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a b s t r a c t

Self-exciting point processes have been applied to awide variety of
applications to understand event rates and clustering as a function
of time and space. Typically, estimation procedures require a
full temporal history of the data and do not handle cases where
some of the history of the process is missing and unobserved.
However, in many applications data collection is non-persistent
resulting in known intervals of time where events of the process
are unobserved. Motivated by these situations, a Bayesian esti-
mation procedure for self-exciting point processes with missing
histories is developed. The method naturally handles the missing
data mechanism probabilistically through a specific step and is
demonstrated on simulated data and a real conflict monitoring
data where records over a period of time have been lost.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Self-exciting point processes, also known as Hawkes processes, are an important class of point
processes that can model clustered events in both time and space. Specifically, Hawkes processes
allow for a parent event to trigger a set of subsequent direct offspring events. In addition to the
events themselves, marks, or features associated with each event can be incorporated. Such models
are known as marked point processes. Since its proposal by Hawkes and Oakes (1974), variations
of these models have been applied to a wide variety of problems. Notably, they have been used
to quantify the degree of seismic activity in a region (e.g., the Epidemic Type Aftershock Sequence
(ETAS) model fromOgata (1988, 1998)), where themagnitude of an earthquake constituted themark.
It has also found use in modeling of violent crime activity (Mohler et al., 2011), social networks
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(Zipkin et al., 2016, and Rizoiu et al., 2018), and in biology applications (Balderama et al., 2012).
A comprehensive review of self-exciting point processes from Reinhart (2018) provides additional
examples. Due to its wide use, a large amount of research is dedicated to estimating the parameters
of a Hawkes process efficiently and accurately.

This paper addresses an important feature of self-exciting point process applications: missing
data. Data collection method is often non-persistent, resulting in intervals of time where events are
occurring, but unobserved. A motivating example can be seen when considering recorded terrorism
events from the Global Terrorism Database (2017) (GTD), where the database is missing records for
the entire year of 1993. Some of the missing records have since been recovered, but the database
provides a natural situation where the missing data mechanism should clearly be accounted for in
statistical inferences.

This data is revisited and describes in further detail in Section 7. Additional examples where it
is critical to account for missing data include situations where sections of the process history are
unobserved due to sensor errors, lack of records, or deliberate action of no observation. Accounting for
missing intervals in point-processes,where the number ofmissing points is randomand points cannot
be considered independent, is minimally addressed in the literature. Zipkin et al. (2016) presents a
maximum likelihood (ML) method for filling in missing data in records of communications in social
networks. Our approach differs in that we take a Bayesian approach which overcomes the parameter
estimation problems that result in a ML approach.

To account for the missing data mechanism, this paper leverages the Bayesian approach of
Rasmussen (2013) who developed an efficient MCMC estimation procedure for the Hawkes process
which takes advantage of the branching structure of the process that specifies relationships between
parent and direct offspring points. The branching structure is considered as a set of latent variables
sampled within the MCMC algorithm. Parameter updates are then conditioned on the branching
structure, which results in marked efficiency gains over MCMC procedures which do not condition
on the branching structure.

A Bayesian approach to handling the missing data is preferred for two reasons. First, Veen and
Schoenberg (2008) demonstrate that due to the complexity of the likelihood function; a direct
maximum-likelihood (ML) estimation can be fraught with problems and proposed using an expec-
tation — maximization (EM) approach, which they observed to be more numerically stable and more
accurate. In the Bayesian framework, we alsomore accurately represent the estimation uncertainty in
the presence of missing data. Second, and more important, the Bayesian approach naturally handles
the missing history by augmenting the observed data with (latent) missing data occurring in the
unobserved sections of the history to form a ‘‘complete’’ set of data. The MCMC algorithm used to
sample from the complete data posterior is augmented with an additional Gibbs step to sample
missing data conditional on the observeddata andparameters. The data augmentation approach taken
here is the standard Bayesian approach to handle missing data (Tanner and Wong, 1987) and can be
seen as a combination of the EM algorithm with multiple imputation (Little and Rubin, 2014).

A challenge in implementing the data augmentation approach is sampling from the appropriate
full conditional distribution, as the missing data is dependent on the observed data. In this paper, we
present aMetropolis–Hastings approach to sample from themissing data full-conditional distribution
for a Hawkes process utilizing the historical data observed prior to the missing data interval.

The organization of the paper is as follows: Section 2 provides an overview of the marked Hawkes
process. Section 3 outlines the MCMC step in the Bayesian framework for handling missing data in
a marked point process. Section 4 outlines three different model variations considered. Section 5
describes the entire Bayesian estimation procedures using a Metropolis within-Gibbs approach.
Sections 6 and 7 demonstrate the advantage of accounting for missing data on sets of simulated
data and on a real data set from the Global Terrorism Database (2017) respectively. Lastly, Section 8
provides concluding remarks and a discussion on possible extension of the methods.

2. Self-exciting point process models

In the literature there are two equivalent ways to define a Hawkes process: (1) with its conditional
intensity function or (2) as a Poisson cluster process. Let X = {(ti, κi)} be a marked point process,
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where ti ∈ R denotes the time points of the point process and κi ∈ M denotes the marks where M is
a measurable space. Let N be the corresponding counting measure for the process on R, counting the
number of points falling within any arbitrary Borel set.

Assuming the first definition, a temporal point process N(0, t) is characterized by its conditional
intensityλ(t), which is defined as the limit of the expected number of points around t given the history
Ht of all the points up to time t (Daley and Vere-Jones, 2003),

λ∗(t) = lim
∆t↓0

(E[N{(t, t + ∆t)}|Ht ]/(∆t)) (1)

In the Hawkes process, the conditional intensity takes the form

λ∗(t) = µ(t) +

∑
k:tk<t

α(κk)g(t − tk, κk), (2)

where µ(t) is the background intensity with parameters µ = (µ1, . . . , µηµ ) and α(κ)g(t, κ) is
the kernel or the offspring intensity. The function α(κ) is a non-negative function on M with
parameter α = (α1, . . . , αn1 ). g(t, κ) is the normalized offspring intensity with parameters β =

(β1, . . . , βn1 ). The mark distribution density conditional on the current time and the past points
is γ ∗(κ|t) = γ (κ|t, {ti, κi}ti<t ) with parameter γ = (γ1, . . . , γn2 ). Assuming observed points x =

{(t1, κ1), . . . , (tn, κn)} on [0, T ) for some fixed time T > 0, then Proposition 7.3III of Daley and Vere-
Jones (2003) show the likelihood of the collection of all parameters φ given x is

p(x|φ) =

(
n∏

i=1

λ∗(ti)γ ∗(κi|ti)

)
exp

(
−

∫ t

0
λ∗(s)

∫
M

γ ∗(κ|s)dκds
)

(3)

=

(
n∏

i=1

λ∗(ti)

)(
n∏

i=1

γ ∗(κi|ti)

)
exp

(
−

∫ t

0
λ∗(s)ds

)
(4)

where, the equality holds since
∫
M γ ∗dκ = 1. The ∗ notation as used in Rasmussen (2013) is to denote

the dependence on the temporal history, i.e. {ti, κi}ti<t .
Different specifications for µ, α, and g give rise to different models, the most popular of which are

the Epidemic Type Aftershock Sequences (ETAS)models found in seismology Ogata (1998); Ogata and
Zhuang (2006) which have historically been estimated using MLEs. Non-parametric estimation of µ,
α, and g has also been proposed, e.g. Marsan and Lengliné (2008), Mohler et al. (2011) and Chen and
Hall (2016), and is discussed later on in the paper.

Alternatively defining the Hawkes process as a Poisson cluster process implies the process is
generated by a latent branching structure where we have two types of points: parents and offspring.
The definition of this process is as follows:

1. The set of immigrants (I), or first generation of parents, S0 follow amarked Poisson processwith
intensity µ(t).

2. Each immigrant ti ∈ S0 has an associated mark κi with mark density function γI (κi|ti).
3. Each marked point {ti, κi} of immigrants generates a cluster Si, where the clusters are assumed

to be independent.
4. The cluster Si consists of marked points {tj, κj} of offspring generated as a marked Poisson

process with intensity α(κi)g(t − ti, κi) and mark density γO(κ|tj, {ti, κi}). α(κj) is the mean
number of points with mark κj.

5. Each point {tj, κj} ∈ Si becomes a potential parent to the next generation of offspring generating
a cluster Sj analogously to Step 4. The process continues iteratively for each subsequent point.

6. The process, X is the union of all the clusters.

The set of parent–offspring relationships is known as the branching structure. Assuming we have
a collection of arrival times tj ∈ X , we represent the branching structure as Y = {yj}, where yj = 0
means tj is an immigrant point and yj = i means tj is an offspring of ti. Conditional on Y , the arrival
times can be partitioned into n + 1 sets S0, . . . , Sn, where

Si = {tj; Yj = i}, i = 1, 2, . . . , n − 1
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so that S0 is the set of all immigrants points, and Si is the set of all offspring of the point at time ti.
The sets Si are conditionally independent of each other and their union is the entire time history. The
likelihood of (φ, Y ) conditional on x (i.e., the distribution of x given the model parameters φ and the
branching structure Y ) can be written as in Rasmussen (2013):

p(x|φ, Y ) = p(S0|φ, Y )
n∏

i=1

p(Si|φ, Y )

Using the respective intensities and mark distributions for parents and offspring, we have,

p(x|φ, Y ) = exp(−M(T ))
∏
tj∈S0

µ(tj)γI (κj|tj)

×

n∏
i=1

⎛⎝exp(−α(κi)G(T − ti))
∏
tj∈Si

α(κj)g(ti − tj)γO(κj|tj, {ti, κi})

⎞⎠ , (5)

Specifying the process as a Poisson cluster process is shown to be more computationally efficient
than using the conditional intensity function (Rasmussen, 2013). Thus, all examples here will utilize
this latent branching structure. Details for the specific variations of point-process models considered
in this paper are given in Section 4.

Parameter estimation of models for cluster processes such as the one presented above can be
challengingwhen themark distribution is not independent of time, i.e. when themark of the offspring
depends on the mark of the parent. To ensure reasonable estimation of the model in this case, the
model must be stable. Zhuang et al. (2013) shows that for models with i.i.d. marks, the stability is
ensured when the criticality parameter (cp) is less than 1, i.e.,

cp =

∫
K

α(κ)γO(κ|t)dκ < 1,

where K represents the space of all possible offspring marks. When the offspring marks depend on
the parent mark, the stable condition might be quite complicated. Zhuang et al. (2013) provides
some examples for various models. The criticality parameter characterizes the asymptotic population
behavior after sufficiently many generations of the branching process.

3. Accounting for missing temporal histories

This section sets up the estimation procedure used to account for missing time histories. As-
sume a point process model given parameters φ with likelihood p(x|φ) generates the points x =

{(t1, κ1), . . . , (tn, κn)} with ti ∈ [0, T ) for some fixed time T > 0. Suppose we only observe ti /∈
M = ∪

K
k=1Mk, where the Mk are a set of disjoint intervals within [0, T ). Write x = (xobs, xmiss), where

xobs consists of observed points (tobs,i, κobs,i) and xmiss consists of unobserved points (tmiss,j, κmiss,j) with
tmiss,j ∈ M . In this situation, it is desired to evaluate the posterior of φ given xobs:

p(φ|xobs) ∝ p(φ)p(xobs|φ) (6)

Note, the likelihood p(xobs|φ) implicitly includes conditioning on the knowledge that no data are
observed on M to avoid more cumbersome notation. In general, sampling from this posterior can be
done by sampling from the joint posterior distribution of (φ, xmiss), p(φ, xmiss|xobs), and marginalizing
over xmiss. To do this, Gibbs sampling (Geman and Geman, 1984; Gelfand and f. M. Smith, 1990)
together with data augmentation (Tanner and Wong, 1987) can be used to iteratively sample from
the two full conditional distributions:

1. p(φ|x)
2. p(xmiss|φ, xobs)

The first full conditional is the complete data posterior. Often algorithms are readily available
to sample from this distribution. Utilizing the latent branching structure and the corresponding
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likelihood (5), we use aMetropolis-within-GibbsMCMC algorithm as described by Rasmussen (2013).
A more detailed description of the MCMC algorithm for the complete data model is described in
Section 5.1.

The second full conditional is the distribution of the missing data given the parameters and
observed data. The approach taken for this step is context specific but in general, a Metropolis–
Hastings approach can be used. For each known missing time interval, one proposes a set of missing
data from a user-specified proposal distribution and either accepts or rejects this proposal prob-
abilistically to satisfy the detailed-balance condition (Robert and Casella, 2004). This algorithm is
then repeated iteratively for each missing interval. The method we develop to do this is detailed in
Section 5.2. The data-augmentation approach is prevalent in missing data problems (Little and Rubin,
2014; Tanner and Wong, 1987; Kong et al., 1994; Gelfand et al., 1990), implementation of the EM-
algorithm (Dempster et al., 1977), and fitting mixture models (Diebolt and Robert, 1994; McLachlan
and Peel, 2004).

4. Models

To demonstrate the importance of accounting for missing time intervals, we consider variations
of the following general model form which is similar to specific models presented by Rasmussen
(2013) and commonly found throughout the literature. We assume a homogeneous parent intensity
µ(t) = µ, constant total offspring intensity α(κ) = α, an exponential decay offspring intensity (free
of κ) g(t) = β exp(−β(t)), and a mark density for the immigrants γI (κ|t) and offspring γO(κ|t). The
intensity at a given time point t:

λ(t) = µ + α
∑
k:tk<t

g(t − tk) (7)

and the likelihood in (5) becomes,

p(x|φ, Y ) = exp(−µT )µ|S0|
∏
tj∈S0

γI (κj|tj)
n∏

i=1

⎡⎣exp(−αG(T − ti))α|Si|
∏
tj∈Si

g(ti − tj)

γO(κj|tj|{ti, κi})

⎤⎦ , (8)

where |Si| denotes the size of cluster i. This is similar to the likelihood developed by Ross (2016), who
points out that conditioning on the branching structure makes µ independent of the other model
parameters and drastically weakens the dependence between the other parameters. The priors for µ,
α, and β are independent gammas:

µ ∼ Gamma(αµ, rate = βµ), α ∼ Gamma(αα, rate = βα), β ∼ Gamma(αβ , rate = ββ ) (9)

where the hyperparameters (αµ, βµ, αα, βα, αβ , ββ ) are fixed and chosen for the given application.
Two variations of the Hawkes process model appear in this paper. Model 1 is the temporal process
with no marks, i.e. γI (·) ∝ 1, γO(·) ∝ 1.

Model 2 assumes spatial marks κ = (κx, κy) where (κx, κy) denotes the geolocation of the event,
(i.e., a spatio-temporal process).

The immigrant mark density is uniform across the spatial domain γI (·) ∝ 1. The offspring mark
density is assumed Gaussian centered on the location of the parents.

γO(κ) =
1

2πσ 2 exp
{

−∥κ − κpa∥
2
2

2σ 2

}
, (10)

i.e., marks of offspring have spatial Gaussian decay. An inverse gamma prior is assumed for σ 2,
i.e. σ 2

∼ IG(ασ , βσ ). This model is similar, though simpler in form to the ETAS model of Ogata (1981)
where the mark density is of a more complicated form. A third variation of the model modifies the
immigrant mark density in model 2 and is described in the application Section 7. Finally, since the



J. Derek Tucker, L. Shand and J.R. Lewis / Spatial Statistics 29 (2019) 160–176 165

branching structure is a latent parameter, a prior for it must be specified. Throughout, a discrete
uniform prior is assumed on the feasible domain of each Yi.

The relative simplicity of these models is chosen to concentrate on demonstrating the missing
data framework for this class of point-processes, the main contribution of this work. Most parametric
alternatives of µ(t), g(t), γI (κ|t), and γO(κ|t, {tpa, κpa}), are straightforward to implement in our
framework. Non-parametric forms, specifically for µ(t), could also be considered although not
explored in this paper. We present a further discussion on this topic in Section 8.

5. MCMC algorithm

Herewe describe theMCMCalgorithms used to account formissing data in themodels described in
Section 4. Details are given for sampling from the complete data posterior p(φ|x) and full conditional
of missing data, p(xmiss|φ, xobs).

5.1. MCMC for complete data models

The method of Rasmussen (2013) is adapted to sample from the complete data posterior, p(φ|x).
For the models described above, the parameters µ, α, β , and the branching structure Y are sequen-
tially sampled from their full-conditional distributions under the likelihood (8) and priors assumed.
Variations to the data model and priors will result in variations to the derivations described here. The
priors for µ and α and σ 2 are conditionally conjugate and sampled directly from:

µ|x, φ, Y ∼ Gamma(αµ + |S0|, rate = βµ + T ),

α|x, φ, Y ∼ Gamma(αα +

n∑
i

|Si|, rate = βα +

n∑
i=1

G(T − ti)),

and

σ 2
|x, φ, Y ∼ Inverse-Gamma

(
ασ +

n∑
i

|Si|, βσ +

n∑
i=1

∑
j∈Si

∥κi − κj∥
2
2

)
.

The parameterβ (inmodel 2) is sampled (approximately) from its full-conditional using a random-
walk Metropolis algorithm. Specifically, the full conditional for β is of the form

p(β|x, φ, Y ) ∝ π (β)
n∏

i=1

exp(−αG(T − ti|β))
∏
tj∈Si

g(ti − tj|β),

resulting in the random-walk Metropolis ratio

Hβ =

π (β̃)
∏n

i=1 exp(−αG(T − ti|β̃))
∏

tj∈Si
g(ti − tj|β̃)

π (β)
∏n

i=1 exp(−αG(T − ti|β))α|Si|
,

whereπ (β) is the prior distribution, β denotes the current value, and β̃ is the proposed value sampled
from a N (β, s2β ). s

2
β is a user-specified parameter tuned to have an acceptance ratio between 0.2 and

0.4. Additional parameters described in the third variation of the model presented in Section 7 are
sampled in a similar fashion.

Finally, the branching structure Y can be sampled directly, and element-wise, from the full-
conditional p(Y |x, φ) using themethod presented in Ross (2016), which was first proposed by Zhuang
et al. (2002) under the context of stochastic declustering. Note that since offspring points can only
be triggered by parent points that have occurred previously in the time history, the jth element of Y
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can only take integer values in the range [0, j − 1]. With a discrete uniform prior, the full conditional
probability of the jth element of Y is:

p(Yi = j|x, φ) =

⎧⎪⎪⎨⎪⎪⎩
µ

λ(ti)
if j = 0

αg(tj − ti)
λ(ti)

if j ∈ 1, 2, . . . , i − 1.

By conditioning on Y , we reduce the amount of points to be processed for each parameter. For µ,
we only use the identified background points and for α and β , we only use the identified children
points. This greatly reduces the computational cost as n gets large.

5.2. Missing data model

As described in Section 3, to sample the posterior p(φ|xobs), we can augment the complete data
MCMC algorithm with a step to sample the missing points. To explain, assume first that there is
only one missing interval (K = 1), say M1 = [T1, T2] with 0 ≤ T1 < T2 ≤ T . Sampling directly
from p(xmiss|φ, xobs) is difficult because xobs includes future data occurring after time T2 is part of the
conditioning. One can imagine if there is a cluster of points just after T2 there is likely a cluster of
(unobserved) points just before T2; it is hard to derive the likelihood of such a cluster. Hence we
turn to Metropolis–Hasting. For the proposal distribution, we recognize that it is easy to simulate
the future of a point process starting at time T1 conditioning only on the past. This suggests a proposal
distribution that conditions only observed data up to time T1 and ignores observed data after T2. By
conditioning on the past, we will at least capture part of the structure expected in the missing data
and will be more likely to propose plausible values of xmiss as compared to simulating independently
all of the observed data.

For further detail, let xmiss and x̃miss be the current and proposed set of missing data respectively,
and set x = (xmiss, xobs) and x̃ = (x̃miss, xobs). Let xTj and x̃Tj be the subsets of x and x̃ including only
points up to time Tj, j = 1, 2, respectively. The full-conditional (i.e., the target distribution of the
Metropolis–Hastings algorithm) is p(xmiss|φ, xobs) =

p(x|φ)
p(xobs|φ)

. The numerator is the likelihood (4) and
the denominator will cancel in the Metropolis–Hastings ratio given below.

The proposal conditions on all the observed data up to time T1 as well as the current values of
φ. Data on the missing interval M1 is proposed from p(xmiss|φ, xT1 ) =

p(xmiss,xT1 |φ)
p(xT1 |φ) . Recognizing that

(xmiss, xT1 ) = xT2 we see the numerator is p(xT2 |φ), the likelihood (4) up to time T2. As with the target
distribution, the denominator will cancel in the Metropolis–Hastings ratio given below.

To simulate from the proposal, we can adjust strategies to simulate from a Hawkes process to
account for conditioning on the history. Algorithm 1 (adapted from Algorithm C in Zhuang et al.
(2004)) describes one such method utilized in this paper. Step 1 is a general first step to generate
immigrant points of a Hawkes process on the interval [tstart , tend]. For the proposal, tstart = T1 and
tend = T2 and conditioning on the history before T1 is handled in Step 2 by adding the history to the
points generated in Step 1. If there is no history, Step 2 is ignored and Algorithm 1 generates a Hawkes
process on [tstart , tend]. To generate the marks, the mark distributions γI and γO are used depending
on if the point generated is an immigrant or offspring. Other options for simulating Hawkes process
data include, the thinning method developed by Ogata (1981), the perfect simulation algorithm of
Møller and Rasmussen (2005), or a faster approximation of perfect simulation developed by Møller
and Rasmussen (2006).

Cancellation of the proportionality constants in the full-conditional and the proposal allows for
evaluation of the Metropolis–Hasting ratio:

Ht =
p(x̃miss|φ, xobs)
p(xmiss|φ, xobs)

p(xmiss|φ, xT1 )
p(x̃miss|φ, xT1 )

=
p(x̃|φ)
p(x|φ)

p(xT2 |φ)
p(x̃T2 |φ)

. (11)

xmiss is set to x̃miss with probability min(Ht , 1). Otherwise, xmiss is unchanged.

In the case of multiple missing time intervals, K > 1, the method is applied iteratively to each
interval in separate Gibbs steps. For example, consider the case of K = 2, M1 = [T1, T2] and
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Algorithm 1 Simulate Marked Hawkes Process
1: Generate a set of immigrant points as a Poisson process in time interval [tstart , tend] over spatial

region W with background intensity µ(t) and mark density γI (κ|t) and record as Generation 0,
G(0). The process can be either homogeneous or in-homogeneous.

2: If conditional history exists prior to tstart , add to G(0)

3: Set l = 0
4: while G(l) is not empty do
5: For each event i, (ti, κi), in the catalog G(l), simulate its N (l)

i offspring, O(l)
= {(t (i)k , κ

(i)
k ) : i =

1, 2, . . . ,N (l)
i }, where N (l)

i is a Poisson random variable with mean α. The quantities t (i)k and κ
(i)
k are

generated from probability densities β(t − ti) and γO(κi|κpa), respectively.
6: Set G(l+1)

= ∪i∈G(l)O
(l)
i

7: Set l = l + 1
8: Remove all events whose ti /∈ [tstart , tend] from G(l+1)

9: end while
10: Combine all events X = ∪

l
j=0G

(l+1)

11: Remove any events not inW , and return X

M2 = [T3, T4] where 0 < T1 < T2 < T3 < T4 < T . Missing data xmiss1 ∈ M1 is sampled from
p(xmiss1 |φ, xobs, xmiss2 ) the same way as above with xobs augmented with xmiss2 ∈ M2. xmiss2 is similarly
sampled. This procedure is trivially extended to K > 2.

When simulating a Hawkes process this way, there are practical issues with spatial boundary
conditions, also referred to as edge-effects. If no parent events are allowed to occur outside the spatial
region W , then the offspring that would have been generated by these parents will be unobserved.
We overcome this problem by simulating on a region W ′ that is larger than W and sufficiently large
enough to capture the offspring. We then remove the events generated outside W at the end of the
simulation (step 11 of Algorithm 1). Specifically for our model, we increased the regionW on all sides
by the length that would include 95% of the children produced by parents on the boundary. For a
further discussion on how to handle edge-effects see Diggle (2014).

6. Simulated data

We first demonstrate the method on simulated data from both the temporal and spatio-temporal
models, models 1 and 2 respectively, described in the previous section. For each setting, we compare
parameter estimates for three different data set/model pairs over many simulation:

1. Using the complete data and fitting the complete data model, referred to as the complete/
complete pair

2. Removing a significant time interval from the complete data and fitting the complete data
model. The data set with the time interval removed is referred to as the ‘incomplete data set‘.
Likewise, this pair is referred to as the incomplete/complete pair.

3. Fitting the incomplete data with the missing data model, referred to as the incomplete/missing
pair.

The first data/model pair is a baseline — fitting the correct model to the complete data set. The
second simply ignores that there is missing data and treats the available data as complete when
fitting the complete-data model. The third correctly accounts for the missing data. The purpose of
these simulated data sets is to test model performance, giving a baseline of performance that we
can use when we are analyzing real data. Results for the temporal model (model 1) and the spatio-
temporal model (model 2) are presented separately. To simulate the data in the following sections we
use Algorithm 1.



168 J. Derek Tucker, L. Shand and J.R. Lewis / Spatial Statistics 29 (2019) 160–176

Fig. 1. Left: Observed time points for complete data (orange) and incomplete data (blue) for a single simulation. Right:
90% credible intervals of the number of events occurring in the missing interval for 20 random temporal simulations . (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Distribution of posterior means for 500 simulations of temporal data (model 1) for three data/model pairs: com-
plete/complete (black), incomplete/complete (orange), incomplete/missing (blue).

6.1. Temporal simulation

We simulate 500 data sets from model 1 using parameters µ = .5, α = 0.9 and β = 10 on the
time interval [0, 100]. For the incomplete data, the interval [20, 60] is removed. The left panel of Fig. 1
displays example times and cumulative counts of the number of events for both the complete data
set (green) and incomplete data set (red).

Each of the data/model pairs is fit to each simulated data set using the algorithm described in
Section 5. The priors are µ ∼ Gamma(αµ = 1, βµ = 0.01), α ∼ Gamma(αα = 1, βα = 0.1) and
β ∼ Gamma(αβ = 0.1, ββ = 0.1) with proposal variance s2β = 1. Fig. 2 shows the distribution of
posterior means for the parameters αβ and µ for each of the 500 simulations and data/model pairs.
The vertical gray line is the true parameter value. The estimate of αβ is given because Zhang (2011)
shows this to be a more statistically consistent estimator than α and β separately. As expected, using
the complete/complete pair results in good estimates on average for both µ and αβ . The missing data
has the most effect on the estimation ofµ. When using the missing data model (incomplete/missing),
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Fig. 3. Left: Observed time points for complete data (orange) and incomplete data (blue) for a single simulation from model
2. Right: Spatial locations with color indicating the point is missing (black) or observed (orange) . (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

the estimates of µ are good on average and more variable than when the complete data set is
available (complete/complete); reflecting the additional uncertainty induced by themissing data. This
parameter is drastically under-estimated when the missing data is ignored (incomplete/complete).
Unlike µ, all models seem to estimate αβ with similar uncertainty. Investigating α and β separately
shows that the estimates of α are slightly more variable when under the missing data model, but the
estimates of β are slightly less variable. This makes sense as incorporating themissing data within the
MCMC as described in Section 5 has the most impact on the parent and offspring intensities, driven
by µ and α respectively, and may or may not affect the estimation of β .

We can also evaluate the missing data model in terms of its ability to predict data within the
missing interval. The right panel of Fig. 1 displays the number of missing events along with the
medians and 90% credible intervals of the posterior distribution of number of missing events for 20
random simulations. The posteriors tend to be positively skewed and the empirical coverage over all
500 simulations is 88%. Overall, the missing data model performs well for parameter estimation and
prediction.

6.2. Spatio-temporal simulation

For the spatio-temporal model (model 2), we generate 500 data sets on the time interval [0, 1000]
with spatial domain W = [−2, 2]x[−2, 2] and fixed parameter values: µ = .5, α = 0.4, β = 1 and
σ 2

= 0.001. The incomplete data is comprised by removing the interval [300, 600]. The left panel
of Fig. 3 shows the times for a single simulated data set along with the cumulative number of events
for both the complete and incomplete data. The right panel shows corresponding spatial locations
colored to indicate if the point was missing (within the time interval [300, 600]) or observed (outside
the time interval [300, 600]).

As with the temporal case, the three data/model pairs are fitted assuming the priors µ ∼

Gamma(αµ = 1, βµ = 0.01), α ∼ Gamma(αα = 1, βα = 0.01), β ∼ Gamma(αβ = 0.01, ββ =

0.1) and mark prior σ 2
∼ IG(ασ = 1, βσ = 0.1) with proposal variances s2β = 0.5 and s2σ = 0.0003.

Fig. 4 shows the distribution of posteriormeans forµ, αβ , and σ 2 over the 500 simulations for each
data/model pair. The true parameter value is indicated by the gray vertical line. Again we see that
using the complete data set with the correct model (complete/complete) results in good estimates
on average. The effect of accounting for the missing data is most drastic on the mean parameter
µ. Without accounting for the missing data (incomplete/complete) the parameter is underestimated
because the complete model incorrectly assumes no events occur in the missing interval. Further, the
variance in the posterior means for each parameter is larger when accounting for the missing data,
reflecting the additional uncertainty induced by the missing data.
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Fig. 4. Distributions of posterior parametermeans of 500 random spatio-temporal simulations on the complete simulated data
(black), the incomplete simulated data set (orange), and the incomplete simulated data set when accounting for missing data
(blue).

Fig. 5. 90% credible intervals of the number of events occurring in the missing interval for 25 random space–time simulations.

As with the temporal case, we can again evaluate the model based on its ability to predict the
number of events in the missing time interval, which now have spatially-dependent marks. Fig. 5
displays the true number of missing events along with the medians and 90% credible intervals of the
posterior distribution of number of missing events for 25 random simulations.

The empirical coverage over all 500 simulations is 84%, slightly smaller and more symmetric than
the temporal simulation empirical coverage. In contrast to the temporal case, there is actually a slight
tendency for the missing data model to underestimate the number of missing events when the data
has spatialmarks. This is likely due to the removal of points outside the spatialwindowwhenhandling
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Fig. 6. Jittered arrival times (left) and spatial locations by year of observed event in Colombia between 1987 and 1997. The
time is in days from the start of the record (January 1, 1987). The locations are given in terms of UTM coordinates (meters).

boundary effects in addition to removing those outside themissing time interval when proposing x̃miss
as described in Section 5.2.

7. Global terrorism database

We apply the described missing data method on data taken from the Global Terrorism Database
(GTD), an open-source database containing information on terrorism events around the world from
1970–2015. The database is systemic and has more than 150,000 cases with multiple types of event
information. Additionally, the database is missing records for the entire year of 1993 due to the loss of
hard-copy index cards on which the events were recorded before the data was fully digitized. For our
study we consider the events in Colombia between 1987–1997. Colombia has an interesting history
in terms of terrorism events during this time in which it dealt with multiple problems with guerrillas,
paramilitaries, and narcotics trafficking. Fig. 6 gives the cumulative count of number of observed
events as a function of time in days for the Colombia data along with the recorded spatial locations of
the events. The flat line over 1993 reflects the period of known missing records. The time scale is the
number of days since January 1, 1987 and the spatial resolution is also coarse due to imprecise location
information, a common issue with tracking data. This results in multiple events recorded on the same
day and location. To adjust for this, we minimally jitter the events in time and space prior to model
fitting. This is done by specifying a uniform U(0, 0.5) for the temporal displacement (in days) and a
U(−10, 10) for the spatial displacement (in km) of both κx and κy. The spatial jittering is expected to
minimally impact the estimation of σ 2 in γO(κ).

The data plotted in Fig. 6 indicate the spatial marks to be non-uniformly distributed across
Colombia. Thus, specifying a uniform distribution for the spatial marks of the parents as was done
for the simulated data in Section 6.2 does not make sense for Colombia. A modification to the
spatio-temporal model (model 2) is made by specifying a bi-variate normal distribution for the event
locations of the immigrants:

γI (κ|t) =
1

2πσxσy
exp

[
−

(x − µx)2

2σ 2
x

−
(y − µy)2

2σ 2
y

]
.

Note that since a bivariate normal distribution is specified for γI and M is restricted to the region
of Colombia,

∫
M γI < 1 and the exact likelihood in this case takes the form of (3). Although when∫

M γI < 1 is difficult to compute, as is the case here, (4) is an appropriate approximation (Schoenberg,
2013; Reinhart, 2018). The prior distributions for the additional parameters are specified to be

µx ∼ N(mx, s2x ), µy ∼ N(mx, s2x ), σ 2
x ∼ IG(ασx , βσx ), σ 2

y ∼ IG(ασy , βσy ).

Sampling steps for these parameters are easily added to the MCMC algorithm of Section 5.
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Fig. 7. Posterior predictive distribution of the number of events in 1997 under the complete data model and missing data
model.

On this real dataset, we examine the effects of explicitly modeling the missing data. We fit each
model to the data from 1987 to 1996, using the events in 1997 as a holdout set. The complete data
model simply ignores the fact that records aremissing in 1993. In principle, this is thewrong approach.
The goal here is to understand how accounting for the known missing data interval over 1993 can
affect the prediction of future events.

To examine the effects, we evaluate the posterior predictive distribution of 1997:

p(x̃|xobs) =

∫
p(x̃|φ, xobs)p(φ|xobs)dφ (12)

where x̃ is predicted data (times and spatial locations) in 1997, xobs is the observed data from 1987 to
1996, φ are the model parameters, p(φ|xobs) is the posterior under the model, and p(x̃|φ, xobs) is the
distribution of 1997 data given the model, φ, and xobs. The predictive distribution (12) is evaluated
by iteratively sampling the posterior and p(x̃|φ, xobs). The events from the predicted year 1997 are
sampled in the same fashion as the proposal for missing data in Section 5.2. Under the missing
data model, the predictive distribution is also integrated over the missing data (i.e., p(x̃|xobs) =∫
p(x̃|φ, xobs, xmiss)p(φ, xmiss|xobs)dφdxmiss).
First, the posterior predictive distribution of the total number of events in 1997 is considered by

simply counting the number of events for each posterior predictive sample. The distributions under
the complete and missing data models appear in Fig. 7 along with the total number of events for each
year plotted on the x-axis. The predictive distribution of the missing data model is shifted right, with
an average of about 40 events higher than under the complete data model. More events are predicted
because themissing datamodel does not incorrectly assumeno events occur in 1993. Additionally, the
variance in the predictive distribution is larger, reflecting the uncertainty induced by themissing data.
By incorrectly assuming no events occur in 1993, the variance of the posterior predictive distribution
is (unjustifiably) smaller.

Bothmodels under predict the true number of events in 1997 of 538. This is due to the fact that the
number of recorded events in 1997 is large compared to the other years making it difficult to predict.
For example, the previous three years have 364, 113, and 174 total events which are all much lower
than the total in 1997. For a more holistic comparison betweenmodels that does not just concentrate
on one summary statistic (i.e., the number of predicted events) we seek a proper scoring rule (Daley
and Vere-Jones, 2003). For this we consider the log-likelihood of the observed 1997 data. This takes
the form: log p(x̃|φ, xobs) for the complete data model and log p(x̃|φ, xobs, xmiss) for the missing data
model where x̃ is the fixed 1997 data. These are just the first factor in the integrand of the posterior
predictive distribution (11). Density estimates of the posterior distributions of these log-likelihoods
under each model appear in Fig. 8. Overall, the log-likelihood of the missing data model is slightly
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Fig. 8. Posterior distribution of log-likelihoods of the holdout data under each model. For the complete data model the
posterior of log p(x̃|φ, xobs) is shown where x̃ is the fixed 1997 holdout data. For the missing data model the posterior of
log p(x̃|φ, xobs, xmiss) is shown. The expected values for the missing data and complete data models are −774 and −782,
respectively.

larger (better) than that of the complete data model with respect to predicting the holdout data. The
expected log likelihood values are −774, and −782 for the missing data and complete data models,
respectively.

Next, the spatial distribution of predicted events for 1997 is evaluated using nonparametric
estimates of the spatial intensity. For each sample from the predictive distribution (12), the spatial in-
tensity was estimated using the fixed-bandwidth kernel estimates of Diggle (1985) and implemented
in theR functionspatstat::density.ppp (Baddeley et al., 2015). Themean (top row) and standard
deviation (bottom) of these estimates appear in Fig. 9 for both models. The black points represent
the observed event locations in 1997. The intensity is scaled by the area of Columbia (AW ). Roughly
speaking, the scaled intensity is the expected number of events in 1997 at a location times AW . As seen
in the plots, accounting for the missing data results in a larger mean estimate of the intensity across
the spatial domain, particularly in regions where events are more dense. The standard deviation is
also larger, again reflecting the additional uncertainty induced by the missing data.

While accounting for the missing data results in a spatial intensity estimate that better reflects
the data for 1997, there are arguably improvements that could be made. For example, several events
are observed in the southwest region of Colombia that do not appear to be properly captured by
the predictions. One potential improvement to the model would be to include spatial information
in the assumed intensity (7) by, for example, scaling it by population information. The idea being that
recorded events are more likely in more populated areas. Additionally, a nonparametric form for γI
could be specified to make the intensity more flexible and spatial mark distribution more reasonably
fit the data. Such refinements of the model can theoretically be incorporated into the missing data
model framework developed here, if deemed necessary for the application.

8. Conclusions and future work

It is clearly important to account for missing data mechanisms in statistical models. This paper
concentrates accounting for missingness on Hawkes process models where the missing data is in
the form of known intervals of time where data is not being observed. A natural Bayesian approach
to the problem is taken by treating the missing events as latent parameters augmented the MCMC
algorithm for the complete data model with a step to impute themissing data. While the general data
augmentation approach is standard, the method for data-imputation required the development of an
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Fig. 9. Mean (top row) and standard deviation (bottom row) of intensity predictions for 1997 using observed data from 1987
to 1996 based on the complete data model (left column) andmissing data model (right column). The black points represent the
observed event locations in 1997. The intensity was scaled to the area of Columbia, AW .

efficient proposal distribution to use in aMetropolis–Hasting steps. The efficiency of the proposal rests
on the fact that it conditions on the data prior to themissing interval in question, rather than ignoring
this information. This proposal was chosen because we could readily sample from it and because its
distribution is similar to that of the target distribution. It should also be clarified that the proposed
MCMC algorithm for the missing data model Section 5.2 is an approximation to an exact solution. It
was suggested by a reviewer that it may be more exact to implement importance sampling instead of
the proposed MCMC algorithm. This could be explored in future research.

Other future work could include extending our model to incorporate missing spatial regions in
addition to the missing time intervals handled in this paper. Further, the missing data approach
described is not limited to the parametric model forms presented here. For example, in many
applications it is desirable to specify more flexible, nonparametric forms for the intensity function.
For example, Fox et al. (2016) and Marsan and Lengliné (2008) propose novel ways to incorporate a
nonparametric inhomogeneous background rateµ(t).Kernel density estimation can be used tomodel
the decay process or triggering function g(·), for which estimation procedures have been explored by
Zhou et al. (2013), Kirchner and Bercher (2018) and Yang et al. (2018) just to name a few. Extending
the framework to incorporate such model refinements should be achievable.
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