using an optimal Bayesian classifier [18].

In [11], [19], the algorithm described in [3] was applied to three different sonar im-

ages varying in frequency and bandwidth. The classification on each image was done

using a multistage classification approach, which entails a repeated application of a

classifier. During the training stage, it is determined how many times to apply the

classifier and the optimal subset of the feature vector that is used at each application.

Each stage of the classifier results in a reduction in the number false alarms. The final

classification decision is made by a fusion of the three classification results from the

three different sonar images. This work can be regarded as the first attempt to use

disparate sonars where the disparateness is in the operating frequency of the sonar.

However, in this application the detector and classifier process each image individ-

ually and do not use the information contained in the three images simultaneously
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to make the detection and classification call. This type of decision-making, which is

based upon individual sensory data, typically leads to incomplete, degraded or biased

decisions. However, when the information from the individual sensors is used collab-

oratively and simultaneously in the decision-making a more complete decision about

the observation can be made.

Chandran in [9] presented the use of a matched filter designed to capture the

target structure. Higher order spectra were extracted from the phase of the Fourier

transform as the feature set to classify objects. A k-nearest neighbor classifier [18], a

minimum distance classifier [18], and a threshold-based classifier where the threshold

is determined from the minimum and maximum values of a feature obtained over

all classes were used. The outputs of the three classifiers were fused to yield a final

decision. However, the use of a matched filter is not ideal, as targets can vary greatly

in shape, composition, and orientation in the sonar images and hence leading to

misdetections.

Atallah uses a scale-saliency [20] feature approach for the detection of objects in

side-scan sonar images. The scale-salient features were found by first taking each pixel

and calculating the Shannon Entropy [21] over a set of circular windows around the

current pixel where the radius (scale) is changed. Next, the scales are selected such

that the entropy is maximized and to select the most salient ones. The statistics of

the local window are used to weigh the entropy for each of the peaks. This is known as

the weighted Shannon Entropy [22] and from which the scale and final saliency feature

is chosen for the current pixel. After each pixel’s scale and saliency were determined,

a clustering algorithm was used to group together pixels which possess similar salient

features and scales. The clustering algorithm groups together similar neighboring

pixels to form individual salient regions. Each region was assigned a measure which

consisted of the mean of the scales within that region. Using a threshold on this

measure, objects were detected for regions where the mean of the scales fell above
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the predetermined threshold. Although the features are formed from specific pixel

attributes, this method when used in a large region of clutter or texture can produce a

high amount false alarms due to the grouping of regions with high scales and entropy.

A Markov random field (MRF) model approach was studied in [23] where the

required model parameters were estimated from the original image. By using the a

priori spatial information on the physical size and geometric structure of possible

targets in the field, the MRF model [24] directly segments the image into regions of

highlight, shadow, and background. After detection, features were extracted using a

cooperating statistical snake model [25] which extracts the boundary of the highlight

and shadow from the detected regions. The snake again utilizes available a priori in-

formation about the spatial relationship between the highlight and shadow structures.

After the features are extracted they are classified using a Bayesian classifier [18].

The one pitfall in using a model-based approach in object detection is knowing the

a priori information necessary to construct the model. This can be extremely difficult

due to changing seafloor conditions and target compositions and the large number of

non-mine-like objects, either man-made or natural, that may be encountered. Thus,

if any of the prior information is incomplete or incorrect the model generated from

the data will suffer and consequently the detection rate will fall and the false alarm

rate will increase. Dura in [26] developed an active learning algorithm based on

kernel type classifiers to overcome this pitfall of knowing the a priori information.

A set of the best basis functions was determined from the observed data and the

number of required basis functions is determined adaptively by an algorithm using

the Fisher Information matrix [18] associated with the observed data and the set of

basis functions. Basis functions are added to the basis set until the information gain

is no longer deemed significant. Once the basis set is defined the associated model

weights are determined for a kernel-based classifier. The optimal training data was

determined adaptively in-situ via information-theoretic metrics by iteratively adding
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cases until the information gain is below a prescribed threshold.

Until recently, one detection and feature extraction method that was not explored

for sonar imagery was CCA [27] - [29]. This method does not require any a priori

information about the targets or the environment that contains them. This method

recently has shown great promise in underwater target classification problems using

sonar backscatter data [30]. The canonical coordinate decomposition method deter-

mines linear dependence [27] or coherence between two data channels. This method

not only determines the amount of dependence (or independence) between two data

channels (e.g. two sonar pings with certain ping separation) but also extracts, via the

canonical coordinates, a subset of the most coherent features for classification pur-

poses. CCA allows one to quantify the changes between the returns from the bottom

and when target activities are present and at the same time extract useful features

for target classification without the need to perform separate detection and anomaly

feature extraction. The CCA method has shown great promise in underwater target

classification problems using sonar backscatter using data collected by the buried ob-

ject scanning sonar (BOSS) system [30] - [33]. The work in these references presented

a multi-ping classification system that extracts coherence-based features from blocks

of range cells of a time series of two sonar returns with single ping separation. These

coherence patterns were shown to be different for pairs of pings that contain mine-like

objects than those that contain non-mine-like objects. The canonical correlations that

capture the coherence patterns [27] were shown to have high discriminatory power for

both detection and classification. Another study, [34] extends this coherence analysis

to the frequency domain by measuring coherence between the same frequency band

in two sonar pings. Comparing to the time domain coherence-based features, these

features provided substantially better results on the BOSS data sets as well as the

ability to offer a more rigorous way of generating acoustic-color for possible target

identification from multiple sonar pings.
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Recently in [14] - [15] we have demonstrated the use of CCA in the detection and

classification of objects from sonar imagery. These results showed that by using the

canonical correlations extracted from consecutive columns of an ROI within a sonar

image we can perform target detection. From the detected ROI’s the corresponding

canonical correlations can also be used for classification using a single classifier. The

initial results motivated us to develop the methods presented in this thesis. The

specific research objectives are described next.

1.3 Research Objectives

The goal of this work is to develop and test an efficient and robust coherence-based

detection system for sonar imagery that maintains good underwater target detec-

tion performance in varying operating and environmental conditions. Specifically, we

would like to develop and test a detection system that can either be applied to single

sonar platform or to dual (or multiple) disparate sonar platform cases using the data

provided by the Naval Surface Warfare Center, Panama City (NSWC-PC). For the

single sensor application, our detection hypothesis is that for a ROI within a sonar

image, a target will have a higher level of coherence between columns in the ROI than

that if background only was present. For the dual disparate sensor applications, our

detection hypothesis is that the presence of a target in a co-registered pair of ROI’s

will have a higher level of coherence than if the pair contained only background. As

stated before, the CCA method [27] - [29] provides an excellent framework for quan-

tifying changes between the returns from the bottom and the returns from a target

by determining the linear dependence (or coherence) between two data channels (e.g.

two columns in a ROI). This method not only determines the amount of dependence

between two data channels, but also extracts, via the canonical correlations [27] -

[29], a subset of the most coherent features for classification purposes. This detection

and feature extraction capability can be done without the need to perform separate
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detection and anomaly feature extraction.

Unfortunately, the standard Gauss-Gauss detector that was cast in the CCA

framework [29] cannot directly be applied to this problem, owing to the fact that

in both applications (single platform or multiple-platform) both hypotheses involve

two channels. That is, for the null hypothesis, H0, the ROI(s) cover background

only while H1 corresponds to the case where the ROI(s) contain target (signal) and

background. Specifically, for the single sensor application the two columns in an ROI,

which form the two channels for the CCA framework, will both contain background

under H0 or target plus background under H1. For the dual disparate sensor case,

a pair of blocks from a pair of co-registered ROI’s, which again are the two chan-

nels for the CCA framework, will both contain background under H0 or target plus

background under H1. With the change in the two hypotheses the expressions for the

log-likelihood and J-divergence in [29] no longer hold and will have to be reformulated.

In this thesis, a development of the composite two-channel Gauss-Gauss detector

which overcomes the above-mentioned shortcoming will be presented. Moreover, the

development in [29] uses the assumption that one of the CCA channels is always

signal only and the other channel is the observation. This does not lend itself well

to our detection problem or the development of the composite two-channel detector.

The work presented here will develop the log-likelihood and J-divergence for the

composite two-channel hypothesis testing and relate the formulations to the standard

Gauss-Gauss detector presented in [35]. From this development we then cast the

composite two-channel Gauss-Gauss detector it in the CCA framework where the

assumption is not made that one of the CCA channels is signal only.

After the development of the composite two-channel coherence-based Gauss-Gauss

detector, two different applications of the detector will be studied, one for the single

sensor platform case and one for the dual disparate sensor platform case. A com-

prehensive analysis of the proposed applications will be carried out on two sonar
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data sets. These data sets will correspond to different environmental and operating

conditions, mine-like and non-mine-like objects and different clutter density. More

specifically, the two data sets will correspond to the two applications studied in this

thesis. One data set contains single sensor sonar imagery captured from a single

side-scan sonar and will be applied to the first application. For the dual disparate

sensor application, there is a multi-platform sonar data set that contains multiple

co-registered imagery captured using sonars with different resolution and frequency

characteristics.

Due to the nature of the problem there are few necessary pre-processing steps

that will have to be evaluated. First, due to the fact that most sonar images contain

noise, speckle, and artifacts from the image formation process, a normalization process

for the high frequency sonar images will be used. Second, due to the application

differences of the single sensor case and the dual disparate sensor case, the methods

for channelization, vectorization, and averaging for the CCA process is explored.

This is especially true for the differences in the channelization techniques for the

two cases, where the channels need to be chosen to optimally extract the coherent

information. Finally, for the dual disparate sensor case the system will have to take

into account differences in image and target sizes due to differences in the sensors

operating frequency, range, altitude, etc.

The dual disparate application will then be extended to the distributed detection

scenarios where the coherence-based detector will be used as multiple local decision

makers. Each of the decision makers will then transmit their decisions to a fusion cen-

ter where a final decision will be made. The motivation behind this application is that

it accounts for (a) limited communication bandwidth for communicating essential in-

formation among multiple disparate AUV’s and the mother ship; (b) computational

limitations of the DSP boards on each AUV platform; and (c) near real-time dis-

tributed detection. Moreover, by using multiple detectors one can greatly reduce the
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false alarm rate and increase the detection rate by using more observations from the

environment. A new fusion rule for the fusion center will be developed in this thesis

and the results on the multi-platform sonar data set will be benchmarked against the

single dual disparate sensor case.

The effectiveness of the developed algorithms will be analyzed for various back-

ground difficulty and target compositions. The results of applying these systems to

two different sonar imagery data sets are evaluated and thoroughly discussed in or-

der to determine the effectiveness of the proposed coherence-based detector for the

detection of underwater objects from side-scan sonar imagery.

Finally, a study will be conducted on the sample-support of the Gauss-Gauss

detector. When implementing the detector the covariance matrices under the two-

hypotheses have to be estimated from a limited number of samples drawn from the

corresponding observations. A study of the effectiveness of the detector under two

case will be explored, namely the sample rich and sample poor cases. In the sample

rich case, the number of samples is greater than the data vector dimension while

for the sample poor case the opposite is true. Although the sample poor scenarios

may not occur frequently for the linear detector, they do indeed happen in the kernel

nonlinear version of this detector. This is due to the fact that the dimension of the

mapped data in the high dimensional feature space is typically much higher than the

sample support [36] - [38]. From the study of the sample poor scenarios the kernel

version of the Gauss-Gauss detector will then be developed.

1.4 Organization of the Thesis

This thesis is organized as follows: Chapter 2 introduces the two sonar imagery

data sets used in this study together with a description of the different properties

of the data sets. An outline of the preprocessing methods and image normalization
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procedure is also presented. In Chapter 3, a detailed review of Bayesian and Gauss-

Gauss detection is provided. The development of the Gauss-Gauss detector cast in

the CCA framework is also reviewed. The development of the two-channel coherence-

based detector for sonar imagery is then given in Chapter 4. In this chapter, the two

applications of the detector are examined. The first implements the detector on the

single-sensor case and examines its attributes and properties with results provided

using the single-sonar data set. The second implementation is on the dual disparate

sonar case and again examines its attributes and properties with results provided using

a multi-platform sonar data set. In Chapter 5, the development of the distributed

detection system and the corresponding decision fusion rule is provided along with

results using the dual disparate detector as the local decision maker and on the

multi-platform sonar data set. Chapter 6 studies the sample support of the empirical

Gauss-Gauss detector and introduces the development of the kernel Gauss-Gauss

detector. In order to develop the kernel version of the detector an analysis of the

sample support of the linear Gauss-Gauss detector is examined. Finally, Chapter 7

concludes the studies carried out in this research and discusses the goals for future

work.
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CHAPTER 2

DATA DESCRIPTION AND PRE-PROCESSING

METHODS

2.1 Introduction

This chapter will discuss the sonar imagery data sets that are used for the experiments

and studies presented in this thesis. Two types of data sets are used in this study, with

both presenting different properties and challenges for target detection. Analyzing the

different properties of each data set is an important issue, as understanding the type

of sonar imagery data and how images are formed can provide valuable information

on how to effectively implement a detection method. The first data set consists of

envelope data [39], the magnitude of the complex data, which is the output of a

beamforming process once all the sonar returns have been processed. This data set

was collected using only one sonar system which was a high-resolution high frequency

side scan sonar. The second data set corresponds to a disparate multi-sonar data

set consisting of one high frequency sonar and three broadband sonars. The images

contain complex data, which is the direct output of the beamformer after all the

sonar returns have been processed and co-registered over the same region of the

target field. For this data set disparateness of the sonar systems is with respect to

operating frequencies and beamwidth rather than platform locations.

In order to prepare the sonar imagery for detection, a few preprocessing procedures

must be applied to the images. First, a normalization method is applied to remove

sonar artifacts, reduce clutter, and enhance the target signature. The purpose of the

normalization is to reduce the variability of the local mean throughout the image in
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order to use it as a reference level so that the highlight and shadow of the target can be

more easily identified. The serpentine forward-backward filter (SFBF) normalizer [1]

uses a second order digital filter and attempts to select a path in which the filter

output best follows the original image, i.e. the filter path follows the direction of least

change in the image. The image is filtered in the forward and backward directions

to estimate the local mean on both sides of a pixel. The local mean estimate that

is nearest to the original image value is selected to normalize that pixel. After the

image is normalized it is then partitioned into overlapping ROI’s to prepare the image

for the CCA-based detector. Each ROI is further partitioned into either columns for

the single sensor approach or pairs of blocks for the dual disparate sensor approach

that form the realizations for the two-channels in CCA. The covariance matrices in

the CCA are formed by averaging over all columns (or blocks) within the ROI’s .

The outline of this chapter is as follows. Section 2.2 gives an overview of the ex-

perimental setup by reviewing the two data sets used in this study together with their

properties. Section 2.3 discusses the preprocessing, namely the image normalization

process that is used to reduce background clutter and enhance the target signature

and the methods to channel, vector, and average the data for CCA for the different

applications. Finally, conclusions are made in Section 2.4.

2.2 Experimental Setup

In this thesis, two separate data sets are used to test the effectiveness of the developed

detector and analyze the results. Although the detector developed in this thesis is

used on both data sets, the manner in which it is implemented differs for each data

set due to the variations in sonar set up (e.g. single sensor or disparate sensor cases),

frequency, bandwidth, image size, and resolution of the sonar used in the respective

data collection. This will be discussed in more detail in the next section for the two

different data sets that are referred to as Sonar8 and multi-platform sonar data sets
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throughout the rest of this thesis.

2.2.1 Sonar8 Data Set

The first data set, referred to as Sonar8, was provided by the NSWC in Panama

City, FL. This data set consists of a high resolution side-scan sonar that carries

only one type of sonar. More information on high-resolution side-scan sonar can be

found in [39], [40]. The data set contains only the envelope data, i.e. the values

of the pixels are the magnitude of the complex image. The complex data (magni-

tude and phase) are generated at the output of a coherent processor, in this case the

k-space or wavenumber beamformer [41], [42]. Each impinging sound wave on the

receiver array elements of the sonar is converted to magnitude and phase. The de-

lay and sum beamforming algorithm [43] attempts to coherently combine the sound

waves in a way that resolves the echo returns into a complex-valued pixel. More

specifically, the k-space or wavenumber algorithm [41], [42] computes the 2-D Fourier

transform of the raw or range-compressed sonar data in the delay-time/aperture do-

main. This converts the data into the spatial frequency/wavenumber (ω, k)-domain

where it is multiplied by the power spectrum of the transmitted wavefront. A change

of variables is done by Stolt interpolation [44]. This change of variables maps the

frequency/wavenumber (ω, k)-domain into the wavenumber domain (kx, ky). The in-

verse 2-D Fourier transform is then taken of the mapped data to form the complex

image. For more information on the k-space/wavenumber beamformer the reader is

referred to [42].

In order to better understand the difficulty of underwater object detection from

sonar imagery it is important to understand the formation of a target signature in

a sonar image. Figure 2.1 shows how the signature of a target is formed in a sonar

image. In this figure, region A-B corresponds to the highlight or a strong sonar return

off of the object, region B-C is known as the dead zone where no sonar return can

17



Figure 2.1: Formation of a Target in a Sonar Image.

occur due to the return being blocked by the object, and region C-D is known as

the shadow. The size of each of these regions greatly depends on the type of target,

range, height, aspect, and grazing angle of the sonar with respect to the object.

More specifically, the signature of a particular target can vary greatly as a function

of range from the sonar. As the target is further out in range from the sonar, the

shadow region (C-D) will become longer. Additionally, the overall signature becomes

less defined with less definition between the highlight, dead zone, and shadow regions.

This creates a particular problem for most detection methods which rely on detecting

the specific structure of the target. The coherence-based detector developed in this

thesis (see Chapter 4) provides a method to detect targets even at far range with high

probability as it looks for coherence and not just the specific target structure.

The Sonar8 data set contains 137 images containing 286 targets with most of the

images containing multiple targets. The data set was broken up into easy, medium,

and hard cases depending on the difficultly of the background clutter and bottom

types. Easy cases are considered to have low background variation and an overall

18



smooth bottom with targets that are easily identifiable by a skilled operator. The

medium cases contain background clutter and more difficult bottom conditions. How-

ever, the targets are still somewhat discernible to a skilled operator with some effort.

Finally, the hard cases are those where it is difficult to detect and distinguish the tar-

gets from a visual inspection due to a high variability of background clutter and very

difficult bottom conditions. The hard cases also contain the cases where the targets

are obscured by dense clutter with none of the targets easily detectable by the naked

eye. The data set was separated into these three classes based on a visual inspection

of where the targets are located and whether or not variation in the background and

high density of clutter are present.

To help enhance the ability to detect objects in this data set a normalization

preprocessing is applied to each image to help distinguish the target’s highlight and

shadow signature from the bottom and artifacts present in the image. A review of

this normalization process is given in Section 2.3.1.

2.2.2 Multi-Platform Sonar Data Set

This multi-platform sonar data set was also provided by the NSWC-PC. The data

set contains a high frequency (high resolution) side-looking sonar image over the

target field and three broadband sonar images co-registered over the same region.

The disparateness of this data set comes not from the location of the sonar platforms,

but from the difference in operating frequencies and beamwidth of the sensors. More

information on high resolution side looking and broadband sonar can be found in

[39], [40] and [45], [46], respectively. The images in this data set are also complex

corresponding to the output of the (k-space / wavenumber) beamformer [41], [42]

which was described earlier. The benefit in using the complex data rather than just

the envelope data as in the Sonar8 data set is that it provides more information by

providing both the magnitude and the phase information. As mentioned before, the
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sonar images captured by different sensor systems are co-registered so that the pixels

correspond to the same section on the seafloor. This is important due to the fact that

each sensor is operating at a different frequency and beamwidth and has different

spatial resolution hence providing a different size sonar image.

This data set contains 59 images from all 4 sonar systems and contains 53 targets

with some of the images containing more than one target. The benefit in using a

data set containing four disparate sensors each looking at the same piece of the ocean

floor is that it helps reduce false alarm in the detection process due to its multi-look

nature. This is mainly due to the fact that the high frequency sonar provides higher

spatial resolution and better ability to capture target details and characteristics. In

the high frequency sonar, the highlight, dead zone, and shadow structures will have

good definitions with each having a definite shape and adequate number of pixels.

Nonetheless, these structures will also be prominent for structured clutter as well (e.g.

coral reefs and sand ripple). In a broadband sonar, however, the target structure is

not as well-defined. In other words, a target will primarily show up as a highlight

with no prominent dead zone or shadow structure. Nonetheless, the signature of the

clutter is suppressed hence leading to substantially lower number of detected contacts.

Therefore, the use of multiple disparate sonar systems allows one to exploit a high

resolution sonar with good target definition while taking advantage of the clutter

suppression ability of a low resolution broadband sonar co-registered over the same

region to provide potentially much better detection performance comparing to those

of the single sonar cases.

2.3 Preprocessing Methods

In order to apply the detection scheme to sonar imagery, three preprocessing methods

are used to prepare the data. First, the sonar image is normalized using a serpentine

forward-backward filter (SFBF) [1] to help reduce clutter and enhance the signature
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of the target. The normalized image is then partitioned into overlapping ROI’s for

processing. Each ROI is then subsequently partitioned into blocks that form the

realization for the two-channels in the CCA method for extracting the canonical co-

ordinates and correlations. The partitioning is done such that each block is reshaped

into a column vector, where each vector makes up a column in the data matrix for

the corresponding ROI. A detailed description of these methods is provided in the

following sections.

2.3.1 Image Normalization [1]

In sonar imagery the target signature consists of bright and dark intensity pixels

that make up three distinct regions described earlier (see Figure 2.1). The challenge

in the target detection is to reliably distinguish the target’s highlight and shadow

signatures in a highly cluttered background region within the image. The purpose

of image normalization is to reduce the variability of the local mean throughout

the image to a relatively constant level so that each highlight and shadow pixel

can be more easily discerned. As mentioned before, the normalization method used

on the data sets described previously employs a SFBF [1] method that addresses

several concerns in image normalization process. First, the normalizer should function

properly throughout the image as the presence and signature characteristics of the

targets are not known. Second, the normalization should not lead to any false alarms

around the edge or between regions with very different pixel intensity values. Third,

the process should have a low computational needs.

The SFBF [1] uses second-order, recursive 2-D digital filters to generate two es-

timates of the local background at each processed pixel. The first estimate approxi-

mates the local mean on one side of the pixel, and the second estimate approximates

the local mean on the other side of the pixel. The first estimate is generated as a

delayed output of the filter, in terms of location in the image, running along the
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cross-range dimension in the image proceeding in the forward direction. The delay

is selected to be the size of the largest expected target in the cross-range direction.

This value is assumed to be known based upon average target size in the field and

the resolution of the sonar. This delay is introduced so that the estimate of the local

mean at a given pixel location in the image is not compromised by a potential target

that may be at the same location. Similarly, the second estimate is generated as a

delayed output of the filter running along the cross-range dimension in the backward

direction. Of the two local estimates, from the forward and backward filters, the one

that is nearest the original image value is selected to normalize that pixel. Operating

in the forward and backward directions allows the target edges to be preserved while

eliminating pixel variations in the background.

The SFBF filter attempts to select a path along which the filter output best

follows the original image. This idea is presented in Figure 2.2. Specifically, the path

is generated recursively by extending the path’s latest end point to one that belongs

to a subset of its neighbors whose intensity is most near its filtered output value. As

the filter progresses in the cross-range direction, it is permitted to snake to the right

or left (in the range dimension) in order to follow the best path.

A simple example of the filtering process is presented in Figure 2.3. The horizontal

axis is the cross-range index and the vertical axis is the image pixel intensity. Note

that there are two target-size highlights: one sitting in a nominal background and one

sitting on a bright background. Neither the forward nor backward filter can follow

the short duration target, but one or the other is able to estimate the longer duration

background level. Thus, effective normalization is achieved by choosing the delayed

filter output from either the forward or backward filter that is nearest the original

intensity to normalize each pixel. Note in the lower plot of Figure 2.3 that the signal-

to-background ratios of the targets reflect their respective local background levels in

the original image.
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Figure 2.2: Illustration of SFBF Path Selection.
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Figure 2.3: Illustration of the Normalization Method.

The normalizing algorithm follows [1] the block diagram presented in Figure 2.4

where the input image is denoted by x(i, j) and the normalized image as xn(i, j). For

ease of reading the terminology in the algorithm, “bottom-to-top”, “top-to-bottom”,

“right-to-left”, and “left-to-right” will be used to describe the path direction relative

to an image oriented such that x(1, 1) is the bottom left corner of the image and

x(N,M) is the top right corner, where the image is of dimension N × M . First

the forward filter proceeds through the image from bottom to top and the backward

filter from top to bottom. For both the forward and backward filters the images are

filtered from the left-to-right and right-to-left to select the next pixel in the path of

the forward or backward filter.

Figure 2.4: Flow Chart of SFBF Normalization Method.
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First, the forward filter proceeds through the image from bottom-to-top. The

filter is first initialized by finding the mean of the pixels in the current row from the

1st pixel to the M th
a pixel. The parameter Ma is defined as Ma = Int[Da/dy + 0.5],

where Int[α] implies the integer part of α and Da is the cross-range distance for

average computation and is typically five times the filter correlation distance, yf

which will be defined later in this section. Therefore, the initial values of the filter

are y(i, 1) = 1
Ma

∑Ma

j=1 x(i, j), y(i, 2) = y(i, 1), k(i, 1) = i, k(i, 2) = i for i = 1 : N

and k(i, j) is the memory for storing the filter path direction.

The filter then proceeds through the image by following the filter recursions as in

Tables 2.1 and 2.2. These equations are evaluated for rows j = 3 : M of the image.

For Rows j = 3 : M
First Column i = 1

y(1, j) = c1y(1, j − 1) + c2y(k(1, j − 1), j − 2) + d0x(1, j)
u(1) = 1

Columns i = 2 : N
l1 y1(i, j) = c1y(i− 1, j − 1) + c2y(k(i− 1, j − 1), j − 2) + d0x(i, j)
l2 y2(i, j) = c1y(i, j − 1) + c2y(k(i, j − 1), j − 2) + d0x(i, j)
l3 y3(i, j) = c1y(u(i− 1), j − 1) + c2y(k(u(i− 1), j − 1), j − 2) + d0x(i, j)

u(i) =


i− 1 if pick l1
i if pick l2
u(i− 1) if pick l3

yLR(i, j) = yk(i, j) where k = 1, 2, or 3

Table 2.1: Forward Left to Right Filter Equations in Order of Execution.

The left-to-right (LR) recursions in Table 2.1 find the filter output from the bottom

left (l1), bottom (l2), and left (l3) neighboring pixels and choose the one that is nearest

the current pixel x(i, j). From this choice the filter output is stored to yLR(i, j) and the

path of the output is stored to u(i). The right-to-left (RL) recursions in Table 2.2 find

the filter output from the bottom right (r1), bottom (r2), and right (r3) neighboring

pixels and choose the one that is nearest the current pixel x(i, j). From this choice

the filter output is stored to yRL(i, j) and the path of the output is stored to v(i).
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For Rows j = 3 : M
Last Column i = N

y(N, j) = c1y(N, j − 1) + c2y(k(N, j − 1), j − 2) + d0x(N, j)
v(N) = N

Columns i = N − 1 : 1
r1 y1(i, j) = c1y(i+ 1, j − 1) + c2y(k(i+ 1, j − 1), j − 2) + d0x(i, j)
r2 y2(i, j) = c1y(i, j − 1) + c2y(k(i, j − 1), j − 2) + d0x(i, j)
r3 y3(i, j) = c1y(v(i+ 1), j − 1) + c2y(k(v(i+ 1), j − 1), j − 2) + d0x(i, j)

v(i) =


i+ 1 if pick r1

i if pick r2

v(i+ 1) if pick r3

yRL(i, j) = yk(i, j) where k = 1, 2, or 3

Table 2.2: Forward Right to Left Filter Equations in Order of Execution.

The output of either yLR(i, j) or yRL(i, j) that is nearest x(i, j) is chosen and stored

as the output of the forward filter as yF (i, j) and the path of the output is stored to

k(i, j) = u(i) if the L-R recursion is chosen or k(i, j) = v(i) if the R-L recursion is

chosen.

Second, the backward filter proceeds through the image analogous to that of the

forward filter explained above, but the image x(i, j) is processed from top-to-bottom.

As before, the filter outputs are generated for the L-R and R-L recursions and the

output of either L-R filter or R-L filter which is nearest x(i, j) is stored as the output

of the backward filter as well as the path to the selected output. The backward

recursions starts from the last row and propagates in the reverse direction of the

forward recursions. An example of this process is presented in Figure 2.2 where the

chosen paths for the forward and backward filter recursions are represented by the

red arrows and those that are not paths chosen are represented by the green arrows.

To normalize the pixel, a delay of the filter output Jd is chosen for both the forward

and backward filters. The delay is chosen by Jd = Int[Ts/dy + 0.5], where Ts and dy

will be defined later in the section. Using the delay, the delayed outputs of both the

forward (yF (i, j)) and backward (yB(i, j)) filters are found with the corresponding

26



range index. The delayed output from either the forward filter or the backward filter

that is nearest x(i, j) is chosen to normalize x(i, j). The normalized pixel is defined

as xn(i, j) = x(i, j)/y(n, j−Jd), where y(n, j−Jd) is the delayed output of the chosen

filter at the corresponding range index n and cross-range index j − Jd. The range

index n is found by searching k(i, j) recursively to determine the range index for the

pixel on the forward path or the backward path to (i, j) that has cross-range index

equal to j − Jd. If the chosen output of the filter is equal to zero then xn(i, j) = 1.

This is to avoid any numerical instability in the normalization algorithm.

The filter coefficients c1, c2 and d0 in the equations in Tables 2.1 and 2.2 are set as

c1 = 2a, c2 = −a2, and d0 = (1− a)2 where a = exp(−dy/yf ). That is, the value a is

dependent on dy and yf which are the cross-range resolution of the image and the filter

correlation distance, respectively. The parameter yf is determined such that objects

of size Ts and smaller are preserved while background patches of size Bs and larger

are normalized out. This is achieved by determining yf such that G1(yf ) = G2(yf ),

where G1(y) is the figure of merit for target distortion and is defined as,

G1(y) = 1−
(

1− 0.5Ts
y

)
exp

(
−0.5Ts

y

)
(2.1)

and G2(y) is defined as the figure of merit for background normalization and is defined

as,

G2(y) = 1−
(

0.5Bs − Ts
y

)
exp

(
−0.5Bs − Ts

y

)
(2.2)

Small values of G’s, relative to 1, imply low target distortion and better background

normalization. From (2.1) and (2.2) it can be noted that as the difference 0.5Bs− Ts

increases, the values of the G’s decrease. Therefore, if the minimum background

patch size, which one desires to normalize out, is sufficiently larger than the maxi-

mum target size, then there will be little target distortion and very good background

normalization.

Figure 2.5 shows an example of an original sonar image with the target circled on
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Figure 2.5: Original Side-Scan Sonar Image.
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Figure 2.6: SFBF-Normalized Side-Scan Sonar Image.
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the image in smooth bottom conditions. The main strip in the center of the image is

the area under the sonar and hence not actually part of the image and is not useful.

Moving from the L-R of the center of the image the rippled region corresponds to

a sharp bottom return near the location of the sonar. The very bright white lines

past the rippled region correspond to surface returns of the ocean surface. The rest

of the image contains returns from the ocean floor and clutter. As stated previously

the purpose of the normalization is to reduce the clutter effects that are present in

the sonar image and to enhance the target signature. Figure 2.6 shows the SFBF-

normalized image. As can be seen, after the normalization process there is a significant

reduction in the amount of clutter as well as an evening out of the background pixel

intensity values. Besides the reduction in clutter, the anomalies from the sonar track,

surface return, and sharp bottom returns are significantly reduced and partly removed

from the image. The target signature is also enhanced with the shadow and highlight

being more prominent in the SFBF normalized image.

2.3.2 Image Partitioning and CCA-Channelization

After the normalization process, the first N columns of pixels are ignored. This

region corresponds to the sonar altitude as it travels through the water column and

is chosen to be 1/10th of the maximum range of the sonar. The reason behind this is

to remove the part of the image that corresponds to the sonar track which carries no

information about the environment. Next, the image is partitioned into overlapping

ROI’s of size M ×N pixels. The partitioning adopts an overlap along the horizontal

and vertical directions of 50% in order to ensure that a target will be covered by

more than one ROI in case of splitting the target between ROI’s. The size of the ROI

is determined experimentally for each data set and is based on the average target

size that is encountered in the data set. For the Sonar8 data set, the ROI size is

46 × 180 while for the multi-platform data set the high frequency and broadband
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sonar imagery were chosen to be 72× 112 pixels and 24× 224, respectively.

Each ROI is then channelized in order to prepare the data for CCA. The chan-

nelling is designed to produce measurements that should be coherent, by virtue of

their dependence on a common generation mechanism. In other words, the idea be-

hind this channelization is to look for common coherent attributes that can be used

to relate one channel to the other for optimum detection. For the single sensor ap-

plication, the channels are chosen to be consecutive columns in an ROI where the

x channel is the first column in the ROI and the next column is the y channel and

is shown in Figure 2.7. For the dual disparate sensor application, a pair-wise rect-

angular vectorization makes more sense due to the two-sensor nature of the problem

and the fact that coherence is to be determined between the two sensors data. This

process is presented in Figure 2.8 where is shown how each ROI is channelized by a

rectangular blocking scheme. The block in the first ROI forms a realization of the x

channel and the block in the co-registered ROI forms the corresponding realization

of the y channel

Once the two channels in CCA are identified, the question is how to vector the

channels so that coherence analysis using CCA may be computed for the channel

vectors. One of the main decisions is how large the dimension of the vectors should

be. This is important due to the fact that typically large channel vectors produce a

small number of significant canonical correlations, so that a processing gain of m/r

is achieved, where m is the dimension of the channel vector and r is the number

of significant canonical correlations. But if the dimension of the channel vectors is

chosen too large, the coherence can be destroyed. The adequate choice of vectoring

would seem to offer the best trade-off between coherent and non-coherent processing.

Moreover, the choice of vectoring will be different for different applications of the

coherence-based detector.

Specifically, for the single sensor application, a column-wise vectorization makes
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Figure 2.7: Channelization for CCA for the Single Sensor Case.

the most sense. This method is presented in Figure 2.7 where it is shown how each

individual ROI is vectorized in a column-wise fashion. The dimension for both the x

and y channels is M pixels (M = 30 for the Sonar8 data set). The ROI is vectorized

such that the M pixels of the first column form the x-channel and the M pixels in the

adjacent column form the y-channel vector. This process is continued moving in the

horizontal direction across the ROI. On the next pass through the ROI, the channels

are given a 50% overlap in the vertical direction to ensure complete coverage of the

target in the ROI. Clearly, for background ROI’s high level of coherence among con-

secutive columns (channels) does not exist and by using columns, specific coherence

is found between specific parts of the target structure.

For the dual disparate sensor application, dimension of the blocks, which form the

channels, for the first and second co-registered sonar images, are M1×N1 and M2×N2

pixels, respectively. The channel vectors are formed by row-wise arrangement of the

block into M1N1 × 1 and M2N2 × 1 vector as shown in Figure 2.8. This process

is repeated across both ROI’s moving in the horizontal direction to vectorize the

ROI. Clearly, for a pair of background ROI’s a high level of coherence between two

ROI’s is not expected to exist. For the multi-platform data set, the block sizes for

the high frequency and broadband sonar images were chosen to be 6 × 4 and 2 × 8

pixels, respectively. These sizes were chosen based upon the ROI size and to provide

enough samples of the x and y channels to avoid data poverty issues. The ROI
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Figure 2.8: Channelization for CCA for the Dual Disparate Sensor Case.

sizes are decided based upon the resolution of the sonar and the average target size

encountered in the data set.

Finally, once the ROI’s are channelled and vectored an averaging scheme must

be adopted to compute the sample composite covariance of the two channel data.

Ideally, we would like to identify multiple, independent copies of each channel vector

in the ROI. However, this is idealized, physical properties of the target, medium

would conspire to defeat it. What is required here is a methodology for choosing the

averaging such that we stay as close to the independent assumption as possible.

The averaging for both of the applications is similar. For the single sensor case,

the columns are moved in the horizontal direction across the ROI. On the next pass

through the same ROI, the channel vectors are shifted down vertically by 50% to

ensure complete coverage of the target within the ROI (see Figure 2.7). For the dual

disparate case, the blocks (or channel vectors) in the two co-registered ROI’s are

moved in the horizontal direction across the ROI and the process is repeated until

the entire ROI has been covered (see Figure 2.8). After the data matrices for the

two channels have been formed, they are used to form the sample covariance matrices
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that make up the coherence matrix in the CCA process.

2.4 Conclusion

In this chapter, the two sonar data sets that are used in this thesis were reviewed.

Both data sets consist of side-scan sonar imagery that cover various target fields

containing varying degrees of background clutter and bottom difficulty. The Sonar8

data set consists of images captured by a high resolution side looking sonar. The

Sonar8 image with pixels represent the envelope data, or simply the magnitude of

the complex output of the beamformer. This data set provides various levels of

background clutter and bottom difficulty with some targets being obscured by very

dense and textured clutter. The multi-platform sonar data set provides a disparate

sensory setup in which a high frequency sonar and three broadband sonars that are

co-registered over the same region of the target field are used. The use of multiple

disparate sonars allows one to exploit the good characteristics of both sonar types

at the same time during the detection and classification. A high resolution, high

frequency sonar provides very good target definition, but at the same time generates

a large number of contacts. Broadband sonars reduce the clutter, while sacrificing

target definition and resolution. Therefore, by using both types of sonar systems

co-registered over the same region one can provide potentially much better detection

results compared to those of the single sonar (Sonar8) cases.

To help enhance detection of targets in varying background conditions the SFBF

normalization algorithm is applied to each image prior to detection. The purpose of

this normalization is to help emphasize the target’s highlight and shadow signatures

to better distinguish them from the bottom clutter present in the image. This is

done by reducing the variability of the local mean throughout the image. The local

mean is then used to normalize each pixel so that the highlight and shadow of the

target can be more easily identified and the artifacts in the sonar image are reduced.
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After normalization the sonar images are partitioned into ROI’s with a 50% overlap.

Each ROI is then channelized such that the channels are identified for the CCA

processing. For the single sensor application the channels are consecutive columns in

the ROI and for the dual disparate sensor case the channels are the pair of blocks

from the co-registered ROI’s. Following the channelization the ROI’s are vectorized

such that channel dimension is chosen and the samples of the channel are extracted

and reshaped into a column vector for the realizations of the data channels for CCA.

The vectors are then averaged to compute the sample composite covariance of the

two channel data for CCA. In the next chapter, Gauss-Gauss detection [29], [35] in

the CCA framework is reviewed.
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CHAPTER 3

BINARY HYPOTHESIS DETECTION

METHODS

3.1 Introduction

The standard detection problem involves evaluating a set of hypotheses, to determine

which is the most likely with the most basic being the binary hypothesis test. The

binary hypothesis test is described as a decision between either the “true” hypothesis

H1, or the alternative “null” hypothesis H0. This is typically viewed as a signal

detection problem where H1 is considered as the signal plus noise case and H0 is

considered as the noise only case. The most common framework for hypothesis testing

is the Bayesian framework [47] - [49] where the problem is formulated by minimizing

the Bayes risk. When the costs and a priori probability densities are available,

Bayesian detection is optimal, but in general it is difficult to generate these. The

Neyman-Pearson criterion [47] - [49] offers an alternative to the standard Bayesian

framework by formulating the hypothesis test as a constrained optimization problem

where the false alarm probability is constrained and the probability of detection is

maximized. The solution to this optimization problem is the celebrated Neyman-

Pearson lemma. Solving the optimization problem leads to a likelihood ratio test and

threshold that does not depend on the a priori probabilities of the problem. If the

assumption is made that under both hypotheses the data is Gaussian distributed the

likelihood ratio test then becomes the standard Gauss-Gauss detector [35].

In developing a detection framework for sonar imagery the a priori probability
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densities are difficult to determine due to variations in operating and environmen-

tal conditions. Due to the difficulty of the problem, choosing the right detection

framework and correct coordinate system is crucial. Canonical correlation analysis

(CCA) [27] provides an excellent framework for coherence-based detection. The CCA

method determines linear dependence [27] (or coherence) between two data channels.

This method not only determines the amount of dependence (or independence) be-

tween two data channels (e.g. columns in a ROI within a sonar image or blocks in a

pair of ROI’s of two sonar images) but also extracts, via the canonical coordinates, a

subset of the most coherent features for classification purposes. Canonical coordinate

decomposition allows us to quantify the changes between the returns from the bottom

and when target activities are present and at the same time extract useful features

for target classification without the need to perform separate detection and anomaly

feature extraction. Moreover, the standard Gauss-Gauss detector can alternatively

be cast in the CCA framework [29] allowing for a detector that uses the coherence

information between two data channels. This detector lends itself nicely to the de-

tection of underwater objects from sonar imagery [14] - [15], as the targets tend to

be more coherent than the environment in which they are found. Specifically, when

a target is a present in an ROI (or two co-registered ROI’s) the coherence between

consecutive columns (channels) of pixels are more coherent than when background is

present only. The canonical correlations provide measure of the coherence (or inco-

herence) to determine if a target (or background clutter) is present in the processed

ROI.

The outline of this chapter is as follows. Section 3.2 opens the chapter with a brief

review of Bayesian detection framework. Section 3.2.1 presents the Neyman-Pearson

criterion and develops the optimum Gauss-Gauss detector. Section 3.3 presents a

review of CCA-based Gauss-Gauss detection [29] and its benefits. Finally, conclusions

are made in Section 3.4.
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3.2 Bayesian Detection Framework

Consider the classical detection problem of choosing between two hypotheses [47]

where each hypothesis relates to a point in the N-dimensional observation space.

In other words, if x = [x1, x2, · · · , xN ]H , is an observation vector in this space we

would like to test between H1 hypothesis (true) and H0 hypothesis (null) for this

observation vector. Clearly, each time we conduct the test there are four possible

outcomes. Those are: (a) H0 is true and we choose H0, (b) H0 is true and we choose

H1, (c) H1 is true and we choose H1, and (d) H1 is true but we choose H0. The first

and third outcomes lead to correct decisions while the second and fourth outcomes

lead to erroneous decisions. The Bayes test is based on two assumptions. First, the

two hypotheses, H0 and H1, correspond to two possible prior probabilities, P0 and P1,

respectively. These probabilities represent the prior observer’s information about the

hypotheses before the detection is conducted. The second assumption is that there

is a cost associated with each of the four courses of action described above. These

costs will be denoted by, C00, C10, C11, and C01, for outcomes 1-4, respectively. It

will be assumed that the cost of a wrong decision is higher than the cost of a correct

decision, i.e. C10 > C00 and C01 > C11. The goal of the Bayes test is to design a

decision rule so that on the average the cost of a decision will be as small as possible,

which subsequently leads to the smallest Bayesian risk when making the decision. If

we denote the expected value of the cost as the risk R, we can then write R as [47],

R = C00P0P (H0|H0)

+ C10P0P (H1|H0)

+ C11P1P (H1|H1)

+ C01P1P (H0|H1) (3.1)

where P (Hj|Hi) i, j ∈ [0, 1] is the probability that we choose Hj given that the true

hypothesis is Hi.
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Since the decision rule is binary, i.e. there are only two possibilities, either H0

and H1, we can view the rules as a division in the observation space into two parts A0

and A1. In other words, if the observation is found in the region A0 the hypothesis

H0 is declared true and if the observation is found in the region A1 the hypothesis

H1 is declared true. By viewing the problem in this manner we can now express the

risk in terms of the decision regions and probabilities as,

R = C00P0

∫
A0

pX|H0(x|H0) dx

+ C10P0

∫
A1

pX|H0(x|H0) dx

+ C11P1

∫
A1

pX|H1(x|H1) dx

+ C01P1

∫
A0

pX|H1(x|H1) dx. (3.2)

To find the decision rule, the decision regions are determined such that the risk in

(3.2) is minimized. Because each element of x must be assigned to either the A0 or

A1 in the observation space A, we can say that A = A0 ∪A1 and A0 ∩A1 = ∅. Now,

(3.2) can be rewritten as [47]

R = P0C00

∫
A0

pX|H0(x|H0) dx + P0C10

∫
A−A0

pX|H0(x|H0) dx

+P1C01

∫
A0

pX|H1(x|H1) dx + P1C11

∫
A−A0

pX|H1(x|H1) dx. (3.3)

We can separate the integrals and rewrite (3.3) as,

R = P0C00

∫
A0

pX|H0(x|H0) dx + P0C10

∫
A

pX|H0(x|H0) dx

−P0C10

∫
A0

pX|H0(x|H0) dx + P1C01

∫
A0

pX|H1(x|H1) dx

+P1C11

∫
A

pX|H1(x|H1) dx− P1C11

∫
A0

pX|H1(x|H1) dx (3.4)

If we use
∫
A
pX|H0(x|H0) dx =

∫
A
pX|H1(x|H1) dx = 1, then (3.4) can be reduced to,

R = P0C10 + P1C11

+

∫
A0

[
P1(C01 − C11)pX|H1(x|H1)− P0(C10 − C00)pX|H0(x|H0)

]
dx (3.5)
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The first two terms in (3.5) represent the fixed cost and the integral represents the

cost controlled by the points in the observation space, A that are assigned to A0.

Basically, the points in A for which the first term in the integral is larger than the

second term are assigned to A1, whereas the points in which the second term is larger

than the first term are assigned to A0. Any points in which the terms are equal have

no effect on the cost and can be arbitrarily assigned to any region (we assume that

these points are assigned to A1). We can, therefore, define the decision region in the

observation space by

P1(C01 − C11)pX|H1(x|H1) ≥ P0(C10 − C00)pX|H0(x|H0). (3.6)

which can alternatively be rewritten as

pX|H1(x|H1)

pX|H0(x|H0)

H1

≷
H0

P0(C10 − C00)

P1(C01 − C11)
. (3.7)

The quantity on the left is called the likelihood ratio and will be denoted throughout

the rest of this thesis by

l(x) ,
pX|H1(x|H1)

pX|H0(x|H0)
. (3.8)

The relationship on the right is the threshold of the test and will be denoted by η.

Thus, Bayes criterion simply leads to a likelihood ratio test,

l(x)
H1

≷
H0

η. (3.9)

3.2.1 Neyman-Pearson Detection

In many practical detection situations it is difficult to assign realistic costs and prior

probabilities. This is especially apparent for sonar imagery target detection due to the

variations in target compositions and background clutter. To overcome this, a simple

alternative is to use probabilities, Pfa, i.e. false alarm probability and, Pd, which is

the probability of detection. This leads to the Neyman-Pearson criterion [47], [50]

which designs a test to maximize Pd while making Pfa as small as possible. The
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criterion constrains Pfa = α′ ≤ α and designs a test that maximizes the probability

of detection under this constraint [47]. The solution to this constrained optimization

problem is found by using Lagrange multipliers, i.e., we can construct a function F ,

F = Pd + λ[Pfa − α′]. (3.10)

Here by maximizing F we will maximize pD. For ease in the rest of the derivation we

will convert this to a minimization problem where the objective is to minimize the

probability of a miss-detection, Pm which gives F = Pm + λ[Pfa − α′]. We can then

rewrite F in terms of the conditional probabilities as [47]

F =

∫
A0

pX|H1(x|H1) dx + λ

[∫
A1

pX|H0(x|H0) dx− α′
]
. (3.11)

Clearly (3.11) is minimized when Pfa = α′, thus minimizing Pm for the non-trivial

case when λ 6= 0. Using A0 = A− A1, we can then rewrite F as

F = λ(1− α′) +

∫
A0

[
pX|H1(x|H1)− λpX|H0(x|H0)

]
dx (3.12)

For any positive value of λ a likelihood ratio test will minimize F [47]. This follows

directly because by minimizing F we assign a point in x to A1 when the integral is

positive or assign the point to A0 when the integral is negative. Therefore, we can

write

l(x) =
pX|H1(x|H1)

pX|H0(x|H0)

H1

≷
H0

λ. (3.13)

Although this is similar to (3.9), the threshold in (3.13) does not rely on the prior

probabilities and the assigned costs.

3.2.2 Gauss-Gauss Signal Detection

If we now view this detection problem in terms of the signal plus noise model [35]

- [29], the decision between two hypotheses is now either noise only (H0) or signal

plus noise (H1). Assume we have an observation x ∈ RN , which is a normal random

vector with zero mean and covariance matrix R. We wish to test the hypothesis
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H0 : R = R0, i.e. noise alone versus H1 : R = R1, i.e signal plus noise, where

R1 = R0 +Rs, R0 is the covariance matrix of the noise alone, and Rs is the covariance

matrix of the signal. Note that it is assumed that noise and signal are uncorrelated.

Since we have assumed that x is Gaussian with zero mean and covariance matrix

R, the probability density function for a given hypothesis Hi, i ∈ [0, 1] and a given

observation x is given by

pX|Hi
(x|Hi) = (2π)−

N
2 |Ri|−

1
2 e−

1
2
xH(R−1

i )x. (3.14)

Using (3.8) and taking the natural log, the log-likelihood of x becomes

l(x) = ln

(
(2π)−

N
2 |R1|−

1
2 e−

1
2
xHR−1

1 x

(2π)−
N
2 |R0|−

1
2 e−

1
2
xHR−1

0 x

)

= ln

(
|R1|

1
2

|R0|
1
2

e
1
2
xH(R−1

0 −R
−1
1 )x

)
=

1

2
ln|R1| −

1

2
ln|R0|+

1

2
xH
(
R−1

0 −R−1
1

)
x (3.15)

Disregarding the constants that are not observation dependent, the log-likelihood can

be simply written as

l(x) = xH
(
R−1

0 −R−1
1

)
x. (3.16)

which is the likelihood-ratio for the Gauss-Gauss detector [35].

The log-likelihood ratio in (3.16) minimizes the risk involved in deciding between

H0 and H1 and can be viewed as,

γ(x) =

 1 ∼ H1, l(x) > λ

0 ∼ H0, l(x) ≤ λ

l(x) = xHQx with Q = R−1
0 −R−1

1 ,

where λ is the detection threshold and Q can be written as [35]

Q = R
−H/2
0 (I− S−1)R

−1/2
0 , (3.17)
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and S, which is known as the “signal-to-noise ratio” matrix [35], is defined as

S = R
−1/2
0 R1R

−H/2
0 (3.18)

Now, we can rewrite l(x) as,

l(ξ) = ξH(I − S−1)ξ (3.19)

where, ξ = R
−1/2
0 x.

Clearly, the transformed vector ξ is also normal with zero mean and covariance

matrix R = I under H0, and R = S under H1 i.e. EH0 [ξξH ] = I and EH1 [ξξH ] = S,

where EH0 [·] is the expectation operation under H0, and EH1 [·] is the expectation

operation under H1.

The divergence [35] between the two hypotheses, which can be used as a measure

of detectability, is

J = EH1 [l(ξ)]− EH0 [l(ξ)] (3.20)

= tr(I− S−1)EH1 [ξξH ]− tr(I− S−1)EH0 [ξξH ]

= tr(I− S−1)S − tr(I− S−1)I = tr(S + S−1 − 2I),

where tr(·) denotes the trace operation on a matrix. The matrix S can be decomposed

as

S = R
−1/2
0 R1R

−H/2
0 = UΛUH , (3.21)

where Λ is a diagonal matrix with diagonal elements λi, which are the eigenvalues

of S, and U is an eigenvector matrix containing the corresponding eigenvectors in

its column space. This implies that (R
−H/2
0 U,Λ) solves the following generalized

eigenvalue problem [35]

R1(R
−H/2
0 U) = R0(R

−H/2
0 U)Λ. (3.22)
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Using the cyclic property of the trace, the divergence in (3.21) can be rewritten as

J = tr(Λ + Λ−1 − 2I)

=
N∑
i=1

(λi + λ−1
i − 2). (3.23)

Using the eigenvalue decomposition of S the log-likelihood ratio may be rewritten as

l(ξ) = ξHU(I− Λ−1)UHξ. (3.24)

Thus, we only need to solve the eigenvalue problem in (3.22) to obtain the eigen-

vectors, ui, and eigenvalues λi for computing the log-likelihood in (3.24) and the

J-divergence in (3.23).

A reduced rank version of the log likelihood ratio is [35]

lr(ξ) = ξHU(Ir − Λ−1
r )UHξ, (3.25)

where Ir and Λr are the reduced rank versions of I and Λ containing r non-zero di-

agonal elements, i.e. Ir = diag[1, · · · , 1, 0, · · · , 0] and Λr = diag[λ1, · · · , λr, 0, · · · , 0].

The divergence is then,

J =
r∑
i=1

(λi + λ−1
i − 2). (3.26)

The goal of the reduced rank case is to select the “dominant” eigenvalues, that max-

imally contributes to the separation between the decision regions in the observation

space. The rank-r divergence is identical to the full rank divergence when N − r

of the λ’s are unity. Therefore, by reducing the rank of the detector we increase

our processing gain, by reducing the number of multiplications and additions in the

log-likelihood, while still maximizing the divergence.

3.3 Gauss-Gauss Signal Detection in CCA Frame-

work

The Gauss-Gauss detector in Section 3.2.2 can also be cast in the CCA framework in

which the detection test and detection criterion are formed in terms of the canonical
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Figure 3.1: CCD used as an optimal detector.

coordinates and canonical correlations [29]. For a review of CCA the reader is referred

to Appendix A. Canonical correlation analysis offers an ideal framework for coherent-

based detection and feature extraction. The extracted canonical correlations for the

two data channels provide a coherence (or incoherence) measure that can be used

to determine if a target is present (or absent). Therefore, only the the dominant

correlations need to be retained, which measure the level of coherence, to build a

rank-r detector that maximizes the divergence. In the two-channel CCA framework,

channel x ∈ RN corresponds to signal alone data i.e. x = s with covariance matrix

Rxx = Rs whereas channel y ∈ RN could be either noise under H0 (i.e. y = n) with

covariance matrix Ryy = R0 or signal plus noise under H1 (i.e. y = s + n) with

covariance matrix Ryy = Rs+R0. Figure 3.1 shows how the two-channel CCA can be

used as an optimal detector. Under hypothesis H1, the composite vector z = [xHyH ]H

has the composite covariance matrix

Rzz = E[zzH ] =

 Rxx Rxy

Ryx Ryy

 =

 Rs Rs

RH
s R1 = Rs +R0

 . (3.27)

In the CCA framework the “signal-to-noise ratio” matrix in (3.18), under hypoth-

esis H1, can be rewritten as,

S = R
−1/2
0 (Rs +R0)R

−H/2
0 (3.28)

and the squared coherence matrix [27], CCH , can be expressed as,

CCH = RH/2
s (Rs +R0)−1R1/2

s (3.29)
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Therefore, using the log-likelihood (3.19), l(y) = (R
−1/2
0 y)H(I − S−1)(R

−1/2
0 y)

inserting for S from (3.28), we can rewrite the log likelihood as [29],

l(y) = (R−1/2
s y)H(RH/2

s R−1
0 R1/2

s −RH/2
s (Rs +R0)−1R1/2

s )(R−1/2
s y). (3.30)

Using the fact that [(CCH)−1−I]−1 = R
H/2
s R−1

0 R
1/2
s , the log-likelihood may be rewrit-

ten as

l(y) = (R−1/2
s y)H([(CCH)−1 − I]−1 − CCH)(R−1/2

s y). (3.31)

Using the SVD of the coherence matrix C = R
H/2
s R

−H/2
1 = FKGH and FHR

−1/2
s =

K−1GHR
−1/2
1 , we can write the log-likelihood as

l(y) = (GHR
−1/2
1 y)H([I−K2]−1 − I)(GHR

−1/2
1 y). (3.32)

Alternatively, we have

l(v) = vH([I−K2]−1 − I)v (3.33)

Thus, the log-likelihood ratio is expressed in terms of the canonical coordinate vector

v = GHR
−1/2
1 y for the y channel and the canonical correlation matrix K. More specif-

ically, l(v) is the weighted sum of the magnitude-squared of the canonical coordinates

weighted by canonical correlation-dependent weights, i.e.

l(v) =
N∑
i=1

|vi|2
(

k2
i

1− k2
i

)
, (3.34)

where vi = gHi R
−1/2
1 y and gi is the ith column of the matrix G.

It can also be shown [29] that the J-divergence between H1 and H0 can be ex-

pressed solely in terms of the K matrix or canonical correlations as

J = tr([I−K2]−1 − I−K2) =
N∑
i=1

k4
i

1− k2
i

. (3.35)

The function
k4

i

1−k2
i

is non-increasing in the interval (0, 1]. Consequently the rank-r

detector that maximizes the divergence is the detector that uses the canonical co-

ordinates corresponding to the r-dominant canonical correlations k1, · · · , kr. The J-

divergence between the two hypotheses considering r dominant canonical correlations
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is then,

Jr =
r∑
i=1

k4
i

1− k2
i

. (3.36)

Thus, for building low-rank detectors, only the dominant canonical coordinates need

to be retained in order to find the coherence between the two data channels x and y.

CCA provides an ideal framework for simultaneous target detection and coherent

feature extraction in sonar images. The extracted canonical correlations for either a

pair of columns in an ROI or a pair of ROI’s provide a coherence measure that can

be used to determine if a target is present in the processed ROI(s). Our detection

hypothesis for target detection in sonar imagery is that presence of objects in a sonar

image leads to high level coherence measure comparing to that of the background

clutter only. This makes the Gauss-Gauss detector cast in the CCA framework as an

ideal tool for detecting objects in sonar imagery. However, due to the nature of the

detection problem in sonar imagery the hypotheses will contain two channels. There-

fore, in order to use the Gauss-Gauss detector the likelihood ratio and J-divergence

will have to be reformulated. This development is presented in Chapter 4.

3.4 Conclusion

In this chapter, optimum Bayesian detection and the Neyman-Pearson criterion were

reviewed. Bayesian detection is optimal when the decision costs and prior proba-

bilities are known. However, in general it is difficult to generate these values due

to lack of a priori information about the environment and distribution of true and

null hypothesis. The Neyman-Pearson criterion provides a decision rule for testing

hypothesis in which the decision costs and prior probabilities are not required. In the

Neyman-Pearson criterion, if the problem is viewed as a Gaussian signal and noise

detection problem, Gauss-Gauss detector is obtained. In this method the likelihood

ratio and J-divergence can be reformulated in terms of the eigenvalues and eigen-

vectors of the “signal-to-noise ratio” matrix, where rank reduction can be performed
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while still maximizing the divergence.

The Gauss-Gauss detector was then cast in the CCA framework. This framework

offers ease of implementation and suitability for building a coherence-based detector.

The latter is extremely desirable for the detection of targets in sonar imagery as

our detection hypothesis is that when a target is present in an ROI, consecutive

columns for the single sonar or pair of blocks in two ROI’s for dual disparate sonar the

coherence is higher than when background only is present. The extracted canonical

correlations, which measure the coherence between those two data channels can also

be used for target classification.

In Chapter 4, the use of the Gauss-Gauss decision rule is extended to the composite

channel hypothesis testing. In other words, when the target detection involves more

than one sensors the standard hypothesis testing does not directly apply. This occurs

for the single sensor case as the two channels for the detector are two consecutive

columns in a ROI. This also occurs for the dual disparate sensor case as a pair of

blocks from a pair of co-registered ROI’s are the channels for the detector. Since the

structure of the two hypotheses have changed new formulations for the log-likelihood

ratio and J-divergence need to be developed for the Gauss-Gauss detector to account

for this composite two-channel nature of this problem.
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CHAPTER 4

DETECTION OF TARGETS IN SONAR

IMAGERY

4.1 Introduction

Detection and classification of underwater objects in sonar imagery is a complicated

problem due to various factors such as variations in operating and environmental con-

ditions, presence of spatially varying clutter, variations in target shapes, compositions

and orientation. Moreover, bottom features such as coral reefs, sand formations, and

the vegetation may totally obscure a target object.

In this chapter a new coherent-based detection method for sonar imagery is devel-

oped using CCA framework in Gauss-Gauss detection. Canonical coordinate decom-

position allows one to quantify the changes between the returns from the bottom and

any target activities in sonar images while at the same time extract useful features

without the need to perform separate anomaly feature extraction. These features can

be used for simultaneous detection and classification of mine-like and non-mine-like

objects.

Current detection methods normally use a single sonar where only one sonar

image is used to detect potential targets. Detection based off one image can lead to

unacceptable results as the information is limited to the field of view of one sonar.

This motivates the use of dual disparate sensors where the sonar platforms could be

disparate in either frequency, resolution, location, etc to better capture the target

characteristics. By using multiple disparate sonar types allows one to use a high

resolution sonar with good target definition and the clutter suppressing abilities of a
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low resolution sonar co-registered over the same region. The use of multiple disparate

sonar types allows for the processing of all information available at once to make a

detection call.

When considering the detection problem in sonar imagery for either the single

sonar or the dual disparate sonar cases the development of the CCA-based detector

in Section 3.3 does not directly apply. This is due to the fact that for these cases the

hypothesis H0 corresponds to the case when both channels of the detector contain

background noise only while H1 corresponds to the case where both channels con-

tain target (signal) and background noise though the way the channels are defined

are different for the single and dual sonar problems. Therefore, new expressions for

the log-likelihood and J-divergence need to be developed for this composite channel

hypotheses case. However, to reformulate this problem and relate it to the standard

case one has to develop the log-likelihood ratio and J-divergence under the new hy-

potheses. Since in this case the channels are of higher dimensions finding inverses of

the covariance matrices is not an efficient approach. In this chapter, we develop a

method to find the inverses of the covariance matrices under the H0 and H1 hypothe-

ses and relate the composite two-channel hypothesis problem back to the standard

one channel problem. Through this relationship we can also show the relationship

to the standard CCA-based detector [29] for ease in implementation. We then apply

the detector to the single sensor and the dual disparate sensor cases and demonstrate

that the use of multiple disparate sensor greatly improves the detection performance

over the single sensor case. Test results of the proposed methods on the two data

sets described in Section 2.2 are also provided. The effectiveness of the proposed

detection scheme will be presented in terms of probability of detection (Pd), proba-

bility of false alarm (Pfa), and the receiver operating characteristic (ROC) curve for

various bottom difficulty conditions. Additionally, a comparison of the single sonar

and dual disparate sonar cases will be provided in terms of their average false alarms
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per image.

The outline of this chapter is as follows. Section 4.2 opens the chapter with

the formulation of two channel hypothesis Gauss-Gauss detection test. Section 4.3

presents the single sensor implementation with the corresponding results and analysis.

Section 4.4 presents the dual disparate sensor implementation and the correspond-

ing results together with a comparison with those of the single sonar case. Finally,

conclusions are made in Section 4.5.

4.2 Composite Channel Gauss-Gauss Detection and

Formulation [2]

As mentioned before, for the case of detection in sonar imagery using CCA, both chan-

nels will contain either background noise or target (signal) and background noise.

Figure 4.1 illustrates this hypothesis testing problem and differs from that in Sec-

tion 3.2.2. The hypotheses are:

H0 : z =

 x

y

 =

 n1

n2


H1 : z =

 x

y

 =

 s + n1

s + n2

 . (4.1)

With the change of the hypothesis the new expressions of the log-likelihood and J-

divergence need to formed, in order to correctly apply the Gauss-Gauss detection

method to sonar imagery.

For simplicity of the derivations, it is assumed that s, n1, and n2 are mutually

uncorrelated i.e. E[nin
H
j ] = 0, and, E[snHi ] = 0, and E[nin

H
i ] = R0 for i 6= j and

i,j ∈ [1, 2]. In this case, the covariance matrices R̄0 and R̄1 under hypothesis H0 and

H1, respectively, yield the following Gauss-Gauss detection test for the composite
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Figure 4.1: Coherence-based Detector for Composite Channel Hypothesis Case.

observation vector z,

γ(z) =

 1 ∼ H1, l(z) > λ̄

0 ∼ H0, l(z) ≤ λ̄

l(z) = zHQ̄z with Q̄ = R̄−1
0 − R̄−1

1 . (4.2)

where R̄0 and R̄1 are defined as,

R̄0 =

 R0 0

0 R0

 (4.3)

R̄1 =

 R1 = Rs +R0 Rs

Rs R1 = Rs +R0

 . (4.4)

Note that we assumed E[nin
H
i ] = Rn = R0, for i = 1, 2 and E[ssH ] = Rs where

Rs and R0 are the covariance matrices under the standard one channel hypothesis

that were defined in Section 3.2.1. Also it is assumed that both channels contain

uncorrelated noise (background) with covariance matrix R0. Clearly this assumption

is not true, especially for the dual disparate sensor detector. Nonetheless, it simplifies

the derivations significantly.

The expectation of the likelihood E[l(z)] = E[tr(Q̄zzH)] = tr(Q̄E[zzH ]) leads to

the J-divergence [2],

J = EH1 [l(z)]− EH0 [l(z)] (4.5)

= tr(Q̄R̄1)− tr(Q̄R̄0)

= tr(−2I + R̄−1
0 R̄1 + R̄−1

1 R̄0), (4.6)
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Using (4.4), we can relate the J-divergence in (4.6) to R0 and R1 or to the “signal-

to-noise” ratio matrix S from the standard Gauss-Gauss detector (see Section 3.2.1).

Let us first express tr(R̄−1
0 R̄1) in (4.6) as,

tr(R̄−1
0 R̄1) = 2tr(R−1

0 R1) = 2tr(S) = 2tr(Λ) (4.7)

where S was defined in (3.18) with eigenvalue decomposition (3.21). Next, we express

tr(R̄−1
1 R̄0) and rewrite it as,

tr(R̄−1
1 R̄0) =

 R1 Rs

Rs R1


−1  R0 0

0 R0

 (4.8)

where R1 = Rs +R0. Before we take the inverse of R̄1, we decompose it as, R1 Rs

Rs R1

 =

 R1 R1

R1 R1

−
 0 R0

R0 0


= −


 0 R0

R0 0

−
 I

I

R1

[
I I

] (4.9)

Now, using the matrix inversion lemma [51] the inverse of R̄1 in (4.8) becomes

−


 0 R−1

0

R−1
0 0

−
 0 R−1

0

R−1
0 0


 I

I


−R−1

1 +

[
I I

] 0 R−1
0

R−1
0 0


 I

I



−1

[
I I

] 0 R−1
0

R−1
0 0


 .(4.10)

Using the fact that

 0 R−1
0

R−1
0 0


 R0 0

0 R0

 =

 0 I

I 0

, we can now rewrite (4.8)

as

tr(R̄−1
1 R̄0) = −tr


 R−1

0 (R−1
1 − 2R−1

0 )−1 R−1
0 (R−1

1 − 2R−1
0 )−1 + I

R−1
0 (R−1

1 − 2R−1
0 )−1 + I R−1

0 (R−1
1 − 2R−1

0 )−1


 .

(4.11)
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Again, using the matrix inversion lemma we can write (R−1
1 −2R−1

0 )−1 = R1−R1(R1−
1
2
R0)−1R1. Thus, the diagonal blocks in (4.11) can be rewritten as [R−1

0 R1−R−1
0 R1(I−

1
2
R−1

1 R0)−1], leading to

tr(R̄−1
1 R̄0) = −2tr(R−1

0 R1 −R−1
0 R1(I− 1

2
R−1

1 R0)−1) = −2tr(S− S(I− 1

2
S−1)−1).

(4.12)

Now, using (4.7) and (4.12) the J-divergence in (4.6) becomes

J = tr(−2I + 2S(I− 1

2
S−1)−1). (4.13)

Using the fact that S has an eigenvalue decomposition with eigenvalue matrix Λ,

(4.13) reduces to

J = tr(−2I + 2Λ(I− 1

2
Λ−1)−1) =

N∑
i=1

−2 +
4λ2

i

2λi − 1
. (4.14)

Since the eigenvalues of S, (λi), are related [29] to the squared canonical correlations

(k2
i ) by λi = 1

1−k2
i

we can rewrite the new J-divergence in terms of the canonical

correlations k′is, which is a measure of separability of the two hypothesis, as

J =
N∑
i=1

−2 +
4

1− k4
i

. (4.15)

To express the log-likelihood in (4.2) in terms of R0 and R1 we can write Q̄ =

(R̄−1
0 − R̄−1

1 ) and plug in the result for R̄−1
1

Q̄ =

 R−1
0 +R−1

0 (R−1
1 − 2R−1

0 )−1R−1
0 R−1

0 +R−1
0 (R−1

1 − 2R−1
0 )−1R−1

0

R−1
0 +R−1

0 (R−1
1 − 2R−1

0 )−1R−1
0 R−1

0 +R−1
0 (R−1

1 − 2R−1
0 )−1R−1

0

 . (4.16)

Thus the log-likelihood becomes

l(z) = zH

 R−1
0 +R−1

0 (R−1
1 − 2R−1

0 )−1R−1
0 R−1

0 +R−1
0 (R−1

1 − 2R−1
0 )−1R−1

0

R−1
0 +R−1

0 (R−1
1 − 2R−1

0 )−1R−1
0 R−1

0 +R−1
0 (R−1

1 − 2R−1
0 )−1R−1

0

 z.

(4.17)

54



If we choose η =

 R
−1/2
0 0

0 R
−1/2
0

 z, then

l(η) = ηH

 I + (S−1 − 2I)−1 I + (S−1 − 2I)−1

I + (S−1 − 2I)−1 I + (S−1 − 2I)−1

η. (4.18)

The log-likelihood is now rewritten in terms of S and R0 from the original problem

in Section 3.2.2.

Now expressing I + (S−1− 2I)−1 in terms of the squared coherence matrix CCH =

R
H/2
0 R−1

1 R
1/2
0 yields,

l(η) = ηH

 1/2I− 1/4((CCH)−1 − 1/2I)−1 1/2I− 1/4((CCH)−1 − 1/2I)−1

1/2I− 1/4((CCH)−1 − 1/2I)−1 1/2I− 1/4((CCH)−1 − 1/2I)−1

η.

(4.19)

which can further be expressed in term of canonical correlation matrix K as

l(η) = ηH

 F 0

0 F


 1/2I− 1/4(K−2 − 1/2I)−1 1/2I− 1/4(K−2 − 1/2I)−1

1/2I− 1/4(K−2 − 1/2I)−1 1/2I− 1/4(K−2 − 1/2I)−1


 FH 0

0 FH

η. (4.20)

Using the SVD of the coherence matrix C = R
H/2
0 R

−H/2
1 = FKGH , it is easy to

show [29] that FHR
−1/2
0 = K−1GHR

−1/2
1 and the log-likelihood can be rewritten in

terms of the canonical coordinates as

l(w) = wH

 1/2I− 1/4(K−2 − 1/2I)−1 1/2K−1 − 1/4(K−1 − 1/2K)−1

1/2K−1 − 1/4(K−1 − 1/2K)−1 1/2K−2 − 1/4(I− 1/2K2)−1

w,

(4.21)

where w =

 u

v

 is the composite canonical coordinate vector [27] which is related

to the canonical coordinate vector v in Section 3.3. Hence, the log-likelihood ratio is

only expressed in terms of the canonical coordinates u and v and the corresponding

correlations ki’s.
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Figure 4.2: Block Diagram of the Single-Sensor CCA-based Detection Method.

4.3 Single-Sonar Implementation and Results

The first application of the proposed coherence-based composite channel detector

is the single sonar case which provides one image of the ocean floor. In this case,

CCA provides an ideal framework for simultaneous coherent detection and feature

extraction of target attributes that are present in an ROI within the image. In

this situation both channels of the CCA are formed from one ROI within the sonar

image and for every ROI we compute canonical coordinates and correlations to form

the log-likelihood function (4.21) in order to determine whether the ROI contains a

target or background only. Our detection hypothesis in this single sonar coherence

analysis is that presence of objects in an ROI leads to high level of coherence measure

comparing to that of the background clutter only. The block diagram of the proposed

single-sonar target detection and feature extraction system is presented in Figure 4.2.
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4.3.1 System Overview

In order to prepare the Sonar8 data for CCA, the images are first normalized using a

serpentine forward-backward filter that was described in Section 2.3.1. The purpose

of this normalization is to help distinguish the target’s highlight and shadow signature

from the bottom and artifacts present in the image.

After the normalization process, the first 325 pixels are ignored which depends

on the sonar altitude as it traveled through the water column. This corresponds

to 1/10th of the maximum range of the sonar. Next, the image is partitioned into

overlapping ROI’s of size M×N . For the Sonar8 data set the ROI size of 46×180 was

experimentally determined to be optimal considering the average size and shape of

the targets in this data set. The overlap along the horizontal and vertical directions

was 50% in order to ensure that a target would be covered by more than one ROI in

case of splitting. Each ROI is then channelized in a column-wise fashion for the two-

channel CCA. The x and y channels consist of the first 30 pixels in one column x and

the first 30 pixels in the adjacent column y. This process is continued moving in the

horizontal direction across the ROI. On the next pass through the ROI, the channels

are given a 50% overlap in the vertical direction to ensure complete coverage of the

target in the ROI (see Figure 4.2). The idea behind this channelization is to look for

common coherent attributes that can be used to relate one channel to the other and

to capture the target structure. Clearly, for background ROI’s high level of coherence

among consecutive columns (channels) does not exist. In this development we use the

dominant canonical correlations which hold the coherent information between the two

channels. One may also use the subdominant canonical correlations in the detection

framework to detect incoherence (or change) between the two channels.

After the channelization, the canonical coordinates and correlations are found

for each interrogated ROI. From the canonical correlations the J-divergence measure

is calculated and compared against a threshold. Any ROI whose J-divergence falls
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above the threshold is flagged for further investigation. Next, the log-likelihood ratio

expression is found for each column pair within the ROI. A detection score is then

created based on the percent of the log-likelihood measurements within the ROI that

fall above the detection threshold. Detection score ≥ 50% signifies the presence of a

target within the current ROI.

4.3.2 Results and Observations

The single-sonar detector was applied to the Sonar8 data set. A detailed description

of the data set was provided in Section 2.2.1. The data set contains 137 images

containing 286 targets with some of the images containing more than one target. The

data set is broken up into easy, medium, and hard cases depending on the density of

bottom clutter.

To show the separability of the dominant canonical correlations for ROI’s that

contain targets plus background and those that contain only background, a test was

conducted on the entire set of target ROI’s and a random set of ROI’s containing

mainly background (for all three bottom cases) of the same number of target ROI’s.

The plots of the 30 canonical correlations of ROI’s containing targets and those con-

taining background only are shown in Figure 4.3. As can be seen, there is good

separation, especially for dominant canonical correlations, between targets and back-

ground, which can be attributed to the greater coherence in the channels across the

targets versus the background.

Figure 4.4 shows the histogram of the log-likelihood ratio values of one target

ROI and one random background ROI from the data set. From the example ROI we

see that we have good separation between the two hypotheses which in turn allows

for good detection. Using the entire set of target and the same number of random

background ROI’s, an optimum threshold was determined to be 38.2. This detection

threshold is represented by the vertical dashed line in Figure 4.4. This detection
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Figure 4.3: Plot of Canonical Correlations for Target and Background for Sonar8.

threshold is the same across the easy, medium, and hard data sets as all three sets

exhibited similar histogram plots with the similar separation amounts.

The system is then implemented on the entire Sonar8 data set provided by the

NSWC-Panama City. The coherence-based detector performs well on the easy and

medium set, but falls short on the hard set. More specifically, for the easy cases, there

are 106 images containing 233 targets and the detector detected 229 targets with an

average of 19 false alarms per image. For the medium cases, there are 29 images

containing 49 targets and the detector detected 43 targets with an average of 22 false

alarms per image. Lastly, for the hard cases, there are 2 images, containing 4 targets

and the detector detected 3 targets with an average of 30 false alarms per image. As

expected, higher false alarms are generated as the clutter density increased, due to

the highly textured and dense nature of the bottom clutter. Out of the 286 targets

in the entire data set only 11 targets were missed. The miss-detected targets were

those that had little target structure or were obscured by very dense clutter. When
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Figure 4.4: Histogram of Example Log-Likelihood Values for Target and Background
for Sonar8.

the target structure is reduced there is little or no shadow structure leaving mainly a

bright spot in the ROI hence making the detection difficult.

The ROC curves for the three different subsets of the Sonar8 database are pre-

sented in Figure 4.5. At the knee point for the easy case we have Pd = 89% and

Pfa = 11%. For the medium case the knee point exhibits Pd = 84% and Pfa = 16%

and for hard case the knee point gives Pd = 56% and Pfa = 44%, which is poor due

to the fact only a few images existed in this subset. Clearly, it is hard to determine

the detector’s performance when only a few target cases are available. Overall, the

detector performs well on the easy and medium cases with a good probability of de-

tection and a low false alarm rate. For the hard cases the detector suffers, due to the

large amount of background noise and bottom clutter.

These results motivate the use of dual or multiple disparate sonar platforms.

By using the coherent information across two or more disparate sonar imagery we

can greatly reduce the false alarm rate and increase the detection performance by
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Figure 4.5: ROC Curves for the Sonar8 Data Set.

capturing the target information at different sonar frequencies, beamwidth, resolution,

and perhaps location, even in difficult bottom conditions.

4.4 Dual Disparate Sensor Implementation and Re-

sults

In this section, the coherence-based detector, is implemented on dual disparate sonars

where the disparateness is in the operating frequency, bandwidth, and beamwidth

(resolution). This case is of particular interest as it allows coherent information be-

tween two different sensors looking at the same region to be used to make a detection

decision. There are several key benefits that dual disparate underwater target sys-

tem offers comparing to the single sensor system. These include: (a) the ability to

collaboratively detect and agree on the events observed by different sensors, (b) the

ability to generate a set of coherent features extracted among all the data of the

sensors instead of extracting feature sets from each individual sensory data, and (c)
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Figure 4.6: Coherent-Band detection and feature extraction from Dual Disparate
Sonar Platform.

the ability to reduce false alarm caused by man-made and natural clutter by using

different types of data observed by different sensors.

For dual sonar platforms, the CCA data channels consist of a pair of blocks within

ROI’s that are co-registered over the same region. As in the previous case, CCA pro-

vides an ideal framework for simultaneous coherent detection and feature extraction

of target attributes present in both images. A block diagram of the dual disparate

sensor implementation is provided in Figure 4.6. These extracted canonical correla-

tions for each pair of ROI’s provide a coherence (or incoherence) measure that can

be used to determine if a target is present (or absent) in the processed ROI’s. Our

detection hypothesis in this dual-sensor coherence analysis is that presence of objects

in a pair of co-registered ROI’s leads to high level of coherence measure comparing

to that of the background clutter only.
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4.4.1 System Overview

The CCA-based detector is applied to a dual sonar data set consisting of high-

resolution side-looking sonar images as well as broadband sonar images, the data

set description was given in Section 2.2.2 and is referred to as the multi-platform

sonar data set. The pair of sonar images, which cover the same area with possibly

different spatial resolution and contrast, form the two-channels in the CCA process-

ing. Although different sonar platforms observe the same area at different elevation,

grazing angle, beamwidth, and frequency characteristics, the target returns are more

coherent than those of the background (detection hypothesis). CCA can isolate and

represent these coherent (or common) features between the two data channels. Once

the common features between the two sonar images are identified, the coherence pat-

tern represented by the dominant canonical correlations can be used for subsequent

classification (classification hypothesis) as the coherent information is captured in

only few dominant canonical correlations corresponding to the dominant canonical

coordinates [29].

The high-frequency (HF) side-scan sonar produces high resolution imagery in

which targets typically have good definitions with prominent highlights and shad-

ows, though clutter is also prominent. In the broadband (BB) sonar images the

target highlight still shows up while clutter is not as prominent. Thus, the idea be-

hind using two-channel CCA is to exploit the high coherence between the two sonar

images when targets are present. As mentioned before, using CCA the canonical cor-

relation features that capture this coherence property remain somewhat unchanged

to perspective transformation on the images, which could be caused by variations in

grazing angle and object orientation with respect to the sonar platforms. Moreover,

the beamformed complex-valued data of the sonar systems are used. Clearly, the

capability to process complex-valued data and retain valuable phase information is

another benefit of the CCA framework.
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The multi-platform sonar data set contains 59 images containing 53 targets with

some of the images containing more than one target. For the present study, the

optimum ROI sizes for the HF and BB sonar imagery were experimentally chosen to

be 72 × 112 pixels and 24 × 224, respectively. The images are then partitioned into

ROI’s with a 50% overlap along both range and cross-range directions. Each ROI is

then channelized by a rectangular blocking scheme with the dimension of the blocks

for the HF and BB sonar images being 6 × 4 and 2 × 8 pixels, respectively. These

blocks from realization of the two channel data in the CCA process. Then, canonical

correlations are computed for each pair of ROI’s using these samples. These canonical

correlations can be used for both detection and classification as mentioned previously.

Next, for the detection process, the log-likelihood ratio expression in (4.21) is

computed for each block within the ROI pair. A detection score is then created based

on the percent of the log-likelihood measurements within ROI pair that fall above the

detection threshold. Detection score ≥ 50% signifies presence of a target within that

pair of ROI’s.

4.4.2 Results and Observations

To show the separability of the dominant canonical correlations for ROI’s that contain

targets over background and those that contain only background, a test was conducted

on the entire set of 53 target ROI’s and a same size randomly selected set of ROI’s

containing only background clutter. The plots of 16 canonical correlations of ROI’s

containing targets and those containing background only are shown in Figure 4.7.

As can be seen, there is good separation between targets and background, especially

for dominant canonical correlations. This can be attributed to the greater coherence

between x and y channels across the target ROI’s versus those over background clutter

where there is more randomness. In other words, there is greater coherence between

the HF and BB sonar images when a target is present in both ROI’s versus the case
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Figure 4.7: Plot of Canonical Correlations for Target and Background for HF-BB.

where both ROI’s contain only background noise.

Figure 4.8 shows the histogram of the log-likelihood ratio values of one target

ROI and one random background ROI in the HF-BB detector. Using the entire set

of target and background ROI’s, an optimum threshold was determined to be 26.4

for the detector. The threshold is shown by dotted vertical lines in Figure 4.8. These

values were then used as detection thresholds for all the ROI’s in all the images in

the data set. That is, any block within an ROI pair whose log-likelihood ratio falls

above the relevant threshold is flagged as a target block for that ROI pair.

The detector was executed on the entire data set with good results. The detector

detected 51 of the 53 targets with an average of 10.13 false detections per image. The

ROC curve for the HF-BB detector is presented in Figure 4.9. At the knee point of

the ROC curve for the HF-BB detector we have Pd = 95% and Pfa = 5%. It was

observed that for those targets that were missed the coherence was low due to the fact

that the target only appeared in one of the images. Overall, the detector performed
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Figure 4.8: Histogram of Example Log-Likelihood Values for Target and Background
for HF-BB.

extremely well given the small number of targets and non-targets used to form the

detection threshold.

4.5 Conclusion

In this chapter, a new composite two-channel coherence-based detector was developed

for single sensor and dual disparate sensory systems. The single sensor utilizes one

high frequency side-scan sonar image while the dual disparate sensor utilizes two side-

scan sonar images captured at disparate frequency and resolution. Due to the nature

of target detection in both cases the resulting hypotheses for the detection problem

contain two channels that both capture target or background. This significantly

deviates from the standard detection problems where both hypotheses contain one

channel only. Thus, new formulations for the log-likelihood ratio and J-divergence

are needed to account for these major differences. These formulations were applied
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to the single sonar case where the goal is to determine if a target is present in an

ROI by checking to see if consecutive columns within a ROI contain either signal plus

noise or noise only. The formulation was then applied to the dual disparate sonar

case where the goal is to determine if a target is present in a pair of co-registered

ROI’s by checking to see if pairs of blocks withing ROI’s contain either signal plus

noise or noise only.

The single sonar results on the Sonar8 data set demonstrated that 275 out of the

286 targets were successfully detected with an average of 24 false alarms per image.

As far as performance in different clutter densities is concerned, the ROC curve for the

easy cases (low clutter density) showed Pd = 89% and Pfa = 11% at the knee point.

For the medium clutter density the knee point exhibited Pd = 84% and Pfa = 16%

and finally for the hard cases (very difficult and high density clutter) the knee point

showed Pd = 56% and Pfa = 44%.
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The use of multiple platform sonar allows one to use a high resolution high fre-

quency sonar with good target definition and low resolution broadband sonar with

good clutter suppression abilities to improve the detection performance over that of

the single sonar platform. For the dual disparate case the detector detected 51 out

of the 53 targets and had an average of 10 false alarms per image. The knee point

on the ROC showed Pd = 95% and Pfa = 5% for the HF-BB detector. This indi-

cates that the combination of the information from the BB and HF sonars resulted

in much better detection performance when compared to the use of a HF sonar only.

The development of the two channel coherence-based detector and its ease in imple-

mentation in both situations together with its great detection performance make this

approach very valuable in underwater target detection problems.

In Chapter 5 new distributed collaborative detection system is developed where

two dual disparate detectors are used as local decision makers. The final decision is

generated by the fusion center and is based on the individual decisions of the local

decision makers and an observation made by the fusion center. The corresponding

fusion rule will be derived and the results will be compared to those provided in this

chapter.

68



CHAPTER 5

MULTI-PLATFORM DISTRIBUTED

DETECTION IN SONAR IMAGERY

5.1 Introduction

To optimize the overall detection performance and increase the practical feasibility

of the coherence analysis framework in realistic multiple disparate sonar platform

systems the use of multiple decision makers is a necessity. In this chapter, we propose

a novel distributed detection system using the coherence-based detector developed in

the previous chapter. In this system, there is a group of N local decision-makers used

to produce N separate decisions. Each local decision maker performs coherence-based

detection and feature extraction based upon two sonar images and generates local

decisions and confidence measures as well as a set of canonical correlation features

extracted within the ROI’s of that pair of sonar images. Each decision maker then

sends its decision to a fusion center where a final decision is made based upon the

preliminary decisions and the fusion center’s own observation of the environment. The

final decision is made based on a likelihood ratio test [48] that utilizes not only the

conditional probabilities of the local decisions but also the conditional probabilities

of the fusion center’s own observation.

The developed distributed detection system is implemented using two (or more)

dual-platform detection systems that were described in Section 4.4 to generate two

local decisions that are subsequently processed by the fusion center. The motivation

behind this setup is that by using multiple autonomous underwater vehicles (AUV’s)

each equipped with two sensors and a local detection and decision-maker one can
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perform target detection and classification using multiple (> 2) platforms. Moreover,

for the final decision, the amount of data that has to be sent to the fusion center

is drastically reduced as only the local decisions together with simple statistical at-

tributes extracted from the ROI’s need to be sent hence making this system amenable

to real-time network-centric sensor analysis (NSA) scenarios. The fusion of the in-

dividual decisions leads to higher probability of detection and the lower false alarm

rate due to the fact that more multiple decisions are made about the observations

from the environment.

Test results of the proposed method on the multi-platform sonar data set described

in Section 2.2 are provided. The effectiveness of the proposed distributed detection

system will be presented in terms of probability of detection (Pd), and probability of

false alarm (Pfa). Additionally, a comparison of the performance of the individual

local decision makers will be made, especially in terms of the number of false alarms

per image.

The outline of this chapter is as follows. Section 5.2 introduces the distributed

detection system and the development of the corresponding fusion rule. Section 5.3

presents the implementation of the distributed detection system and corresponding

results. A discussion of the results and a comparison to the single dual disparate case

in Chapter 4.4 is also provided. Finally, conclusions are made in Section 5.4.

5.2 Distributed Detection

Lets now consider the distributed binary hypothesis testing problem where a decision

must be made between H0 and H1 at N local decision makers. Figure 5.1 illustrates

the structure of such a system consisting of N local decision makers denoted DMi

each making its own independent observation zi from the environment. The prior

probabilities of the two hypotheses H0 and H1 are P0 and P1, respectively. Each

local decision maker then receives a composite observation vector zi, i ∈ [1, N ] and
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the set of decisions z1, · · · , zN are assumed to be conditionally independent with

known conditional densities p(zi|Hj), i ∈ [1, N ], j = 0, 1. The local decision makers

then send their decisions ui to the fusion center where based upon the received local

decisions and on its own observation of the environment z0, the fusion center makes

a final decision uf .

Let us denote the decision rule of the fusion center as γf (·), where

uf = γf (u1, · · · , uN , z0) ∈ [0, 1] and denote γi(·) as the decision rule of the local

decision maker where ui = γi(zi). Furthermore, let us assume that the overall cost

is a function of only the final decision, uf and the true hypothesis. In other words,

let Cuf ,Hj
be the cost of decision uf by the fusion center when hypothesis Hj is true.

We will make the assumption that the cost of making erroneous decisions is greater

than the cost of a correct decision, C01 > C00 and C10 > C11. Therefore we need to

find the decision rule γf such that the expected cost C = E[Cuf ,Hj
] is minimized.

Figure 5.1: Block Diagram of the Distributed Detection Problem.

If we assume that the decision rules of the local decision makers are given, then

the optimal strategy for the fusion rule is a likelihood ratio test as the problem is
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simply a centralized detection problem and is a result of the centralized Neyman-

Pearson Lemma [50]. Here we assume that the decisions ui’s and z0 are conditionally

independent, and therefore the likelihood ratio test is given by [48],

γf (u1, · · · , uN , z0) =
p(z0|H1)

p(z0|H0)

∏N
i=1 p(ui|H1)∏N
i=1 p(ui|H0)

H1

≷
H0

λ (5.1)

where λ is the decision threshold (3.8) and is defined as

λ =
P0[C10 − C00]

P1[C01 − C11]
(5.2)

For the local decision makers, since we assumed that the observations are condi-

tionally independent and if we assume the fusion rule γf (·) is known then the optimal

decision rule, γi(·) for the N local decision makers is a likelihood ratio test given

by [47], [48]

γi(zi) =
p(zi|H1)

p(zi|H0)

H1

≷
H0

ηi (5.3)

where ηi is the local decision threshold. Therefore, by using our coherence-based

detector as the local decision maker, the fusion rule above will be optimal as the

coherence-based detector is a likelihood ratio test.

In order to find the conditional densities, p(z0|Hj) and p(ui|Hj) for the fusion rule,

one may use a density estimator such as the probabilistic neural network (PNN) or

back-propagation neural network (BPNN) [52] - [54]. To make the fusion rule more

suitable for the approach of using neural network density estimators one may use

Bayes’ rule to rewrite the fusion rule in terms of the a posterior conditional densities

p(Hj|z0) and p(Hj|ui) that are generated at the outputs of the PNN/BPNN. This

gives,

γf (u1, · · · , uN , z0) =
p(H1|z0)

p(H0|z0)

∏N
i=1 p(H1|ui)∏N
i=1 p(H0|ui)

H1

≷
H0

PN
1 [C10 − C00]

PN
0 [C01 − C11]

. (5.4)

The PNN, which implements the Parzen non-parametric probability density func-

tion estimation [55] and Bayes decision rule can be used to estimate the conditional
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densities p(Hj|z0). The PNN consists of three feedforward layers, the input layer, pat-

tern layer, and summation layer [52]. Feature vectors are applied to the input layer,

which passes them to each neuron in the pattern layer. The pattern layer consists of

K pools of pattern neurons, where K is the number of classes or hypotheses (in this

case K = 2). In each pool k ∈ [0, K−1], there are Nk pattern neurons, each of which

represents exactly one pattern from the training set for hypothesis Hk, k = 0, 1. For

the input observation vector z0 with dimension d, the output of each pattern layer

neuron is

f(z0; w
(j)
k , σ) =

1

Nk(2π)d/2σd
exp

[
−(z0 −w

(j)
k )T (z0 −w

(j)
k )

2σ2

]
, (5.5)

where w
(j)
k is the weight vector of the jth neuron in the kth pool, and the nonlinear

function f(·) represents the activation functions of the neurons. In the summation

layer, the kth neuron associated with hypothesis Hk, k = 0, 1, forms the weighted sum

of all the outputs from the neurons in the kth pool in the pattern layer. The weights

in the summation layer are determined by the decision cost function and the prior

hypotheses probabilities. For the “0-1” cost function and equally likely hypotheses,

the weights will be one for all the neurons in the summation layer. For the input

pattern z0 of an unknown class, a final decision is made through a simple comparison

of the PNN outputs Ok(z0), i.e.,

z0 ∈ H1, if O1(z0) > O0(z0). (5.6)

Under certain conditions [52], the outputs of the PNN correspond to the a pos-

teriori conditional probabilities, i.e. O1(z0) ≈ p(H1|z0), when w
(j)
1 = z

(j)
0,1, i.e., the

weight vector of the jth neuron in pool 1 is set to the training sample z
(j)
0,1 belonging

to hypothesis H1. Although this training process is very fast, a very large network

may potentially be formed, especially if the number of samples in the training set is

large.
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In order to generate the likelihood ratio p(H1|z0)
p(H0|z0)

from the two PNN outputs for the

binary hypothesis problem, we simply use p(H1|z0)
p(H0|z0)

= Ô1(z0)

Ô0(z0)
, where ·̂ means normalized

such that Ô0(zi) + Ô1(zi) = 1. This accounts for inaccuracies in estimating the

conditional densities using the PNN. Thus, the case Ô1(z0) = 1 implies that the

fusion center strongly believes z0 ∈ H1, while Ô1(z0) = 0 means that the fusion

center strongly believes z0 ∈ H0. In the case when Ô1(z0) = 0.5, the fusion center is

unsure which hypothesis is true.

The conditional densities p(Hj|ui), i ∈ [1, N ], j = 0, 1 that represent the con-

fidence in local decision maker’s decisions ui can be generated using a BPNN. In

other words, once the BPNN-based probability estimator has received ui, it estimates

p(Hj|ui)’s such that

yi(j) ≈ p(Hj|ui), i ∈ [1, N ], (5.7)

where yi(j) is the jth (j ∈ {0, 1}) output of the BPNN for the decision ui. The

BPNN is trained to capture this mapping between the preliminary decisions in the

training data set and the hypothesis. It is well-known [52] that, if properly trained,

the BPNN performance approximates an optimal Bayesian estimator.

Using the trained PNN and BPNN the final decision rule can then be implemented

and used to make a final decision based on all the local decision makers decisions and

the fusion center’s own observation, z0, from the environment.

5.3 Multi-Platform Distributed Implementation and

Results

We now implement the distributed detection system where more than 2 sonar images

are used from the multi-platform sonar data set. A system diagram is presented

in Figure 5.2. As can be seen in this figure, the first detector uses one HF image

and one BB image with a different spatial resolution, while the second detector uses

that same BB image and a second BB image with different frequency characteristics.
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Both detectors are implemented using the dual platform-based detection presented

in Section 4.4 which become the two local decision makers for the distributed set up.

Again, our detection hypothesis in this distributed dual-sensor coherence analysis is

that presence of objects in a pair of co-registered ROI’s leads to high level of coherence

measure comparing to that of the background clutter only.

Figure 5.2: Block Diagram of the Multi-platform Detection System.

5.3.1 System Overview

For the each of the local detectors the same data preprocessing and preparation as

described in Section 4.4.1 are used here. We will represent the first local decision

maker by BB1-BB2 and the second local decision maker by HF-BB1. The outputs of

each detector is fused to generate a final decision using the fusion rule developed in the

previous section. It must be noted that in the first detector, coherence information

in the two BB sonar images is exploited to further suppress clutter ROI’s and detect

potential targets. The coherence information in the second detector solidifies the

decision in the first detector by verifying the joint presence in the HF and BB images.

The fusion of the decisions using developed fusion rule in (5.4) leads to reduced

number of false alarms and misdetections.

The detection process at each of the individual detectors (decision-makers) is the
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same as that described in Section 4.4.1. That is, the log-likelihood ratio expression

in (4.21) is computed for each block within the ROI pair. A detection score was then

created based on the percent of the log-likelihood measurements within the ROI pair

that fall above the detection threshold. Detection score ≥ 50% signifies presence of

a target within that pair of ROI’s. The detection scores, namely ui’s, of the two

detectors are then sent as the decisions of the two detectors to the fusion center. At

the fusion center the fusion rule takes it’s own observation, z0 from the three ROI’s

and the two decisions from the local decision makers to make the final decision, uf .

In order to estimate the conditional densities needed for the fusion rule, the two

neural networks, namely the PNN and BPNN, need to be trained, validated, and

tested with three separate subsets of the data. One subset is used for training the

network, one for validation, and one for testing the trained networks. The multi-

platform data set contains 53 targets and 18 of these targets were chosen at random

for the training subset from the remaining 35 targets, 10 were chosen at random for

the validation subset and the remaining 25 were used for the testing subset. In order

to make the networks robust to target location variation within the ROI, multiple

ROI’s over the target were used for the training, validation, and testing subsets where

the target was contained in different locations within the ROI. For every target and

background sample in the three co-registered sonar images, we used 4 ROI’s hence

resulting a training set consisting of 72 sets of three target and 72 sets of three

background ROI’s chosen from this multi-platform sonar data set. The validation

and testing subset were formed similarly yielding 40 sets of three target and 40 sets

of three background ROI’s for the validation set and 100 sets of three target and

100 sets of three background ROI’s for the testing set and both were extracted from

the three co-registered sonar images. The decisions from the two CCA-based local

decision makers are then computed for the training subset and are used to train the

BPNN. For the training of the BPNN, five random weight initializations were used
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and the BPNN which performed the best on the validation set was selected for testing.

For the training of the PNN again three subsets of the data were used for training,

validation and testing. The input to the PNN is the observation from the environment,

z0. The observation was chosen to be a set of statistical attributes that are taken

from the three processed ROI’s. These attributes are the mean, variance, and skew

of data within each of the ROI’s from the set of three co-registered sonar images.

Thus, z0 is a 9-D observation vector provided to the fusion center. The subset for

the training consisted of 72 target and 72 background observations. Similarly, the

validation consisted of 40 target and 40 background observations and the testing

consisted of 100 target and 100 background observations. Since the weights in the

pattern layer are fixed for the PNN, 10 different initializations of the variance of the

Gaussian were used for the training of the PNN. The network which performed the

best on the validation set was selected for testing. The resulting trained PNN is

relatively small due the binary hypothesis problem as the PNN consists of only two

pools of neurons in the pattern layer.

5.3.2 Results and Observations

To show the separability of the principal canonical correlations for ROI’s that con-

tain targets over background and those that contain only background, a test was

conducted on the entire target set ROI’s and a same size randomly selected set of

ROI’s containing only background clutter for two local detectors. The plots of 16

canonical correlations of ROI’s containing targets and those containing background

only are shown in Figures 5.3(a) and (b) for the HF-BB1 and BB1-BB2 detectors,

respectively. As can be seen, for both pairs of sonar images there is suitable sep-

aration among the canonical correlations formed from target ROI’s and those from

background ROI’s, especially for the principal canonical correlations.

Figures 5.4(a) and (b) show the histograms of the log-likelihood ratio values of
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Figure 5.3: Plot of Canonical Correlations for Target and Background for both
Detectors.
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one target ROI and one random background ROI in the HF-BB1 and BB1-BB2 cases,

respectively. Using the entire set of target and background ROI’s, the optimum

thresholds for the local decision makers was determined to be 26.4 for the HF-BB1

and 23.9 for the BB1-BB2, respectively. These thresholds are shown by dotted vertical

lines in Figures 5.4(a) and (b). These values were then used as detection thresholds

for all the ROI’s. That is, any block within an ROI pair whose log-likelihood ratio

falls above the relevant threshold is flagged as a target block in either HF-BB1 or

BB1-BB2 pairs and the decision is set to the fusion center.

In order to determine the threshold for the fusion rule a “1-0” cost function is

used, i.e C10 = C01 = 1 and C11 = C00 = 0. Additionally, for the prior probabilities,

P0 and P1, are considered to be equal, i.e. P0 = P1 = 1/2. Therefore, the threshold

for the fusion rule in (5.4) is 1.

The system is then implemented on the entire NSWC multi-platform sonar im-

agery data. The individual coherence-based local decision makers performed marginally

well. More specifically, the HF-BB1 detector detected 51 of the 53 targets with an

average of 10.13 false detections per image. While the BB1-BB2 detector performed

a little worse with detection of 49 of the 53 targets and an average of 9.86 false de-

tections per image. However, when the decisions of these two detectors are fused, the

performance was greatly improved. After the fusion process, the system detected 53 of

the 53 targets with an average of only 7.1 false detections per image. The ROC curves

for the individual detectors and the fusion of the two are presented in Figure 5.5 and

were generated from the entire multi-platform sonar data set. At the knee point of

the ROC for the HF-BB1 detector we have Pd = 95% and Pfa = 5%. While for the

BB1-BB2 detector the knee point exhibits Pd = 92% and Pfa = 8%. After the fusion

of the two detectors, the knee point of the fused ROC gives Pd = 99% and Pfa = 1%,

which demonstrates excellent overall detection performance of the proposed system.

After fusion all of the targets were detected and the number of false alarms per
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Figure 5.4: Histogram of Example Log-Likelihood Values for Target and Background
for both Detectors.
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Figure 5.5: ROC Curves for the Individual Detectors and the Fusion

image was greatly reduced. The targets that were missed by the local decision makers

were at very close range and had faint signatures in all the three images. This is due

to the fact that these targets were close to the tract of the AUV. Consequently, the

signature was extremely dark and hard to visually discern in all three images hence

leading to overall low coherence and subsequent misdetection. But after the fusion

rule even the faint target signatures were detected and this can be attributed to the

fusion center having it’s own observation of the environment. Overall, the distributed

detection system performed extremely well given the small number of targets and

non-targets used to form the detection threshold and showed vast improvement over

the single sensor detector in Section 4.3 as well as the dual disparate detector in

Section 4.4.

81



5.4 Conclusion

In this chapter, a distributed detection scheme is developed where several dual-

platform detectors are used to generate local decisions. The fusion center receives

these local decisions together with its own observation to generate a final decision.

The developed fusion rule is based on the work in [48]. The incorporation of the

observation vector in the fusion rule helps to greatly increase the probability of de-

tection and decrease the false alarm rate. By using multiple dual-platform detectors

one is able to take advantage of more than two observations from the environment

hence providing a higher confidence detection decision at the fusion center.

When the developed distributed detection scheme was applied to the multi-platform

data set provided by the NSWC-Panama City it was shown that the fusion process sig-

nificantly improved the probability of correct detection while reducing the incidence

of a false alarm when compared with the results of the single dual disparate detector

in Chapter 4. All targets were detected with an average of only 7 false detections per

image on the entire multi-platform sonar data set. When comparing the results of

the individual dual disparate detectors to the results of the fusion, there was a 4%

improvement in the Pd over the individual HF-BB1 detector and a 7% improvement

in the Pd over the individual BB1-BB2 detector and a substantial reduction in the

number of false alarms over either of the individual detectors. Clearly, this indicates

that the use of multiple sonar types improves the detection performance by better

capturing the target characteristics. Moreover, the use of multiple decisions from

the environment in a realistic NSA scenario can effectively implement multi-platform

detection by reducing the amount of information that needs to be sent to the fusion

center while offering high probability of detection and low false alarm rate.

In the next chapter we investigate the effect of sample support on the Gauss-

Gauss detector performance. More specifically, two cases are examined, the sample

rich and sample poor cases. In the sample rich case, the number of samples is greater
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than the data vector dimension while for the sample poor case the opposite is true.

We develop a method for finding the eigenvalues and eigenvectors of the signal-to-

noise ratio matrix for both cases as well as the associated log-likelihood function

and J-divergence criterion. The results in the next chapter are important as they

provide some guidelines on how to successfully design and implement coherence-based

detectors using limited data samples.
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CHAPTER 6

EFFECT OF SAMPLE SUPPORT ON LINEAR

AND KERNEL GAUSS-GAUSS DETECTION

6.1 Introduction

Detection of a Gaussian signal in Gaussian noise (Gauss-Gauss detection) was ad-

dressed in Chapter 3.2.2 where it was shown how the log-likelihood ratio can be

formulated in terms of the eigenvalues and eigenvectors of the “signal-to-noise ratio”

matrix which involves the signal covariance matrix and the inverse of the noise covari-

ance matrix. Moreover, a low-rank Gauss-Gauss detector can be constructed based

upon the J-divergence which is a measure of distance between the two hypotheses.

Computing the signal-to-noise ratio matrix requires the knowledge of data co-

variance matrices corresponding to the two hypotheses, which in practice have to be

estimated from a limited number of samples drawn from the corresponding observa-

tions. However, little attention has been paid to the study of the effects of sample

support on the eigenvalues of the signal-to-noise ratio matrix. More specifically, we

would like to determine just how poor can sample support become before the eigen-

values of the signal-to-noise ratio matrix cease to carry useful information and how

does this affect the validity of the J-divergence and log-likelihood function. Thus, in

this chapter, we consider Gauss-Gauss detection when data covariance matrices under

the two hypotheses are estimated from a limited number of data samples. We study

two sample support scenarios namely, the sample rich and sample poor cases. In the

sample rich case, the number of samples is greater than the data vector dimension

while for the sample poor case the opposite is true. We then develop a method for
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finding the eigenvalues and eigenvectors of the signal-to-noise ratio matrix for both

cases as well as the associated log-likelihood function and J-divergence criterion. We

show, through a numerical example, that as the number of samples becomes closer to

or less than the dimension of the data vector, the eigenvalues of the signal-to-noise

ratio matrix become defective leading to poor detection results and a superficial J-

divergence measure for detectability. Although the sample poor scenarios may not

occur frequently for the linear detector, they do indeed happen in the kernel nonlinear

version of this detector. This is due to the fact that the dimension of the mapped

data in the high dimensional feature space is typically much higher than the sample

support (e.g. Gaussian kernel).

The idea behind kernel Gauss-Gauss detection is to use a nonlinear mapping to

map the input space into a high-dimensional feature space, in which the cases are

linearly separable. Perhaps the most intriguing aspect is that the high dimensional

nonlinear mappings are never explicitly computed and all computations are carried

out in the original low dimensional space using the kernel trick [36] - [38]. Kernel-

based detection has attracted quite a bit of attention lately. In [56], a kernel matched

filter detector was developed by extending the linear matched filter. The method

in [57], developed the kernel version of the well-known RX anomaly detector for

hyperspectral imagery. The kernel matched subspace detector was developed in [58]

by formulating the generalized log-likelihood ratio test in the high-dimensional feature

space. In this chapter, we also extend the sampled version of the linear Gauss-Gauss

detector to the kernel version by formulating the log-likelihood in the high-dimensional

feature space using the kernel trick.

The outline of this chapter is as follows. Section 6.2 develops the empirical

version of the Gauss-Gauss detector where both the sample rich and sample poor

cases are explored. In Section 6.3 the non-linear kernel Gauss-Gauss detector is ex-

tended. Section 6.4 presents a numerical example with the corresponding eigenvalue,
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J-divergence, and likelihood ratio analysis for the linear sample rich and sample poor

cases. Finally, conclusions are made in Section 6.5.

6.2 Gauss-Gauss Detection and Data Sample Sup-

port

Let us, for the sake of completeness, review the classical detection problem (see Chap-

ter 3.2.1), which involves deciding between two hypotheses, the one of noise only and

the other of signal plus noise. Assume we have an observation x ∈ RN which is a

normal random vector with zero mean and covariance matrix R. We wish to test the

hypothesis H0 : R = R0 i.e. noise alone versus H1 : R = R1 i.e signal plus noise,

R1 = R0 + Rs where R0 is the covariance matrix of the noise alone and Rs is the

covariance matrix of the signal. We can also view this as a two channel problem [27]

where x = n is noise alone with covariance R0 and y = s+n is signal plus noise with

covariance R1 under hypothesis H1.

The log-likelihood ratio test (LRT) that minimizes the risk involved in deciding

between H0 and H1 leads to

γ(x) =

 1 ∼ H1, when l(x) > λ

0 ∼ H0, with l(x) ≤ λ

where l(x) = xHQx is the log-likelihood ratio and Q = R−1
0 − R−1

1 and matrix Q is

given by

Q = R
−H/2
0 (I− S−1)R

−1/2
0 , (6.1)

where the “signal-to-noise ratio” matrix [35], S, is defined as

S = R
−1/2
0 R1R

−H/2
0 (6.2)

The J-divergence [35] between the two hypotheses, which is a global measure of
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the separability or detectability of the two hypotheses is

J = EH1 [l(x)]− EH0 [l(x)] (6.3)

= tr(S + S−1 − 2I). (6.4)

The matrix S has an eigenvalue decomposition as,

S = R
−1/2
0 R1R

−H/2
0 = UΛUH . (6.5)

The J-divergence in (6.4) can be rewritten as

J = tr(Λ + Λ−1 − 2I)

=
N∑
i=1

(λi + λ−1
i − 2). (6.6)

Moreover, the log-likelihood function can also be expressed in terms of eigenvalues

and eigenvectors of S as,

l(ξ) = ξHU(I− Λ−1)UHξ (6.7)

where ξ = R
−1/2
0 x.

Thus, we only need to solve the eigenvalue problem in (6.5) to obtain the eigen-

values λi and eigenvectors of S for computing the J-divergence and log-likelihood

function in (6.6) and (6.7), respectively.

In practice, however, the covariance matrices are estimated from a limited number

of data samples. Consider the sample data matrices X = [x1,x2, · · · ,xM ] ∈ Rm×M

and Y = [y1,y2, · · · ,yM ] ∈ Rm×M with m being the dimensions of x and y and M

being the number of samples (typically m < M). Here xk and yk are independent

realizations of the random vectors x and y, defined before. Note that for the following

derivations ‘ ˆ ’ implies the sampled version of the corresponding matrix. Thus, the

sample data covariance matrix associated with x is R̂ = XXH =
∑M

k=1 xkx
H
k . To test

the hypothesis H0 versus H1 the sample covariances are used in place of the theoretical

ones. We now have two cases to consider, the sample rich case, i.e. m ≤ M and the

sample poor case, i.e. m > M .
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6.2.1 Sample Rich Case (m < M)

The sampled version of Q is

Q̂ = (XXH)−1 − (Y Y H)−1

= (XXH)−H/2(I− Ŝ−1)(XXH)−1/2, (6.8)

where the sampled version of S is defined as

Ŝ = (XXH)−1/2(Y Y H)(XXH)−H/2. (6.9)

Since l(x) is scalar using the cyclic property of the trace we can write,

l(x) = tr(xHQ̂x)

= tr(xxH(XXH)−1)− tr(xxH(Y Y H)−1). (6.10)

Thus, using (6.3) we can write the J-divergence as

J = tr[(Y Y H)(XXH)−1 + (XXH)(Y Y H)−1 − 2I], (6.11)

where EH0 [xxH ] = R̂0 = XXH and EH1 [xxH ] = R̂1 = Y Y H . If we then rewrite

(XXH) = (XXH)1/2(XXH)H/2, then we get

J = tr[(Y Y H)(XXH)−H/2(XXH)−1/2

+(XXH)1/2(XXH)H/2(Y Y H)−1 − 2I] (6.12)

or

J = tr(Ŝ + Ŝ−1 − 2I). (6.13)

which is the sampled version of (6.4).

Matrix Ŝ has an orthogonal decomposition

Ŝ = (XXH)−1/2(Y Y H)(XXH)−H/2 = UΛUH (6.14)

where Λ and U can be solved using the sampled generalized eigenvalue problem

(XXH)−1/2(Y Y H)(XXH)−H/2U = UΛ. (6.15)
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which together with (6.13) reconfirms (6.6) for this sample rich case.

Substituting the orthogonal decomposition of Ŝ into (6.8) we can rewrite Q̂ as

Q̂ = (XXH)−H/2U(I− Λ−1)UH(XXH)−1/2 (6.16)

If we define D , (XXH)−H/2U, then (6.16) can be rewritten as

Q̂ = D(I− Λ−1)DH (6.17)

And, the log-likelihood function becomes

l(z) = zHD(I− Λ−1)DHz (6.18)

Using the definition of D, (6.15) can be converted to the following generalized

eigenvalue problem

(XXH)−H/2(XXH)−1/2(Y Y H)(XXH)−H/2U = (XXH)−H/2UΛ

(Y Y H)D = (XXH)DΛ, (6.19)

Therefore, matrices D and Λ can be found from this generalized eigenvalue problem

which can then be used in (6.18) to compute the log-likelihood and (6.13) to compute

the J-divergence.

6.2.2 Sample Poor Case (m > M)

If we assume that m > M , i.e. sample poor case, and that rank(XXH) = p ≤ M .

In the linear case p = M if the samples are drawn independently. The case p ≤ M

is important when the sampled data is mapped using a nonlinear mapping for the

kernel detector and the rank(XXH) is not guaranteed to be M . Using the eigenvalue

decomposition of X and Y we have

X = V1ΛXV
H

2

Y = W1ΛYW
H
2 , (6.20)
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where V1 and V2 are the left and right transformation matrices for X and similarly

W1 and W2 are the left and right transformation matrices for Y , and

ΛX =

 ΛX(p) 0

0 0

 ,ΛY =

 ΛY (p) 0

0 0

 . (6.21)

where ΛX(p) and ΛY (p) are p× p diagonal matrices with diagonal elements that are

eigenvalues of X and Y data matrices, respectively.

We can then rewrite (6.9) as,

Ŝ = (V1Λ2
XV

H
2 )−1/2(W1Λ2

YW
H
2 )(V1Λ2

XW
H
2 )−H/2. (6.22)

where all matrix inversion operations imply the use of the Moore-Penrose pseudo-

inverse [51] for the corresponding matrix. Therefore, Ŝ will be of rank p and hence

we can rewrite it as,

Ŝp = (V1,pΛ
2
X(p)V H

1,p)
−1/2(W1,pΛ

2
Y (p)WH

2,p)(V1,pΛ
2
X(p)V H

1,p)
−H/2

= UpΛ(p)UH
p (6.23)

where X and Y are expressed as X = V1,pΛX(p)V H
2,p and Y = W1,pΛY (p)WH

2,p where

V1,p and V2,p contain the first p columns of V1 and V2 corresponding to the non-zero

eigenvalues of X, similarly for Y , W1,p and W2,p contain the first p columns of W1

and W2 corresponding the non-zero eigenvalues of Y and

Λ =

 Λ(p) 0

0 0

 (6.24)

and Up, which is of dimension m× p, contains the first p columns of U corresponding

to the non-zero eigenvalues of Ŝ.

If we define Dp , (XXH)−H/2Up, then Ŝp can be converted to a generalized

eigenvalue problem as in (6.19), but in the reduced rank subspace,

(Y Y H)Dp = (XXH)DpΛ(p). (6.25)
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From Dp , (XXH)−H/2Up it is obvious that Dp is in the span of X. Thus, we can

write Dp = XAp yielding

(Y Y H)XAp = (XXH)XApΛ(p). (6.26)

Pre-multiplying both sides of (6.26) by XH gives

(XHY )(Y HX)Ap = (XHX)(XHX)ApΛ(p), (6.27)

which can be solved to give Λ(p) and Ap. For the sample poor case, the J-divergence

can be found from the eigenvalues of Ŝp using (6.13) for only p non-zero eigenvalues.

Now, using the definitions of Dp and Λ(p) we can rewrite (6.17) as

Q̂ = XAp(I− Λ−1(p))AHp X
H (6.28)

and the log-likelihood in (6.18) can be expressed as,

l(x) = xHX(I− ApΛ−1(p)AHp )XHx. (6.29)

That is, the log-likelihood can be found using Λ(p) and Ap which are obtained by

solving the generalized eigenvalue problem in (6.27). Note that the formulations

in (6.27) and (6.29) are very relevant to the development in the next section as the

terms (XHX),(XY H),(Y HX), and (xHX) are already in dot product form and further

due to the high dimensionality of the feature space the sample poor conditions are

inevitable.

6.3 Kernel Gauss-Gauss Detection

In this section, based on our findings about the sample support of the log-likelihood

and J-divergence we develop the kernel version of the Gauss-Gauss detector. The

motivation behind the kernel detector is that by using a nonlinear mapping we can

map the data in the input space into a higher dimensional space where the features are

linearly separable. From the previous formulations the detector is already in terms of
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the dot products of the data matrices and the nonlinear mapping can be carried out

in the original input space using the kernel trick [36]. The inner products are then

replaced by kernel functions that can be computed in the input space that satisfy

Mercer’s conditions.

We can define the mapped data matrices Φ = [φ(x1), φ(x2), · · · , φ(xM)] ∈ Rm′×M

and Ψ = [φ(y1), φ(y2), · · · , φ(yM)] ∈ Rm′×M , where typically m′ >> m. Here each

pair of samples xi and yi are mapped using high-dimensional kernel producing [36]

- [38] mapping function φ(·).

We wish to test the hypothesis H0 : Rφ = Rφ0 versus H1 : Rφ = Rφ1 in the implicit

high-dimensional feature space using the kernel trick [36]. The log-likelihood ratio

test that decides between H0 and H1 leads to

γ(φ) =

 1 ∼ H0, when l(φ) > λ

0 ∼ H1, when l(φ) ≤ λ

where l(φ) = φH(x)Qφφ(x) and Qφ = R−1
φ0
− R−1

φ1
. Here it is assumed that the

data in the mapped high-dimensional feature space is Gaussian. Using the previous

formulations (6.28) and (6.29) in Section 6.2.2, and the mapped data matrices Φ and

Ψ, we can write Qφ as,

Qφ = ΦAφ(I− Λ−1
φ )AHφ ΦH (6.30)

and hence the log-likelihood can be expressed as

l(φ(x)) = kHφΦ(I− AφΛ−1
φ AHφ )kφΦ. (6.31)

where kφΦ = φH(x)Φ = [k(x,x1), · · · , k(x,xM)]H and k(x,xi) = φH(x)φ(xi) is a

kernel function that satisfies Mercer’s conditions [36]. As in (6.27), matrices Aφ and

Λφ can be found by solving the generalized eigenvalue problem

KΦΨK
H
ΦΨAφ = KΦΦKΦΦAφΛφ (6.32)

where KΦΦ = ΦHΦ = [k(xi,xj)]ij and KΦΨ = ΦHΨ = [k(xi,yj)]ij are the Gram

kernel matrices. Upon solving the generalized eigenvalue problem in (6.32), one can
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then find the J-divergence using (6.13) and the log-likelihood using (6.31), which is

also expressed only in terms of kernels.

Note that here we assumed that the data in the high-dimensional feature space

is centered (zero-meaned). However, this cannot be guaranteed in this implicit and

possibly unknown space. To implement this centering using the kernel trick let the

mean of the mapped data, Φ be defined as φ̄ = (1/M)
∑M

m=1 φ(xm). Then, we can

define the “centered” version of φ(x) as φ̃(x) = φ(x) − φ̄. We now can form the

centered version of KΦΦ as K̃ΦΦ = [k̃(xi,xj)]ij, where

k̃(xi,xj) = φ̃H(xi)φ̃(xj)

= k(xi,xj)−
1

M

M∑
m=1

k(xi,xm)− 1

M

M∑
n=1

k(xn,xj) +
1

M2

M∑
m=1

M∑
n=1

k(xm,xn)

= k(xi,xj)−
1

M
1TkφΦ −

1

M
1TkΦφ +

1

M2
1TKΦΦ1 (6.33)

where kφΦ is defined as before and 1 = [1, · · · , 1]T . Now using (6.33) for every element

of K̃ΦΦ yields

K̃ΦΦ = KΦΦ −
1

M
11TKΦΦ −

1

M
KΦΦ11T +

1

M2
11TKΦΦ11T

= P⊥1 KΦΦP
⊥
1 (6.34)

where P⊥1 = I− 1
M

11T is a centering matrix [36].

Using (6.34) in (6.32) yields the “centered generalized eigenvalue” problem as

P⊥1 KΦΨP
⊥
1 K

H
ΦΨP

⊥
1 Aφ = P⊥1 KΦΦP

⊥
1 KΦΦP

⊥
1 AφΛφ. (6.35)

To compute the log-likelihood function in the kernel domain the centered version

of kφΦ is also needed. This can be obtained using (6.33) as

k̃φΦ = kφΦ −
1

M
11TkφΦ −

1

M
KΦΦ1 +

1

M2
11TKΦΦ1

= P⊥1 (kφΦ −
1

M
KΦΦ1) (6.36)

Using (6.36) in (6.31) gives the “centered log-likelihood” as

l(φ) = (kφΦ −
1

M
KΦΦ1)HP⊥1 (I− AφΛ−1

φ AHφ )P⊥1 (kφΦ −
1

M
KΦΦ1). (6.37)
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Therefore, both the log-likelihood and the generalized eigenvalue problem can be

written in terms of the centered versions of the Gram kernel matrices and the kernel

vector hence guaranteeing that our data will be centered in the feature space.

6.4 Results and Observations

An experiment is conducted to show the effectiveness of the detector for the sample

rich and the sample poor cases. Under H0, x = n is a zero-mean white Gaussian

vector process. The signal, s, is formed from an arbitrary matrix B and another zero-

mean white Gaussian noise vector, η with Rη = 1.25I, such that s = Bη. Therefore,

under H1 we have y = Bη + n. The sample data matrices are formed for the two

cases each with a dimension of m = 12 and having a total of 256 samples. For the

sample rich and sample poor cases three SNR scenarios of 20dB, 10dB, and 5dB

were considered. The matrix Ŝ is formed to build the log-likelihood function and

compute the J-divergence. The theoretical (for large sample support) J-divergence

for the three SNR cases are found to be 1371, 218, and 100 respectively.

The eigenvalues of Ŝ for the sample rich and sample poor cases are computed from

(6.19) and (6.27), respectively. The J-divergence for both cases is computed using

(6.13). The number of samples, M was varied from 256 to 12 for the sample rich case

and from 4 to 11 for the sample poor case. For each case the eigenvalues are found,

J-divergence is computed and a separate test set of 256 samples is then applied to the

detector. The experiment was repeated for 1000 Monte Carlo trials, where for each

trial the signal model is used to generate the data, but for a fixed B matrix.

The plots of the eigenvalue gap between the largest and smallest eigenvalues

(λ1/λ12), J-divergence, probability of detection (Pd), and probability of false alarm

(Pfa), versus the number of samples are presented in Figures 6.1-6.4, respectively.

These plots represent the average results for 1000 Monte Carlo trials. In each figure,

three plots for the SNR cases of 20, 10, and 5dB are presented. The vertical line
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Figure 6.1: Eigenvalue Gap versus Number of Samples.
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Figure 6.2: J-divergence versus Number of Samples.
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Figure 6.3: Probability of Detection versus Number of Samples.
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Figure 6.4: Probability of False Alarm versus Number of Samples.
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in these figures corresponds to the boundary between the sample rich (right side of

boundary) and sample poor (left side of boundary) cases. It is interesting to note

that at the boundary point where sample support is poor but the number of eigen-

values is still 12, the eigenvalue gap and J-divergence reach their maximum values.

Thus, as sample support decreases the J-divergence becomes a superficial measure

for separability of the two hypotheses. Figures 6.3 and 6.4 illustrate the fact that

the number of misdetections and false alarms also increase as the sample support

decreases. The decline in the J-divergence in sample poor region is due to the fact

that the J-divergence is computed with lesser number of eigenvalues since the rank

of Ŝ decreases as the number of samples decreases. It can also be noted that the

eigenvalue gap and the J-divergence reached a steady state value (theoretical value

for the specific cases considered) after the number of samples passes 40.

Comparing the three different SNR scenarios, several interesting observations can

be made. First, the eigenvalue gap is lower for a higher SNR at all sample sup-

port sizes. Additionally, they all reach their steady state values with the lowest for

SNR=20dB. To explain this behavior, we note that the eigenvalues are computed

from the “signal-to-noise ratio” matrix, Ŝ and if γ1 and γ12 are the largest and small-

est eigenvalues of the signal covariance matrix Rs, it can easily be shown that the

eigenvalue gap is (λ1/λ12) = (γ1+σ2
n)/(γ12+σ2

n) ≈ (SNR+1)/(γ12/σ
2
n+1), where it is

assumed that the covariance matrix of additive noise is R0 = σ2
nI. Since the eigenval-

ues of Rs are fixed as the (SNR ≈ γ1/σ
2
n) decreases the eigenvalue gap will increase

depending on the relative values of σ2
n and γ12. Second, the J-divergence reaches

steady-state values for all three SNR cases, when the number of samples ≥ 40. How-

ever, the steady-state value of J-divergence is much larger for higher SNR’s. This

results is consistent with those in Figures 6.3 and 6.4 which show dramatic increase

in the averaged Pd and decrease in the averaged Pfa when SNR was higher. The dete-

rioration in the overall detection performance when SNR decreases is more prominent
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when the sample support ≤ 40 i.e. in the region where J-divergence is flawed. This

implies that as SNR decreases more samples is required to distinguish between the

two hypotheses.

6.5 Conclusion

In this Chapter, we developed the sampled version of the standard Gauss-Gauss

detector and studied the effect of sample support size on the eigenvalues of the signal-

to-noise ratio matrix. More specifically, two different cases were investigated namely,

the sample rich case, in which the number of samples is greater or equal to the

dimension of the channel, and the sample poor case, in which the number of samples

is less than the dimension of the channel. The sampled version of the linear detector

was then extended to the nonlinear kernel case where the data vectors are mapped

into a higher dimensional feature space. The centered version of the nonlinear kernel

detector was also derived. The nonlinear kernel Gauss-Gauss detector can become

intractable due to high or possibly infinite dimension of the feature space comparing

to the dimension of the original signal space.

It was noted that as the sample support decreases the J-divergence measure be-

comes defective as a global measure of separability between the two hypotheses. The

simulation results for sample support sizes ranging from 4 to 256 samples and different

SNR cases indicated that as the number of samples decreases toward the dimension

of the data vector the J-divergence superficially increases, whereas the overall Pd de-

clined. When sample size becomes ≥ 40 the eigenvalue gap and J-divergence reached

their steady state values for all the three SNR cases considered. For lower SNR, J-

divergence reached a lower steady-state value. While, the averaged Pd decreased and

the averaged Pfa increased, especially when sample support is ≤ 40. This implies

that as SNR decreases, more samples are required to distinguish between the two

hypotheses. Therefore, in order to use the kernel Gauss-Gauss detector for any case
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an adequate number of samples is required for implementation.

99



CHAPTER 7

CONCLUSIONS AND SUGGESTIONS FOR

FUTURE WORK

7.1 Conclusions and Discussions

A new coherence-based method for the detection of underwater objects from sonar

imagery was developed in this thesis in order to provide a mechanism for robust target

detection in changing environmental conditions. Using the developed coherence-based

detector three detection schemes were developed to address three specific problems,

namely, the single sonar, the dual disparate sonar, and the distributed sonar platform

detection problems. The single sonar detection system utilizes coherence properties

in one sonar image to detect a target ROI. The dual disparate sonar detection system

utilizes two sonars operating at disparate frequencies and resolutions and provides

coherence-based detection based upon two ROI’s within the co-registered images.

Finally, the distributed detection system utilizes several dual disparate detection

systems as local decision makers, and a fusion center to generate a final detection

decision based upon three or more co-registered sonar images. The use of multiple

local decision makers allows generating multiple decisions about the environment and

by sending only the local decisions to the fusion center the amount of information

that needs to be transmitted in a NSA setup is substantially reduced. Each of these

detection systems exploits the coherence (or common) information in one image or

between the co-registered images using the two-channel CCA to make a high confi-

dence decision about the presence of an object. These systems were then compared,

which led to the distributed detection system providing the best overall detection
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performance.

Considering that each of the detection systems needs to extract the coherent infor-

mation from one or multiple sonar images, CCA is considered to be the optimal tool

for coherence analysis. Because CCA transforms the two-channel data into canonical

coordinates that have maximal correlation between individual pairs of coordinates

in comparison to any other linear mapping. This method provides a perfect frame-

work for relating the columns in an ROI for the single sensor case and between two

co-registered ROI’s in the dual disparate sonar case. Moreover, once the common fea-

tures between the two sonar images are identified, the coherence pattern represented

by the canonical correlations can be used for subsequent classification.

The performance of each of these coherence-based detection schemes was tested

on the Sonar8 and multi-platform sonar data sets, each of which contains targets

in background with varying density of clutter. The Sonar8 data set contains high

resolution side-scan sonar imagery from one sensor. The images contained in this data

set consisted of envelope data (magnitude of the complex image) that is the output

of the beamformer. The multi-platform sonar data set contains a high frequency high

resolution side-looking sonar image over the target field and three broadband sonar

images co-registered over the same region on the seafloor. The images in this data

set are complex and are the direct output of the beamformer.

Data preprocessing and coherence-based feature extraction using CCA were also

discussed. Data preprocessing was necessary in order to help reduce clutter and

enhance the signature of the targets in a sonar image and to prepare the sonar imagery

for detection. In order for CCA to be successfully applied to the data contained in the

ROI, the ROI needed to be channelled, vectored, and averaged to optimally extract

the coherent information. Different channeling methods were used for the single

sensor case and the dual disparate sensor case due to the different application of the

coherence-based detector in each case. Specifically, coherence was extracted between
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consecutive columns in an ROI for the single sonar application where the x- and y-

channels were chosen to be consecutive columns in the ROI. For the dual disparate

case, coherence was extracted between a pair of blocks in a pair of co-registered ROI’s

and a block from one ROI formed the x-channel while the corresponding block from

the other ROI formed the y-channel.

The standard Gauss-Gauss detector that was cast in the CCA framework [29] can-

not be directly applied to the problem presented in this thesis, due to the fact that in

the proposed applications the hypotheses involve a composite channel. This changes

the covariance matrices under the two hypotheses and changes the formulation of

the standard Gauss-Gauss detector. In this thesis, we presented a new formulation

for the log-likelihood and J-divergence for the new hypotheses making the detector

suitable for detection of objects from sonar imagery. Specifically we demonstrated a

new way in finding the inverses and relating the composite two-channel hypothesis

problem back to the standard problem. Through this development we showed the

relationship to the standard CCA-based detector in [29] for ease in implementation.

Using this formulation, the detection scheme was then applied to both single

sonar and the dual disparate sonar cases. The single sonar case utilizes one high

resolution high frequency sonar image. Using the extracted canonical coordinates and

corresponding correlations the log-likelihood was computed for every pair of columns

in an ROI and if more than 50% of the columns have log-likelihood values above a

preselected detection threshold a detection is declared for that ROI. This system was

tested on the Sonar8 data set. The detection results on this data set demonstrated

that the system detected 275 out of the 286 targets with an average of 24 false alarms

per image. Moreover, at the knee point of the ROC curve for the easy cases (less

clutter density) we had Pd = 89% and Pfa = 11%. For the medium cases (medium

clutter density), the knee point was Pd = 84% and Pfa = 16% and for hard cases

(very high clutter density), the knee point of the ROC gave Pd = 56% and Pfa = 44%.
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The dual disparate sensor case utilizes the advantages of using side-scan sonar

imagery with disparate frequency and resolution characteristics. The use of multiple

sonar types allows one to use a high resolution sonar image with good target definition

and a low resolution broadband sonar image with good clutter suppression abilities

co-registered over the same region on the seafloor. Using the extracted canonical

coordinates and corresponding correlations the log-likelihood was computed for every

pair of blocks within the ROI’s of the co-registered sonar images and if more than

50% of the blocks have log-likelihood values that fall above the preselected threshold

a detection was declared for that pair of ROI’s. This system was tested on the

multi-platform sonar data set provided by the NSWC-PC. Using a high frequency

and a broadband sonar images the detector detected 51 of the 53 targets and had an

average of 10 false alarms per image. The knee point of the ROC gave Pd = 95%

and Pfa = 5%. The joint information from the broadband sonar and high frequency

sonar led to overall detection results that were very good.

Lastly, the dual disparate detector was used in the distributed detection system

where more then one dual disparate sonar platform is used. The decisions of the indi-

vidual dual disparate detectors are then fused to yield a high confidence final decision.

The fusion rule is based on the work in [48] and is modified to utilize an observation

from the environment in the fusion center. This observation helps to greatly increase

the probability of detection and decrease the false alarm rate. The implemented sys-

tem consisted of one dual disparate detector utilizing two broadband images and a

second dual disparate detector utilizing one of the same broadband images and a high

frequency sonar image. In the first detector, the coherence information in the two

broadband sonar images is exploited to suppress clutter ROI’s and detect potential

targets. The coherence information in the second dual disparate detector solidifies

the decision in the first detector by verifying the joint presence in the high-frequency

and broadband images. The decisions from the two detectors are sent to the fusion
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center where a final decision is made using the preliminary decisions and the fusion

center’s own observation. When the same multi-platform sonar data set was applied

to the distributed detection system that used three sonar images it was shown that

the fusion process significantly improved the probability of correct detection while

reducing the incidence of a false alarm. At the knee point of the ROC, the system

provided a Pd = 99% and Pfa = 1%, and all of the targets were detected successfully

(hard-limiting threshold) with an average of only 7 false alarms per image on the

entire NSWC multi-platform sonar database.

The last study conducted in this thesis was on the effect of sample support on

the Gauss-Gauss detector and its extension to the kernel (non-linear) case. More

specifically, we developed the sampled version of the standard Gauss-Gauss detector

and studied the effects of sample support size on the eigenvalues of the signal-to-noise

ratio matrix. Two different cases were investigated namely, the sample rich case, in

which the number of samples is greater or equal to the dimension of the data channel,

and the sample poor case, in which the number of samples is less than the dimension

of the data channel. From the sampled version, the kernel version of the Gauss-

Gauss detector was derived as well as the centered version of the nonlinear kernel

detector. It was noted that as the sample support decreases the J-divergence measure

becomes defective as a global measure of separability between the two hypotheses.

The simulation results indicated that as the number of samples decreases toward

the dimension of the data vector the J-divergence superficially increases, whereas the

overall Pd declined. It was also found that for lower SNR, J-divergence reached a lower

steady-state value while, the averaged Pd decreased and the averaged Pfa increased.

This implied that as SNR decreases, more samples are required to distinguish between

the two hypotheses.
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7.2 Future Work

Although, the coherence-based detectors proposed in this thesis offer powerful tools

for detection of underwater targets from multiple disparate sonar platforms, there

are several important areas and extensions that can be pursued in the future. These

include, but are not limited to:

• Extension of the two-platform Gauss-Gauss detector cast in the CCA frame-

work to the multi-platform case using the multi-channel coherence analysis

(MCA) [59] and developing the corresponding Gauss-Gauss detector in the

MCA framework. The MCA method exploits the coherence between 2 or more

channels or sonar images lending itself perfectly to detection using multiple dis-

parate platforms. Preliminary studies presented in [60] attest to the fact that

MCA-based detection can provide the same detection performance as that of

the distributed collaborative detector in Chapter 5 with much lesser structural

complexity. Future research is needed to thoroughly study the performance of

the detector on more multi-platform sonar data sets.

• Extension of the coherence-based detection method to account for the multi-

hypothesis testing in the disparate sensor detection problem. For the two-

platform cases two additional hypotheses must be added in the formulations to

detect the targets that don’t appear very well in either the high-frequency or

broadband sonar images. This requires extending the Gauss-Gauss detector to

M-hypothesis testing [61] problem and relating the corresponding J-divergence

detectability measure to the canonical correlations of the two sonar imagery

data.

• The distributed detection implementation could be extended to include collab-

oration between the local decision makers similar to that of the collaborative
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multi-apsect classifier in [33]. The next step would be to develop a new col-

laborative distributed detection methodology that takes into account (a) lim-

ited communication bandwidth for communicating essential target information

among multiple disparate AUV’s and the mother ship; (b) computational lim-

itations of the processing boards on each AUV platform; (c) near real-time

decision-making requirement; and (d) practically feasible, versatile and robust

implementation of the coherence-based detection and feature extraction meth-

ods developed in this thesis.

• The data used in this study was limited to only a few runs and types of under-

water targets. Ideally, the next step in the development of the coherence-based

detector would be to test the performance on more data to prove the usefulness

of the detection systems developed in this thesis. The testing on more difficult

data sets provided by the NSWC as well those including more man-made non-

targets will be done in the future. More specifically, a study on the effect of

different bottom types, target orientations, sonar aspect, resolution, and SNR

on the probability of detection and false alarm rate would be insightful and help

to illustrate the real effectiveness of the detector for realistic underwater target

detection problems.

• The main development of this thesis was on the detection of underwater targets

from sonar imagery and not much work was carried out on the classification.

Another potential extension of this research would be to study the use of canoni-

cal correlation features for classification of targets and non targets. If successful,

this will allow us to carry out simultaneous detection and classification using

only the extracted canonical coordinates and correlations without requiring a

separate feature extraction system.

• The coherence-based detector developed in this thesis is applicable not only to
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sonar image detection, but could be used on other disparate sensory systems,

i.e. magnetic, infrared, and optical. A study of its usefulness on these types

of sensing modalities would highly be valuable. By finding the coherence infor-

mation between more than one type of sensors the detection and classification

performance could be improved.

• Although, the coherence-based detector developed in this thesis lead to a small

number of false alarms comparing to other detectors, we believe the Gaussian-

ity assumption inherent in the standard CCA method does not allow for better

representation of the background clutter in the design of the detector. This is

due to the fact that studies [62] - [64] have indicated that different bottom types

exhibit different distributions depending on the grazing angle, sonar frequency

and range and these distributions are typically non-Gaussian. An extension of

the coherence analysis framework to account for the non-Gaussian distribution

of the background clutter would need to be developed. More specifically, new

methods would need to be developed that exploit higher order statistical prop-

erties of the background clutter. From these methods new formulations for the

log-likelihood and J-divergence for the non-Gaussian case would need to be de-

veloped to extend the developed multi-platform detection algorithm to account

for the non-Gaussian background clutter.

• Another possible extension to the target detection from sonar imagery is mul-

tiple hypothesis testing. There has been a large amount of research devoted to

multiple testing, especially in the areas of bioinformatics, genomics, and brain

imaging [65], [66]. The idea behind a multiple testing approach is that by per-

forming multiple statistical tests where a number of hypotheses is rejected and

another number of hypotheses is accepted. By making a small number of false

discoveries and by controlling a suitable error rate one can maximize the power
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of each test at the same time and thus reduce the overall false alarm rate.
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APPENDIX A

CANONICAL CORRELATION ANALYSIS

REVIEW

In this appendix, we provide a review of the CCA method in which a set of basis

vectors is found for two sets of multidimensional variables such that correlations be-

tween the projections onto these basis vectors are mutually maximized. The material

presented here, as well as much of the language and terminology, are drawn from [27].

CCA was proposed by Hotelling [28] for the analysis of linear dependence between two

data channels. CCA decomposes the linear dependence between the original chan-

nels into the linear dependence between the canonical coordinates of the channels,

where this linear dependence is easily determined by the corresponding canonical

correlations [27].

Consider the composite data vector z consisting of two random vectors x ∈ Rm

and y ∈ Rn, i.e.

z =

 x

y

 ∈ R(m+n). (A-1)

For the remainder of the derivations, it is assumed that m ≥ n, also the notation (·)H

represents the Hermitian operation. Assume that x and y have zero means and share

the composite covariance matrix

Rzz = E[z zH ] = E


 x

y

 (
xH yH

)  =

 Rxx Rxy

Ryx Ryy

 . (A-2)

If x and y are now replaced by their corresponding whitened vectors, then the
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composite vector ξ is

ξ =

 ζ

ν

 =

 R
−1/2
xx 0

0 R
−1/2
yy


 x

y

 , (A-3)

where R
1/2
xx is a square-root of Rxx with R

1/2
xx R

H/2
xx = Rxx and R

−1/2
xx RxxR

−H/2
xx = I.

The covariance matrix of ξ may be written as

Rξξ = E[ξ ξH ] = E


 ζ

ν

 (
ζT νH

)  =

 Rζζ Rζν

Rνζ Rνν

 =

 I C

CH I

 ,
(A-4)

where

C = E[ζνT ] = E[(R−1/2
xx x)(R−1/2

yy y)H ] = R−1/2
xx RxyR

−H/2
yy (A-5)

is called the coherence matrix of x and y [27], [67]. Therefore, the coherence matrix

C is the cross-covariance matrix between the whitened versions of x and y. Cor-

respondingly, the coordinates ζ and ν are called the coherence coordinates. Now it

is possible to determine the singular value decomposition (SVD) of the coherence

matrix, namely

C = R
−1/2
xx RxyR

−H/2
yy = FKGH and

FHCG = FHR
−1/2
xx RxyR

−T/2
yy G = K,

(A-6)

where F ∈ Rm×m and G ∈ Rn×n are orthogonal matrices [51], i.e.

FHF = FFH = I(m) and GHG = GGH = I(n), (A-7)

and

K =

 K(n)

0

 ∈ Rm×n (A-8)

is a diagonal singular value matrix, with K(n) = diag[k1, k2, . . . , kn] and 1 ≥ k1 ≥

k2 ≥ . . . ≥ kn > 0.
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We then use the orthogonal matrices F and G to transform the whitened composite

vector ξ into the canonical composite vector w,

w =

 u

v

 =

 FH 0

0 GH


 ζ

ν

 =

 FH 0

0 GH


 R

−1/2
xx 0

0 R
−1/2
yy


 x

y

 .
(A-9)

Then, the covariance matrix for the canonical composite vector w is obtained as

Rww = E[wwH ] = E


 u

v

 ( uH vH )

 =

 Ruu Ruv

Rvu Rvv

 =

 I K

KH I

 .
(A-10)

The elements of u = [ui]
m
i=1 ∈ Rm are referred to as the canonical coordinates of x

and the elements of v = [vi]
n
i=1 ∈ Rn are the canonical coordinates of y. The diagonal

cross-correlation matrix K,

K = E[uvH ] = E[(FHR−1/2
xx x)(GHR−1/2

yy y)H ] = FHCG (A-11)

is called the canonical correlation matrix of canonical correlations ki, with 1 ≥ k1 ≥

k2 ≥ · · · ≥ kn > 0. Thus, the canonical correlations measure the correlations between

pairs of corresponding canonical coordinates. That is, E[uivj] = kiδij; i ∈ [1, n],

j ∈ [1,m], with δij being the Kronecker delta. The canonical correlations ki are also

the singular values of the coherence matrix C. Correspondingly, KKH is the squared

canonical correlation matrix of the squared canonical correlations k2
i . Since F and G

are orthogonal matrices, we may write the squared coherence matrix CCH as

CCH = R
−1/2
xx RxyR

−1
yy RyxR

−H/2
xx

= FKGHGKHFH = FKKHFH .

(A-12)

This shows that the squared canonical correlations k2
i are the eigenvalues of the

squared coherence matrix CCH , or equivalently, of the matrix R
−H/2
xx CCHR

H/2
xx =

R−1
xxRxyR

−1
yy Ryx. It is interesting to note that these eigenvalues are invariant to the

choice of a square-root for Rxx.
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Figure A-1: Transformation from standard coordinates x and y to canonical coordi-
nates u and v.

Figure A-1 illustrates the transformation from standard coordinates x and y to

coherence coordinates ζ and ν and then to canonical coordinates u and v. It can

be noted that the transformation from standard coordinates x and y to canonical

coordinates u and v can be represented by u = WHx and v = DHy where WH =

FHR
−1/2
xx and DH = GHR

−1/2
yy . In this case, W and D are known as the canonical

mapping matrices.

The canonical correlations ki are invariant to block-diagonal transformations of

Rzz of form

TRzzT
H =

 T1 0

0 T2


 Rxx Rxy

Ryx Ryy


 TH

1 0

0 TH
2

 , (A-13)

where T1 ∈ Rm×m and T2 ∈ Rn×n are nonsingular matrices [49]. This may easily be

proved by showing that the coherence matrix of the transformed data T1x and T2y

is the same as that of x and y.

In fact, the canonical correlations ki form a complete or maximal set of invari-

ants [49] for the composite covariance matrix Rzz = E[zzT ], under the linear trans-

formation group

T =

T =

 T1 0

0 T2

 , det{T} 6= 0

 , (A-14)

with group action Rzz → TRzzT
T [49]. That is, any function of Rzz that is invariant

under the transformation group T is a function of K. This is the reason that the

correlations ki and coordinates u = [ui]
m
i=1 and v = [vi]

n
i=1 are called canonical [27].
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A.1 Linear Dependence and Coherence

The standard measure of linear dependence for the composite data vector z = [xH yH ]H

is the Hadamard ratio, inside the inequality

0 ≤ det{Rzz}∏m+n
i=1 [Rzz]ii

≤ 1, (A-15)

where [Rzz]ii’s, i ∈ [1,m + n] are the diagonal elements of Rzz. This ratio takes the

value 0 iff there is linear dependence among elements of z; it takes the value 1 iff the

elements of z are mutually uncorrelated.

By introducing a block Cholesky factorization [27,51] for Rzz of the form

Rzz =

 Rxx Rxy

Ryx Ryy

 =

 I RxyR
−1
yy

0 I


 Qxx 0

0 Ryy


 I 0

R−1
yy Ryx I

 , (A-16)

where Qxx = Rxx − RxyR
−1
yy Ryx and is known as the error covariance matrix. It is

then possible to write det{Rzz} as

det{Rzz} = det{Qxx} det{Ryy}

= det{Rxx}det{Qxx}
det{Rxx} det{Ryy},

(A-17)

yielding the following decomposition of the Hadamard ratio:

det{Rzz}∏m+n
i=1 [Rzz]ii

=
det{Rxx}∏m
i=1[Rxx]ii

det{I−KKH} det{Ryy}∏n
i=1[Ryy]ii

. (A-18)

The first and third terms on the right hand side of (A-18) measure the linear depen-

dence among the elements of x and y, respectively, while the middle term,

L = det(I−KKH) =
n∏
i=1

(1− k2
i ); 0 ≤ L ≤ 1, (A-19)

measures the linear dependence between the elements of x and y. The measure L

takes the value 0 iff there is perfect linear dependence between elements of x and

y; it takes the value 1 iff the elements of x and y are independent. The ith term

of the product on the right hand side of (A-19), i.e. (1 − k2
i ), measures the linear
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dependence between the ith canonical coordinate of x and the ith canonical coordinate

of y. This implies that the linear dependence between x and y is decomposed into

the linear dependence between their canonical coordinates, and is measured only by

their canonical correlations or principal cosines.

Correspondingly, we may define the coherence measure between the elements of

x and y as

H = 1− L = 1− det(I−KKH) = 1−
n∏
i=1

(1− k2
i ); 0 ≤ H ≤ 1. (A-20)

The elements of x and y are perfectly coherent iff H = 1; and non-coherent iff H = 0.
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