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Abstract—The use of multiple disparate platforms in many
remote sensing and surveillance applications allows one to exploit
the coherent information shared among all sensory systems
thereby potentially reducing the risk of making single-sensory
biased detection and classification decisions. This paper in-
troduces a target detection method based upon multi-channel
coherence analysis (MCA) framework which optimally decom-
poses the multi-channel data to analyze their linear dependence
or coherence. This decomposition then allows one to extract
MCA features that can be used to implement a coherence-based
detector. This detector is applied to a data set of underwater
side-scan sonar imagery provided by the Naval Surface Warfare
Center Panama City Division. This database contains data from
2 disparate sonar systems, namely one high frequency (HF)
sonar and one broadband (BB) sonar coregistered over the same
region on the sea floor. Test results illustrate the effectiveness
of the proposed multi-platform detection system in terms of
probability of detection, false alarm rate, and receiver operating
characteristic (ROC) curves.

Index Terms—Binary hypothesis testing, multiple disparate
sonar systems, multi-channel coherence analysis, underwater
target detection

I. INTRODUCTION

The development of a robust underwater target detection
and classification system that can operate with multiple dis-
parate sensor systems and in different operating conditions
poses many technical challenges. In the traditional centralized
processing, preliminary detection, feature extraction and object
classification are performed based upon the data collected
using every sensor platform. A final decision-making usually
takes place at the central station, either in the post-mission
analysis (PMA) or real-time network-centric sensor analysis
(NSA) modes, using some type of a decision, feature or
combined fusion mechanism. However, decision-making based
upon individual sensory data typically leads to incomplete,
degraded or biased local (sensor-level) decisions hence re-
sulting in an unacceptable final detection and classification
performance at the fusion center.

In the collaborative decision-making using several sensor
platforms, it is essential to detect and further scrutinize the
information-bearing parts of the data collected by various

platforms. This involves detecting, isolating and representing,
in terms of some pertinent attributes, the coherent or common
information among the multiple data sets. This is an extremely
challenging problem due to the disparate nature of the problem
and variations in the operating conditions. Thus, to develop a
system-level solution, new methodologies are needed to: (a)
collaboratively detect and agree on threats occurring within
the field of view of the sensors, (b) perform collaborative
feature extraction to capture common target attributes from
multiple sensor platforms, (c) perform object classification
and identification, (d) and finally develop a single integrated
target assessment picture based upon the detected, localized
and classified targets from multiple disparate sensors.

The existing work [1] - [2] in the area of target detection
from sonar imagery has primarily been focused on one sonar
platform, with fusion across multiple algorithms. In [3], the
adaptive clutter filter detector in [2] is individually applied
to three different sonar images varying in frequency and
bandwidth. Final classification is done using an optimal set
of features using a nonlinear log-likelihood ratio test where
the decisions of the individual detector and classifier are fused.
The optimal set of features is determined based upon cascading
another classifier on the previous classifier during the training
stage. This is done as a repeated application during the training
stage where at each iteration the threshold and optimal feature
set is chosen and updated. Canonical Correlation Analysis
(CCA) [4], [5] was utilized in [6] to form a dual disparate
detector in which detection decisions are based on the amount
of coherent information shared among pairs of coregistered
Regions of Interest (ROIs) from two different sonar images.
This dual disparate detector is then applied to a distributed
detection framework and is shown to exhibit high performance
with a low false alarm rate and high probability of detection.
MCA can be seen as a natural extension of CCA to more than
two channels. In [7], MCA is applied to Landsat imagery to
quantify the amount of coherent information from multiple
spectral bands and across different images in time. In our
previous work [8], [9], we developed a new framework for
multi-sensor coherence analysis using MCA which can be
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applied to the data collected using multiple disparate sonar
systems. In [8], this method was applied to a data set consisting
of four disparate sonar images to study the performance of the
detector to a varying number of channels. In [9], the method
was then applied to a data set consisting of simulated target
and non-target shapes embedded in simulated background to
study the robustness of the detector to signal-to-noise ratio
(SNR), target type, and aspect angle separation.

This paper reviews the N -channel coherence-based detector
using the MCA framework [8]. This detector exploits the
coherence of objects present in N disparate channels based
on the assumption that the presence of objects in all data sets
will lead to a higher level of coherence compared to that of
noise alone. New expressions for the log-likelihood ratio and
J-divergence in the MCA framework are provided and used for
the simultaneous detection of targets from N disparate sonar
data. The proposed detection framework is then implemented
using a data set provided by the Naval Surface Warfare Center
Panama City Division (NSWC PCD) that consists of one HF
and one BB side-looking sonar imagery coregistered over the
same region on the sea floor. This data set is substantially more
challenging (due to dense background clutter) when compared
with that of [8]. This would enable us to determine the real
usefulness of this MCA-based detector.

This paper is organized as follows: Section II will review the
MCA framework. Section III develops the MCA-based Gauss-
Gauss detection method and presents new expressions for the
log-likelihood ratio and J-divergence. Section IV provides the
results of implementing the proposed detector on the NSWC
PCD data set and finally concluding remarks will be made in
Section V.

II. A REVIEW OF MULTI-CHANNEL COHERENCE
ANALYSIS

Consider N zero mean random vectors, x1, x2,..., and xN ,
representing multiple data channels comprising the composite
data channel z = [xH

1 xH
2 ...x

H
N ]H ∈ Cd×1. Without loss of

generality, we will assume that all random vectors to be zero
mean throughout this analysis. Let each channel xj ∈ Cdj×1

be of dimension dj , where it is assumed that x1 is of the
smallest dimension and we denote d =

∑N
j=1 dj . The d × d

dimensional covariance matrix of the composite data channel
z is given by

Rzz = E
[
zzH

]
=


R11 R12 · · · R1N

R21 R22 · · · R2N

...
...

. . .
...

RN1 RN2 · · · RNN

 , (1)

where Rjk = E[xjxH
k ] is the auto-covariance (j = k) or

cross-covariance (j 6= k) matrices of data channels xj and xk

and clearly we have Rjk = RH
kj .

Similar to CCA [10], [11] the ith multi-channel coordinate
of the jth channel is found by searching for the ith coordinate
mapping vector, αi,j , of data channel xj . This linear transfor-
mation produces the ith multi-channel coordinate for the jth

channel,
vij = αH

i,jxj . (2)

If the ith coordinate mapping vectors are found for all N
channels, we can then obtain the composite coordinate
mapping vector ai = [ αH

i,1 αH
i,2 · · · αH

i,N ]H .
This is then used to find the composite coordi-
nate vector vi = [ v∗i,1 v∗i,2 · · · v∗i,N ]H =
[ xH

1 αi,1 x2αi,2 · · · xH
Nαi,N ]H which consists of

the ith multi-channel coordinate of every channel. Note that
∗ denotes the complex conjugate operation. The associated
covariance matrix of vi is given by

Rvivi
= E

[
vivH

i

]
=

 αH
i,1R11αi,1 · · · αH

i,1R1N αi,N

...
. . .

...
αH

i,N RN1αi,1 · · · αH
i,N RNN αi,N

 .
Recall that in the two-channel CCA [5], [12], the correla-

tions between the mapped coordinates are maximized subject
to the constraint that the transformed coordinates have unit
variance. In the multi-channel case, however, the analysis is
not as well-defined as all correlations between all possible
pairs of channels must be maximized simultaneously. To
accomplish this, one approach that has been offered [7] is to
maximize the sum of all correlations (the SUMCOR objective
function) subject to the unit trace constraint of matrix Rvivi

.
Thus, the optimization problem for finding the first composite
coordinate mapping vector a1 using the objective function and
constraint just described becomes

a1 = arg max
a1

N∑
j=1

N∑
k=1

αH
1,jRj,kα1,k = arg max

a1

N∑
j=1

N∑
k=1

[Rv1v1 ]j,k

(3)
subject to the constraint

tr (Rv1v1) =
N∑

j=1

αH
1,jRjjα1,j = 1,

It is shown [7] that the constrained optimization problem for
the first coordinate mapping vectors, α1,j using a Lagrange
multiplier method leads to

N∑
k=1

Rjkα1,k = λ1Rjjα1,j , ∀ j, k ∈ [1, N ]

or in matrix notation as

Rzza1 = λ1Da1, (4)

where D is a block diagonal matrix with diagonal blocks
Rjj ∀ j ∈ [1, N ], i.e.

D = diag [R11, R22, . . . , RNN ] . (5)

The result in (4) represents a generalized eigenvalue problem
for which standard methods of solution are well-known [13].
We will then consider the simultaneous solution to all mapping
vectors ai’s, i ∈ [1, d] and write (4) as RzzA = DAΛ
where A consists of all d coordinate mapping vectors, and
Λ consists of all d eigenvalues. This solution can then be



rewritten in terms of a standard eigenvalue problem EP =
PΛ where E = D− 1

2RzzD
−H

2 and P is a unitary matrix(
PPH = PHP = I

)
. Clearly, we can find the mapping matrix

A via A = D−H
2 P .

Inspection of matrix E, which we refer to as the coherence
matrix1, shows that it is simply the composite covariance
matrix of the whitened version of z = [ xH

1 · · · xH
N ]H .

That is, if we define this whitened version of the composite
data channel vector by w = [ wH

1 · · · wH
N ]H = D− 1

2 z,
then the whitened composite vector w has correlation matrix
E
[
wwH

]
= D− 1

2RzzD
−H

2 = E. Matrix P is then used to
map the whitened channels to their multi-channel coordinates.
In order to find mapping vectors corresponding to the principal
coordinates [7], we only consider the r = d1 = minj {dj}
coordinates such that λ1 > λ2 > . . . > λr. Thus, Λ =
diag [λ1, λ2, . . . , λr] will become a r × r diagonal matrix
composed of the dominant eigenvalues and P will become
a d× r matrix composed of the eigenvectors corresponding to
r dominant eigenvalues.

To find the mapped coordinate vector, v, that contains all
mapped coordinates for all N channels, we will first define Ψj

(dimension dj × r) to contain those dominant r eigenvectors
pi,j , ∀ i ∈ [1, r] of the mapping matrix P that correspond to
the jth channel

Ψj =
[

p1,j p2,j · · · pr,j

]
, ∀ j ∈ [1, N ] . (6)

Clearly, the connection between P and Ψj is evident

P =


Ψ1

Ψ2

...
ΨN


d×r

. (7)

Note that in the case of two channels, Ψ1 and Ψ2 become the
mapping matrices of CCA [4]. All of the mapped coordinates
of the jth channel can then be found by

µj = ΨH
j R

− 1
2

jj xj , ∀ j ∈ [1, N ], (8)

where µj = [ v∗1,j v∗2,j · · · v∗r,j ]H . Clearly, we have the
following two properties

N∑
j=1

E
[
µjµ

H
j

]
=

N∑
j=1

ΨH
j Ψj = I

N∑
j=1

N∑
k=1

E
[
µjµ

H
k

]
=

N∑
j=1

N∑
k=1

ΨH
j R

− 1
2

jj RjkR
−H

2
kk Ψk = Λ

If we define block diagonal matrix Ψ that contains
the Ψj matrices along its diagonal blocks, i.e. Ψ =
diag [Ψ1,Ψ2, . . . ,ΨN ], then we can resolve all N channels
into their multi-channel coordinates using

v = ΨHw = ΨHD− 1
2 z. (9)

Figure 1 displays the process behind the MCA analysis filter.

1Note that in the two-channel CCA, the off-diagonal blocks of this matrix
relate to the coherence matrix [5]

Fig. 1: MCA Processing Block Diagram.

As can be seen, similar to CCA [5] all channels are whitened
in order to remove the auto-correlation contributions from
each individual component thereby allowing one to analyze
the linear dependence shared among one another using matrix
Ψ.

III. MCA DETECTION

A classical detection problem is that of choosing between
two hypotheses that are relevant to the given problem. For
this coherence-based detector, the null hypothesis (H0) is the
hypothesis that all N MCA channels consist of background
noise and the alternative hypothesis (H1) that all N MCA
channels consist of signal plus noise. Figure 2 shows the
graphical setup of the problem under consideration. Several
simplifying but sensible assumptions used in this analysis are

1) Noise between different channels is mutually uncorre-
lated, i.e. E

[
njnH

k

]
= 0 ∀ j, k ∈ [1, N ], j 6= k.

2) Signal is uncorrelated with the background noise, i.e.
E
[
sjnH

k

]
= E

[
njsH

k

]
= 0 ∀ j, k ∈ [1, N ].

3) Noise contained on any one channel has covariance
matrix, i.e. E

[
njnH

j

]
= Rnj ∀ j ∈ [1, N ].

4) Signal contained on any pair of channels has covariance
matrix, i.e. E

[
sjsH

k

]
= Rsjk

∀ j, k ∈ [1, N ].
Under H0, the matrices Rzz and D become

Rzz0 = D0 = diag [Rn1 , Rn2 , . . . , RnN
] .

Note that the subscript notation refers to the hypothesis being
considered.

Under H1 and using the stated assumptions, the correspond-
ing Rzz and D matrices are

Rzz1 =


Rs11 +Rn1 Rs12 · · · Rs1N

Rs21 Rs22 +Rn2 · · · Rs2N

...
...

. . .
...

RsN1 RsN2 · · · RsNN
+RnN


D1 = diag [Rs11 +Rn1 , Rs22 +Rn2 , . . . , RsNN

+RnN
]

leading to the following arbitrary eigenvalue problem.

Rzz1A1 = D1A1Λ1 (10)

The log-likelihood ratio that minimizes the risk involved in
deciding between the two hypotheses is defined [5], [12] to
be

l(z) = ln
[
p(z|H1)
p(z|H0)

]
(11)

Assuming that under both hypotheses the composite data chan-
nel z is multivariate Gaussian with zero mean and covariance



Fig. 2: Multi-Channel Hypothesis Test and MCA.

matrix Rzz, the log-likelihood ratio of the composite data
vector becomes

l(z) = zH
(
R−1

zz0
−R−1

zz1

)
z. (12)

Next, we can formulate R−1
zz in terms of the sum of the

correlations of each coordinate and their corresponding eigen-
vectors. To do this, we recall the fact that PHEP = Λ.
Taking the inverse of this relationship, it is simple to show
that R−1

zz = D−H/2PΛPHD−1/2. Thus, the log-likelihood
function of (12) becomes

l(z) = zH
(
D−1

0 −D−H/2
1 P1Λ−1

1 PH
1 D

−1/2
1

)
z.

We then remove the second-order information associated with
the H1 hypothesis from each individual channel by “whiten-
ing” with the filter D−1/2

1 so that

z → w = D
−1/2
1 z

EH0

[
wwH

]
= D

−1/2
1 D0D

−H/2
1 = Σ−1

EH1

[
wwH

]
= D

−1/2
1 Rzz1D

−H/2
1 = P1Λ1P

H
1

where the matrix Σ is in some sense a local SNR matrix with
the jth diagonal block equal to

Σj =
(
Rsjj +Rnj

)H/2
R−1

nj

(
Rsjj +Rnj

)1/2

The log-likelihood ratio in this new coordinate system then
becomes

l(z) = wH
(
Σ− P1Λ−1

1 PH
1

)
w

Finally, we map our data into the MCA coordinate system
(under H1) through the filter P1 so that

w → v̄ = PH
1 w

EH0

[
v̄v̄H

]
= PH

1 Σ−1P1

EH1

[
v̄v̄H

]
= Λ1

where Λ1 is a matrix with the sum of the correlations of the
MCA coordinates under H1 along its diagonal. We can then
rewrite the log-likelihood ratio as

l(z) = v̄H
(
PH

1 ΣP1 − Λ−1
1

)
v̄ (13)

where v̄ =
[∑N

j=1 v1,j · · ·
∑N

j=1 vd,j

]T
is a vector of the

sum of the MCA coordinates under H1. Again, this is still the
standard Gauss-Gauss log-likelihood ratio presented in [12],

but in the coordinates PH
1 D

−1/2
1 z. However, the detector

built here searches for coherence structure among all pairwise
combinations of channels under H1. MCA is then used to
“discover” the coherence structure among the channels by
solving a generalized eigenvalue problem. The amount of
coherence in each MCA coordinate can then be interpreted
and analyzed through the generalized eigenvalue, λi.

Next, we will formulate the J-divergence [12], [14] which
is a measure of the separability of the two hypotheses. The
J-divergence is defined to be

J = EH1 [l(z)]− EH0 [l(z)] , (14)

where EH1 [ · ] and EH0 [ · ] represent the expectation opera-
tion evaluated under the H1 and H0 hypotheses, respectively.
The expected value of the log-likelihood function becomes

E [l(z)] = E
[
tr
(
zHQz

)]
(15)

where Q =
(
R−1

zz0
−R−1

zz1

)
. Using the cyclic property of the

trace, we can write

E [l(z)] = E
[
tr
(
QzzH

)]
= tr (QRzz) . (16)

Thus, we can write the J-divergence as

J = EH1 [l(z)]− EH0 [l(z)]
= tr (QRzz1)− tr (QRzz0)
= tr

[
−2I +R−1

zz0
Rzz1 +R−1

zz1
Rzz0

]
. (17)

Rearranging and using the cyclic property of the trace, we can
write the J-divergence as

J = tr
(
−2I + Λ1P

H
1 ΣP1 + Λ−1

1 PH
1 Σ−1P1

)
(18)

=
d∑

i=1

(
−2 + pH

i

[
λiΣ + (λiΣ)−1

]
pi

)
. (19)

Therefore, we find that the divergence in the MCA coordinate
system becomes decomposed in terms of the MCA generalized
eigenvalue, λi, and also the two quadratic terms, pH

i Σpi and
pH

i Σ−1pi. The quadratic term pH
i Σpi in some sense gives

us a scalar measurement of the sum of the local signal-to-
noise ratios in the one-dimensional subspace spanned by pi.
Thus, it appears that writing the J-divergence in this manner
decomposes the information needed for detection into the
coherence shared between data channels (λi) and the co-
herent information among the individual channels themselves
(pH

i Σpi).
Because of the structure of target and background data in

sonar imagery, it can be justifiable to assume that the local
signal-to-noise ratios of each channel are very small but the
coherence shared between pairs of channels is significant for
detection and approximate the matrix Σ with the identity
matrix (Σ ≈ I). Such a situation arises when the distribution
of the data associated with any particular channel is similar
under both H0 and H1 and yet there exists a sufficient
amount of cross-correlation between data channels under H1



Fig. 3: Dual Channel Detection System

to perform detection. In such cases, the log-likelihood ratio
can be approximated by the equation

l(z) ≈ v̄H
(
I − Λ−1

)
v̄ (20)

with an associated J-divergence

J ≈
d∑

i=1

(
−2 + λi + λ−1

i

)
(21)

Therefore, in such a situation we disregard the coherent
information among each individual channel and focus our
attention around detecting the presence of coherence among
the data channels.

IV. MULTI-PLATFORM TEST RESULTS

The MCA-based coherence detector is applied to a dual-
sonar data set consisting of one HF high-resolution side-
scan sonar image as well as one BB sonar image. For a
review of HF and BB sonar systems, the reader is referred
to [15] and [16]. As mentioned previously, multiple sonar
detection is favorable over single sonar detection as the
detector has multiple independent looks at the same target
thereby increasing the wealth of information available for
the detection decisions. Because a HF sonar provides higher
spatial resolution and better ability to capture target details
and characteristics while a BB sonar offers much better clutter
suppression ability with lower spatial resolution, performing
detection with combinations of multiple HF and BB images
can also be advantageous.

The image database used in this study contains over 1200
pairs of HF and BB co-registered sonar images containing 99
objects of interest with some images containing more than
one object of interest. Objects of interest are then further
categorized into 49 target objects and 50 lobster trap objects.
When implementing the MCA-based detection system, each
pair of images is partitioned, with 50% overlap in both the
range and cross-range dimensions, into ROIs of size 72× 112
and 24 × 224 for the HF and BB sonar images, respectively.
Each ROI is then partitioned with a rectangular blocking
scheme with no overlap using block sizes of 6×4 and 2×8 for
the HF and BB ROIs, respectively. Each pair of blocks is then
channelized to form the composite observation z. All HF and
BB blocks pertaining that pair of co-registered ROIs then form

an ensemble set from which the sample composite covariance
matrix Rzz is computed. Using this matrix, the correlation and
MCA mapping matrices are extracted and used to form the log-
likelihood function given in (20). Each composite realization
from the ensemble set corresponding to that pair of ROIs is
then applied to the log-likelihood ratio test and compared to a
threshold designated by the user. If 50% or more pass, a call
to the H1 hypothesis is made. Figure 3 displays the process
behind this dual sonar detection system.

From the entire dual-sonar data set, a partial subset of
images containing 50 objects of interest (25 targets, 25 lobster
traps) is extracted. This is done to observe the response of the
detection system to a threshold that is determined and tested
on two independent data sets. Using the 50 objects of interest
and a same size set of background ROIs, an optimal threshold
of 0.5212 was experimentally chosen.

To study the separability of the principal multi-channel
correlations between ROIs that contain objects of interest
immersed in background and those that solely contain back-
ground, a test was conducted on the entire target and lobster
trap set ROIs corresponding to all 99 objects of interest and
a same size randomly selected set of ROIs containing only
background clutter. Figures 4(a) and (b) exhibit plots of the
mean and standard deviation for each of the dominant 16
multi-channel correlations for targets and lobster traps as well
as background clutter for this data set. As can be seen in
Figure 4(a), there is suitable separation among the principal
MCA correlations pertaining to objects of interest versus those
pertaining to background alone. We can also see a noticeable
difference (see Figure 4(b)) among the statistics of the MCA
correlations pertaining to targets and lobster traps as the
separation among target and non-target features seems to be
larger than that among lobster trap and non-target features.
These figures suggest that the MCA correlations may provide
a useful set of features for discriminating among target and
target-like objects when applied to a classifier. However, this
is merely an observation and will not be discussed further in
this paper.

The dual-sonar detection system is then implemented on
the test set containing 49 objects of interest (24 targets, 25
lobster traps) using the predetermined threshold mentioned
above. A histogram of the likelihood values for an example
target ROI as well as an ROI containing background clutter
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Fig. 4: Plot of Multi-Channel Correlations for Target, Lobster
Trap, and Background ROIs.

is shown in Figure 5. The threshold of 0.5212 determined
previously is shown as a dotted line. As we can see from the
figure, there is a suitable amount of distinction among target
and background likelihood values exhibiting high detectability.
This dual-sonar detection system detects all 49 objects with
an average of 7 false alarms per image which is an excellent
detection performance given the challenging nature of this data
set. The ROC curve for the detection system applied to the
subset of images containing 49 objects of interest is displayed
in Figure 6. The detector exhibits Pd = 98% and Pfa = 2%
at the knee-point of the ROC curve (where Pd + Pfa = 1)
which is associated with a threshold of 0.6525. This threshold
corresponding to the knee-point of the ROC curve is nearly
equal to the predetermined threshold of 0.5212 used for the
test suggesting a low sensitivity to novel data. A knee-point
probability of detection of 98% corresponds to one missed
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object which in this case was a lobster trap. Also shown in
Figure 6 is the ROC curve associated with the dual disparate
detector in [6] based on two-channel CCA. This detection
method exhibits Pd = 90% and Pfa = 10% at the knee
point of the ROC curve for the same data set consisting of 49
objects of interest. The stark contrast in performance among
the two methods may possibly be attributed to the simplistic
assumptions made in developing the method presented in [6].
Overall, we can see that the detection system tested performs
very well with a high probability of detection and low false
alarm rate even though a small number of targets and non-
targets were used to form the detection threshold.

V. CONCLUSION

A new multi-channel, multi-sonar binary hypothesis detec-
tion system has been introduced using the MCA framework.
An N -channel Gauss-Gauss detector is then formulated in
the MCA coordinates. Detection is performed by extracting



the multi-channel mapping vectors and the correlation sums
from the data samples collected by the sonar systems. These
mapping vectors and coherent features are then used in the
log-likelihood ratio to detect targets in the dual sonar images.
This MCA-based detector is then applied to a dual-sonar
data set consisting of one HF sonar and one BB sonar with
disparateness in frequency and resolution. The statistics of
MCA correlations are found to exhibit separation among target
and target-like objects suggesting the possibility of using these
features for the purposes of target vs. non-target classification.
A threshold is determined from a partial subset of images
and the MCA-based detection system is then tested on the
remaining images. The detector performed exceptionally well
with a probability of detection at 100% while maintaining 7
false alarms per image. Through this work we have shown
that MCA provides a robust and elegant framework when per-
forming coherence-based detection among multiple disparate
sensory channels.
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