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METHOD AND SYSTEM FOR TRAINING AN
ARTIFICIAL NEURAL NETWORK
UTILIZING PHYSICS BASED KNOWLEDGE

GOVERNMENT INTEREST STATEMENT

This invention was made with Government support under
Contract No. DE-NA0003525 awarded by the United States
Department of Energy/National Nuclear Security Adminis-
tration. The U.S. Government has certain rights in this

invention.

FIELD OF THE INVENTION

The present invention 1s directed to a method and system
for training an artificial neural network for material charac-
terization and methods and systems for material character-
1zation.

BACKGROUND OF THE INVENTION

Computed tomography (CT) 1s an important tool in the
non-destructive analysis of objects and materials. While
traditional CT methods using Bremsstrahlung radiation
sources suller from noise and artifacts due to lack of
penetration or nonlinearities 1n material absorption (i.e.,
beam hardeming), high-energy spectral CT can enhance
performance by generating higher-quality images. Multi-
channel color CT systems utilized for maternial characteriza-
tion produce energy-resolved data that correlate with mate-
rials’ attenuation profiles. Spectral CT data also provide
increased information for analysis than traditional CT data,
indicating that multichannel CT data approaches possess
higher potential to 1dentily and analyze materials. Process-
ing of this data has included distance-based unsupervised
clustering algorithms include centroid-based, density based,
and connectivity-based algorithms. These algorithms find
relationships between data points by analyzing the similarity
or dissimilarity between pairs or collections of objects 1n a
dataset; the similarity measure 1s defined as a set distance
metric, such as Euclidean distance, cosine distance, or
Manhattan distance. The use of such data analysis tech-
niques provide certain limitations, particularly with the
analysis of particular materials.

Over the last few vyears, purely data-driven machine
learning methods using deep neural networks (DNNs) have
achieved state-of-the-art results 1n object detection, 1image
segmentation, facial recognition, and handwriting recogni-
tion. The recent success in these application domains has
relied on the availability of vast amounts data which allow
DNNs to learn data representations from complex input-
output relationships. Because of the reliance on large
amounts of training data, purely data-driven models do not
adhere to physics based theory about the process being
modeled. In contrast, statistical models have incorporated
scientific theory on relatively small datasets to conduct
inference and prediction. For example, some of the first
fundamental problems involved estimating the speed-oi-
light and the parallax of the sun. However, formulating these
statistical methods can be diflicult when the data are high-
dimensional or when the scientific theory 1s encoded within
the coupling of many partial differential equations. This
often results 1n simplifications that hinder model perfor-
mance and validity.

Both theory based and data-driven approaches have been
proposed for modeling physical phenomena. Theory based
methods apply scientific knowledge and first principles to
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2

solve closed form equations and/or develop computational
models/simulations. Data-driven methods use observations

of a physical phenomenon and machine learning (ML)
models to learn patterns from a set traiming observation.
Although both methods have their strengths, they also have
their limitations. Purely theory-based methods for modeling,
complex processes tend to make simplifications that reduce
model performance and increase the difliculty 1n analysis of
the model, whereas purely data-driven methods are limited
in the amount of available observations which cause them to
fail to generalize well to unseen observations. Additionally,
machine learning methods can be diflicult to interpret and
fail to explain the underlying physical process.

A purely data-driven approach to material classification/
identification would be to train a classifier in a fully super-
vised manner using a set of labeled hyperspectral computed
tomography (H-CT) voxels, where each voxel 1s provided a
label that represents a different material. In the case of a deep
neural network, the traiming phase minimizes the cross-
entropy loss, or the diflerence between the desired and
predicted probability distribution of class labels. However,
the use of cross-entropy loss requires that the training set 1s
similar to the expected responses 1n an unlabeled set of test
voxels. One of the challenges with H-CT data 1s that there
are relatively few training examples for different matenals
collected under various conditions (e.g., shielding, orienta-
tion, etc.) making 1t diflicult to construct a representative
training set. Previous approaches 1n material classification in
H-CT scans has focused supervised and unsupervised
approached. It has been demonstrated the ability for logistic
regression, support vector machines, and neural networks to
identily materials such as water, Tetlon, salt, diet soda, etc.
In addition, centroid-, density-, and connectivity-based clus-
tering algorithms have been used to differentiate isolated
materials 1n H-CT scans. Although these methods have
demonstrated the applicability of machine learning for mate-
rial identification 1n H-CT scans, they are completely data-
driven methods.

Purely data-driven machine learning methods have
achieved state-oi-the-art results for object detection, image
segmentation, facial recognition, and handwriting recogni-
tion, however, these results are achieved on large corpora of
data. There 1s a need for methods which use smaller data sets
and 1ncorporate a priort knowledge for classification and
regression tasks.

What 1s needed are scientific machine learming models
with the goal of machine learning models with scientific
knowledge of the process being modeled, such as data
related to material characterization, that overcome the limi-
tations of the prior art.

SUMMARY OF THE INVENTION

The present disclosure 1s directed to a scientific machine
learning model for processing functional data for machine
learning models with scientific knowledge incorporated into
the processed data. In particular, the present disclosure
includes a system and method for training a classifier for a
material characterization.

According to an embodiment of the disclosure, a method
for training an artificial neural network 1s disclosed. The
method 1ncludes obtaining functional data having phase and
amplitude, registering functional data by phase-amplitude
separation and statistical analysis on the phase-amplitude
separated data with an elastic distance to produce aligned
functional data, performing dimensional reduction on the
aligned functional data to produce a dimensional represen-
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tation of the functional space, performing, by a computer
system, a tramning operation to train an artificial neural
network based on the dimensional representation of the
functional space.

According to an embodiment of the disclosure, a method
for material characterization 1s disclosed. The method
includes training a classifier by a method including obtain-
ing functional data having phase and amplitude, registering
functional data by phase-amplitude separation and statistical
analysis on the phase-amplitude separated data with an
clastic distance to produce aligned functional data, perform-
ing dimensional reduction on the aligned functional data to
produce a dimensional representation of the functional
space, performing, by a computer system, a training opera-
tion to traimn an artificial neural network based on the
dimensional representation of the functional space. A sample
1s scanned with an x-ray computed tomography scanner.
Functional data 1s obtained from the computed tomography
scanner. The material of the sample 1s characterized with the
artificial neural network with the functional data from the
computed tomography scanner.

According to an embodiment of the disclosure, a system
for training a classifier for a material characterization 1s
disclosed. The system includes at least one processor and a
non-transitory, computer-readable medium having instruc-
tions stored thereon that are executable by the at least one
processor to cause the system to obtain functional data
having phase and amplitude, register functional data by
phase-amplitude separation and statistical analysis on the
phase-amplitude separated data with an elastic distance to
produce aligned functional data, perform dimensional reduc-
tion on the aligned functional data to produce a dimensional
representation of the functional space, and train a classifier
with the dimensional representation of the functional space.

According to an embodiment of the disclosure, a system
for material characterization including a computed tomog-
raphy scanner, and a processor including classifier trained by
a system for training a classifier 1s disclosed. The system for
training a classifier includes at least one processor and a
non-transitory, computer-readable medium having instruc-
tions stored thereon that are executable by the at least one
processor to cause the system to obtain functional data
having phase and amplitude, register functional data by
phase-amplitude separation and statistical analysis on the
phase-amplitude separated data with an elastic distance to
produce aligned functional data, perform dimensional reduc-
tion on the aligned functional data to produce a dimensional
representation of the functional space, and train the classifier
with the dimensional representation of the functional space.
The system further includes a display for displaying the
output of the processor to 1dentily materials scanned by the
computed tomography scanner.

According to another embodiment of the disclosure, func-
tional data 1s obtained relating to a hyperspectral computed
tomography (H-CT) scan. The H-CT data may, for example,
be measured data from an H-CT device or may be simulated
data corresponding to H-CT scans. Functional data analysis
and topological data analysis of the H-CT data are utilized
to construct the mput to a classifier for material character-
ization. Flastic function data analysis (EFDA) 1s utilized to
perform curve registration to generate aligned H-CT voxels.
Uniform manifold approximation and projection (UMAP)
are applied to the aligned H-CT voxels. By applying UMAP,
a dimensionality reduction 1s generated that 1s a fuzzy
representation of the true data manifold. Finally, a classifier
1s trained utilizing the dimensionally reduced data from

UMAP.
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4

According to another embodiment of the disclosure, the
clastic functional data analysis (EFDA) alignment method
and the wuniversal manifold approximation projection
(UMAP) dimensionality reduction method are used as a
pre-processing step for material classification problems. The
model according to the present disclosure 1s trained on a set
of simulated hyperspectral computed tomography (H-CT)
scans on a small sample of materials, such as sample set of
22 different matenials. The method of the present disclosure
achieves a greater than 30% 1mprovement 1n overall classi-
fication accuracy when compared to the purely data driven
method using the unprocessed H-CT voxels to train a purely
data driven method using a 1-D VGG like convolutional
neural network (CNN).

Other features and advantages of the present invention
will be apparent from the following more detailed descrip-
tion of the preferred embodiment, taken in conjunction with
the accompanying drawings which illustrate, by way of
example, the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1llustrates a block diagram of a method for training
a classifier for a matenial characterization according to an
embodiment of the present disclosure.

FIG. 2 illustrates a schematic view of a H-CT scanner and
data processor system according to the present disclosure.

FIG. 3 1llustrates a block diagram of a method for material
characterization according to an embodiment of the present
disclosure.

FIG. 4 illustrates a data processing system according to an
embodiment of the present disclosure.

FIG. § 1s a graph showing simulated H-CT scans for 22
different materials listed on Table 1.

FIG. 6 1s a segmentation map for varying concentrations
of H,O, with a polypropylene shielding.

FIG. 7 1s a plot of UMAP 2-D projection of the EFDA
aligned voxels, according to the present disclosure, pro-
cessed from the data for H-CT scans, as illustrated in FIG.
5.

FIG. 8 1s a plot of UMAP 2-D projection of unprocessed
voxels processed from the data for H-CT scans, as 1llustrated
in FIG. 5, according to a known data processing process.

Wherever possible, the same reference numbers will be
used throughout the drawings to represent the same parts.

DETAILED DESCRIPTION OF TH.
INVENTION

L1

The present disclosure provides a new approach to incor-
porate scientifically informed constraints within data-driven
machine learning models to improve the prediction and
scientific inference for sparse data that are too expensive to
collect and/or the design space 1s prohibitively large for the
collection of a suflicient training set. The method and system
of the present disclosure incorporate domain knowledge 1n
the developed model and will include a prior1 information,
requiring less data to achieve state-of-the-art characteriza-
tion results. Hybrid models, such as the model utilized in the
method and system according to the present disclosure that
incorporate both scientific principles and data-driven
approaches, 1.e., physics informed machine Ilearning
(PIML), generalize better than purely data-driven methods
and are consistent with the underlying physical phenomena.

In an embodiment, the system and method according to
the present disclosure enable material classification using a
training set of functional data, such as, but not limited to
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hyperspectral computed tomography (H-CT) images, where
the data s1ze may be smaller than conventional training sets.
For example, the smaller training set of data may be mea-
sured 1n gigabytes instead of terabytes or larger. When
considering the combinations of potential effect vanables
obtaining a suthicient number of replicates for a purely
data-driven approach is intractable. While the data utilized
for the training may be H-C'T data, the disclosure 1s not so
limited and may include other applications that encounter
sparse data, e.g., material classification for security check-
points, target identification for remote sensing, surrogate
modeling for scientific computing, and climate modeling.
The data generating equipment 1s not limited to H-CT
scanners and may include other data generating equipment,
such as, but not limited to electro-optical cameras, multi-
spectral 1magery, and radar.

FIG. 1 shows a computer-implemented method 100 for
training a classifier for a material characterization by analy-
s1s of measured data according to the present disclosure. The
method 100 may be implemented using a data processing
system, such as data processing system 400 of FIG. 4.
Method 100 may be accomplished, for example, using the
mathematical techniques described below for alignment of
functional data and dimensional reduction.

Method 100 according to the present disclosure, as shown
in FIG. 1, begins by obtaining, by a processor of a computer,
functional data (step 101). For example, step 101 may
include obtaining functional data from an H-CT scan or
similar device, wherein the data includes phase and ampli-
tude. Once the functional data 1s obtained, the data 1s fed to
a group of steps that include data pre-processing (step 103),
which processes the functional data prior to traimning a
classifier. The pre-processing step 103 includes performing,
by the processor of the computer, elastic functional data
analysis on the functional data to generate aligned functional
data (step 105) and then performing, by the processor,
uniform manifold approximation and projection to generate
a dimensional representation of the functional space (step
107). The elastic data analysis of step 1035 registers the
functional data by phase-amplitude separation and statistical
analysis on the phase-amplitude separated data to produce
aligned functional data. The registration includes determin-
ing a distance between functions to align the data into mean
functions. This distance 1s metric, elastic or a proper distance
(e.g., symmetric, 1sometric, follows the triangle inequality).
This distance 1s calculated from the measured functional
data, thereby providing a physics informed knowledge of the
tfunction. The distance for registration 1s a calculated value
from the measured functional data 1s not a Euclidean dis-
tance, but a functional distance or an elastic distance. Other
distances such as the Euclidean, Mahalanobis, and Bregman
are not proper in the functional space. Having a proper
distance 1s important in computing statistics (e.g., mean and
variance).

The umiform mamifold approximation and projection of
step 107 performs dimensional reduction on the aligned
functional data to produce a dimensional representation of
the functional space. The method 100 then outputs the
dimensional representation of the functional space 109. The
outputted dimensional representation may be stored i a
memory storage device and/or transmitted via any suitable
data transmission method. The outputted dimensional rep-
resentation 1s utilized to train an artificial neural network,
such as a classifier 111. The classifier may be any suitable
classifier that has the ability to provide classification, such as
material characterization from inputted data. For example,
suitable classifiers include, but are not limited to machine
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learning systems, such as a support vector machine (SVM),
a random forest (RF) classifier, or convolutional neural
network (CNN). The outputted dimensional representation
may be utilized for training of the classifier in the same
processor as the pre-processing or may be a separate pro-
cessor, such as a processor utilized in the control and
operation of an H-C'T scanner.

FIG. 2 shows a material characterization system 200
according to an embodiment of the present disclosure.
Material characterization system 200 includes a material
scanner 201, such as a computed tomography scanner or
hyperspectral computed tomography scanner. Other suitable
equipment for use as the matenal characterization system
200 includes, but 1s not limited to low frequency sonar or
radar. Material characterization system 200 further includes
a processor 203 that receives functional data from the
material scanner 201, the functional data corresponding to
scans performed by the scanner. Processor 203 includes a
classifier for 1dentifying materials scanned based upon the
functional data received from the material scanner 201.
Display 205 includes any suitable output or input/output
device that 1s capable of displaying the output of the
processor 203 to identify the material scanned.

FIG. 3 shows a computer-implemented method 300 for
material characterization by analysis of measured data
according to the present disclosure. The computer-imple-
mented method 300 may be implemented using a data
processing system, such as data processing system 400 of
FIG. 4. Computer-implemented method 300 may be accom-
plished, for example, using a data processing system 400
including a classifier trained with system 100. Computer-
implemented method 300 includes performing, by a proces-
sor of a computer, a computed tomography scan of a sample
(step 301). In one embodiment, the computer tomography
scan 1s a hyperspectral computed tomography (H-CT) scan.
Functional data 1s obtained, by the processor, from the
computed tomography scan (step 303). The functional data
1s used by a trained classifier to characterize a material of a
sample (step 305). The classifier 1n step 305 has been trained
utilizing the method shown and described with respect to
FIG. 1.

FIG. 4 shows an 1illustration of a data processing system
as depicted 1n accordance with an illustrative embodiment.
Data processing system 400 1n FIG. 4 1s an example of a data
processing system that may be used to implement the
illustrative embodiments, such as those described with
respect to FI1G. 1 through FIG. 3. In this illustrative example,
data processing system 400 includes communications fabric
401, which provides communications between processor
unit 403, memory 405, persistent storage 407, communica-
tions unit 409, mput/output (I/O) unit 411, and display 413.

Processor unit 403 may be a number of processors, a
multi-processor core, or some other type ol processor,
depending on the particular implementation. A number, as
used herein with reference to an item, means one or more
items. Further, processor unit 403 may be implemented
using a number of heterogeneous processor systems in
which a main processor 1s present with secondary processors
on a single chip. As another 1llustrative example, processor
unit 403 may be a symmetric multi-processor system con-
taining multiple processors of the same type.

Memory 405 and persistent storage 407 are examples of
storage devices 415. A storage device 1s any piece of
hardware that 1s capable of storing information, such as, for
example, without limitation, data, program code in func-
tional form, and/or other suitable information either on a
temporary basis and/or a permanent basis. Storage devices
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415 may also be referred to as computer readable storage
devices 1n these examples. Memory 405, 1n these examples,
may be, for example, a random access memory or any other
suitable volatile or non-volatile storage device. Persistent
storage 407 may take various forms, depending on the
particular implementation.

For example, persistent storage 407 may contain one or
more components or devices. For example, persistent stor-
age 407 may be a hard drive, a flash memory, a rewritable
optical disk, a rewritable magnetic tape, or some combina-
tion of the above. The media used by persistent storage 407
also may be removable. For example, a removable hard
drive may be used for persistent storage 407.

Communications unit 409, in these examples, provides
for communications with other data processing systems or
devices. In these examples, communications unit 409 1s a
network 1nterface card. Communications unit 409 may pro-
vide communications through the use of either or both
physical and wireless communications links.

Input/output (I/O) unit 411 allows for mput and output of
data with other devices that may be connected to data
processing system 400. For example, mput/output (I/0) unmt
411 may provide a connection for user input through a
keyboard, a mouse, and/or some other suitable mnput device.
Further, input/output (I/0) unit 411 may send output to a
printer. Display 413 provides a mechanism to display infor-
mation to a user.

Instructions for the operating system, applications, and/or
programs may be located in storage devices 415, which are
in communication with processor unit 403 through commu-
nications fabric 401. In these illustrative examples, the
instructions are 1n a functional form on persistent storage
407. These mstructions may be loaded into memory 403 for
execution by processor unit 403. The processes of the
different embodiments may be performed by processor unit
403 using computer implemented 1nstructions, which may
be located 1n a memory, such as memory 405.

These structions are referred to as program code 417,
computer usable program code, or computer readable pro-
gram code that may be read and executed by a processor 1n
processor unit 403. The program code 417 in the different
embodiments may be embodied on different physical or
computer readable storage media, such as memory 405 or
persistent storage 407.

Program code 417 1s located in a functional form on
computer readable storage media 419 that 1s selectively
removable and may be loaded onto or transferred to data
processing system 400 for execution by processor unit 403.
Program code 417 and computer readable storage media 419
form computer program product 423 in these examples. In
one example, computer readable storage media 419 may be
computer readable storage media 419 or computer readable
signal media 421. Computer readable storage media 419
may include, for example, an optical or magnetic disk that
1s mserted or placed 1nto a drive or other device that 1s part
ol persistent storage 407 for transier onto a storage device,
such as a hard drive, that 1s part of persistent storage 407.
Computer readable storage media 419 also may take the
form of a persistent storage, such as a hard drive, a thumb
drive, or a flash memory, that 1s connected to data processing
system 400. In some instances, computer readable storage
media 419 may not be removable from data processing
system 400.

Alternatively, program code 417 may be transferred to
data processing system 400 using computer readable signal
media 421. Computer readable signal media 421 may be, for
example, a propagated data signal contaiming program code
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417. For example, computer readable signal media 421 may
be an electromagnetic signal, an optical signal, and/or any
other suitable type of signal. These signals may be trans-
mitted over communications links, such as wireless com-
munications links, optical fiber cable, coaxial cable, a wire,
and/or any other suitable type of communications link. In
other words, the communications link and/or the connection
may be physical or wireless in the 1llustrative examples.

In some 1llustrative embodiments, program code 417 may
be downloaded over a network to persistent storage 407
from another device or data processing system through
computer readable signal media 421 for use within data
processing system 400. For instance, program code stored in
a computer readable storage medium 1n a server data pro-
cessing system may be downloaded over a network from the
server to data processing system 400. The data processing
system providing program code 417 may be a server com-
puter, a client computer, or some other device capable of
storing and transmitting program code 417.

The different components illustrated for data processing
system 400 are not meant to provide architectural limitations
to the manner in which different embodiments may be
implemented. The different 1llustrative embodiments may be
implemented 1n a data processing system including compo-
nents 1n addition to or 1n place of those 1llustrated for data
processing system 400. Other components shown in FIG. 4
can be varied from the illustrative examples shown. The
different embodiments may be implemented using any hard-
ware device or system capable of running program code. As
one example, the data processing system may include
organic components integrated with morganic components
and/or may be comprised entirely of organic components
excluding a human being. For example, a storage device
may be comprised of an organic semiconductor.

In another illustrative example, processor unit 403 may
take the form of a hardware unit that has circuits that are
manufactured or configured for a particular use. This type of
hardware may perform operations without needing program
code to be loaded into a memory from a storage device to be
configured to perform the operations.

For example, when processor unit 403 takes the form of
a hardware unit, processor unit 403 may be a circuit system,
an application specific integrated circuit (ASIC), a program-
mable logic device, or some other suitable type of hardware
configured to perform a number of operations. With a
programmable logic device, the device 1s configured to
perform the number of operations. The device may be
reconiigured at a later time or may be permanently config-
ured to perform the number of operations. Examples of
programmable logic devices include, for example, a pro-
grammable logic array, programmable array logic, a field
programmable logic array, a field programmable gate array,
and other suitable hardware devices. With this type of
implementation, program code 417 may be omitted because
the processes for the different embodiments are imple-
mented 1n a hardware unit.

In still another illustrative example, processor unit 403
may be implemented using a combination of processors
found 1in computers and hardware units. Processor unit 403
may have a number of hardware umts and a number of
processors that are configured to run program code 417.
With this depicted example, some of the processes may be
implemented 1n the number of hardware units, while other
processes may be implemented 1n the number of processors.

The different 1llustrative embodiments can take the form
of an entirely hardware embodiment, an entirely software
embodiment, or an embodiment containing both hardware
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and software elements. Some embodiments are implemented
in software, which includes but 1s not limited to forms such
as, for example, firmware, resident software, and microcode.

Furthermore, the different embodiments can take the form
of a computer program product accessible from a computer
usable or computer readable medium providing program
code for use by or in connection with a computer or any
device or system that executes instructions. For the purposes
of this disclosure, a computer usable or computer readable
medium can generally be any tangible apparatus that can
contain, store, communicate, propagate, or transport the
program for use by or in connection with the instruction
execufion system, apparatus, or device.

The computer usable or computer readable medium can
be, for example, without imitation an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system,
or a propagation medium. Non-limiting examples of a
computer readable medium include a semiconductor or
solid-state memory, magnetic tape, a removable computer
diskette, a random access memory (RAM), a read-only
memory (ROM), a rigid magnetic disk, and an optical disk.
Optical disks may include compact disk-read only memory
(CD-ROM), compact disk-read/write (CD-R/W), and DVD.

Further, a computer usable or computer readable medium
may contain or store a computer readable or computer
usable program code such that when the computer readable
or computer usable program code 1s executed on a computer,
the execution of this computer readable or computer usable
program code causes the computer to transmit another
computer readable or computer usable program code over a
communications link. This communications link may use a
medium that 1s, for example, without limitation, physical or
wireless.

A data processing system suitable for storing and/or
executing computer readable or computer usable program
code will include one or more processors coupled directly or
indirectly to memory elements through a communications
fabric, such as a system bus. The memory elements may
include local memory employed during actual execution of
the program code, bulk storage, and cache memories which
provide temporary storage of at least some computer read-
able or computer usable program code to reduce the number

of times code may be retrieved from bulk storage during
execution of the code.

Input/output or I/O devices can be coupled to the system
either directly or through intervening I/O controllers. These
devices may include, for example, without limitation, key-
boards, touch screen displays, and pointing devices. Differ-
ent communications adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers
or storage devices through intervening private or public
networks. Non-limiting examples of modems and network
adapters are just a few of the currently available types of
communications adapters.

As described above with respect to FIG. 1, the functional
data 1s registered by phase-amplitude separation and statis-
tical analysis. In one embodiment of the present disclosure,
this registration 1s done with Elastic Functional Data Analy-
sis (EFDA).

EFDA includes elastic shape analysis (ESA), which 1s a
collection of techniques for registering functional data,
using the process of phase-amplitude separation, and then
performing statistical analysis on the separated phase and
amplitude components. The method and system according to
the present disclosure utilizes ESA to provide the registra-
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tion of the functional data and the determination of the
elastic distance to provide the aligned functional data.

Phase and amplitude represent two orthogonal compo-
nents of a function’s shape, where shape can be generally
characterized by those properties of a function that remain
unchanged under shape preserving transformations such as
rotation, translation, scaling, and phase. The phase compo-
nent represents the “horizontal” or “timing” variability
within trajectories. The amplitude component represents the
“vertical” variability independent of phase, translation, and
rotation (in R”, n>2). Amplitude is therefore distinct from
the usual concept of magnitude by being independent of the
observed realization of the trajectory. In other words, mag-
nitude measures the size of the observed realization of a
trajectory, and amplitude measures the trajectories shape.

ESA utilizes the Square Root Slope Function (SRSF) for
registration. For two real valued functions, the SRSF bijec-
tively maps, up to an additive constant, a real valued
function J to its normalized gradient '/\/T_I Under ESA, two
functions are registered by elastically deforming the domain
of one function such that the L* distance between the SRSFs
of the two functions 1s minimized.

The amount of elastic deformation needed to register two
functions 1s measured by the phase distance, while the
residual L= distance between the SRSFs, post registration,
defines the amplitude distance between them. Together they
are known as the elastic distances. An important aspect of
ESA 1n the system and method according to the present
disclosure 1s that by registering SRSFs, instead of trajecto-
ries directly, the phase and amplitude distances are elastic
distances (e.g., metrics) and they are invariant to the shape
preserving transformations.

To develop technically, let f be a real-valued function
with the domain [0,1]; this domain can be easily generalized
to any other compact subinterval of .. For concreteness,
only functions that are absolutely continuous on [0,1] will be
considered and we let F denote the set of all such functions.
In practice, since the observed data are discrete anyway, this
assumption 1s not a restriction. Also, let I" be the set of
orientation-preserving diffeomorphisms of the unit interval
[0,1]:I'={Yy:[0,1]=[0,1]v(0)=0,y(1)=1,y 1s a diffeomor-
phism}. Elements of 1" play the role of warping functions.
For any fe F and yel’, the composition foy denotes the
time warping of J by v. With the composition operation, the
set I' 1s a Lie group with the i1dentity element v, (t)=t. The
utilization of the group structure of 1" allows for the regis-
tration and calculation of the elastic distance according to
the present system and method and 1s not generally utilized
in other applications relating to functional data analysis.

There are two metrics to measure the amplitude and phase
variability of functions. These metrics are elastic distances,
one on the quotient space F/I  (i.e., amplitude) and the other
on the group I (1.e., phase). The amplitude or y-distance for
any two functions f,, J,€ F is defined to be

d,(J1, J2) = fﬂ];”m — @227 | (2.1)
ye

where

q(1) = sign(f ()| /0 |
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1s known as the square-root slope function (SRSF) ( J“ 1s the
time derivative of J). The optimization problem in Equation
2.1 1s most commonly solved using a Dynamic Program-
ming algorithm. If f is absolutely continuous, then ge LL~°
([0,1], R), henceforth denoted by IL~-. For any v,, V., we
have d_(f,0%Y,, J,oY,)=d _(f,. J,), 1.e., the amplitude distance
1s 1nvariant to function warping.

In order to separate phase and amplitude variability in
functional data, we need a notion of the mean of functions.
First, we compute a mean function and, 1n the process, warp
the given functions to match the mean function. Since we
have an elastic distance in d_, we use that to define this
mean. For a given collection of functions f,, f, ..., J,, let
di> 95, - - - » q,, denote their SRSFs, respectively. Define the
Karcher mean of the given function as a local minimum of
the following cost functions:

(2.2)

py =argmin } da(f, fi)’
FeF =

The solution to this optimization problem can be found by
the following procedure:
1. Compute SRSFs q,, q, . . ., q, of the given J,,
¥, ..., JF, and select u=q,, where

[ = argming «j«y

9 %Z?:qu

2. For each g, find the v*, such that

vi = argming.r(||u - (@orV7|)

The solution to this optimization comes from the dynamic
programming algorithm.
3. Compute the aligned SRSFs using

7; 0 (@0 -

4. If the increment

l—n
Ezle‘?f —y"

1s small, then stop. Else, update the mean using

l—n
pe ;Zleqf

and return to step 2.
5. The function p represents a whole equivalence class of

solutions and now we select the preferred element p_ of

that orbit:

(a) Compute the mean v, of all {y*+} (using the
Karcher Mean of Warping Functions). Then compute

Hq = (““?’QIN?QI '
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(b) Update

Vi~ (¥iovs')-

Then compute the aligned SRSFs using

(‘?ED?/;)‘\/E'

This procedure results 1n three items:

1. p . preterred element of the Karcher mean class {(p,.
Divel't,

2. {q,}, the set of aligned SRSFs, and

3. 1Y*.}, the set of optimal warping functions.

From the aligned SRSFs, the individual aligned functions
are calculated using:

f1@ = £(0) + f .| ()ds.

()

This method provides the ability to directly compare the
measurements on the functional level at both levels of
variability contained within the data.

As described above with respect to FIG. 1, a reduction of
the aligned functional data 1s performed to produce a dimen-
sional representation of the function space. In one embodi-
ment of the present disclosure this dimensional reduction 1s
provided by Uniform Manifold Approximation and Projec-
tion for Dimension Reduction (UMAP).

UMAP approximates a manifold on which the data 1s
assumed to lie and construct a fuzzy simplicial set repre-
sentation of the approximated manifold. This 1s performed
on the high dimensional data (X) and on a low dimensional
representation (Ye R 9). The representation that optimizes
the cross-entropy between the two representations 1s the one
that 1s chosen.

UMAP 1s similar to the approach of t-distributed stochas-
tic neighbor embedding (t-SNE), where t-SNE constructs a
probability distribution over pairs of high-dimensional
objects 1n such a way that similar objects have a high
probability of being picked while dissimilar points have an
extremely small probability of being picked. Second, t-SNE
defines a similar probability distribution over the points 1n
the low-dimensional map, and 1t minimizes the Kullback-
Leibler divergence between the two distributions.

In UMAP, the high dimensional similarities, v, are local
fuzzy simplicial set memberships, based on smooth nearest-
neighbor (NN) distances v;; from x,€X to one of its k
distinct nearest-neighbors x.€ X

Vili = exp[(—d(xf, X;) +pf)/g_f]

where d(x;, X;) 1s the elastic distance on the learned mani-
fold. The parameter P, 1s the distance to nearest neighbor and
G. 1s jJust a normalizing constant. The symmetrization of
these similarities, used to produce an undirected graph
structure representing the 1-dimensional frame of the fuzzy
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simplicial set, 1s carried out by fuzzy set union using the
probabilistic t-conorm

Vij = (lef i Vflf) — ViV,

The graph defined by the v1j 1s then embedded into a low
dimensional space Y, where the dimension 1s prescribed as
a parameter. The low dimensional similarities between the
projection y,;, and y, of x,, and X, Into Y via the initial
embedding are given by

wy = (1 +ally; — y;132)™

where a and b are user defined and a gradient descent
procedure 1s used to find them. The defaults for UMAP are
a=1.929 and b=0.7915.

The UMAP cost function 1s

Vi

1 — V;’f ]
7 Wﬁf 1 —W!};

which penalizes discrepancies 1n the relative distributions of
similarities in X and Y.

By utilizing the elastic metric, which 1s the proper dis-
tance as determined 1n the registration of the functional data,
in the UMAP dimension reduction we can accurately find a
lower dimensional representation of the entire functional
space, while retaining all physical relationships between the
measurements. Thus, keeping the entire physics as part of
the measurement of the material and not breaking it down
into a physically undefined feature space.

The method and system of the present disclosure achieves
a greater than 15%, or greater than 20% or greater than 25%
or greater than 30% or greater than 33% improvement 1n
overall classification accuracy when compared to the purely
data driven method using the unprocessed H-CT voxels to
train a purely data driven method using a 1-D VGG like
convolutional neural network (CNN).

Example

In the Inventive Example according to the present method
and system and 1n the comparative Example, simulated
hyperspectral CT scans were generated using a Monte Carlo
(MC) radiation and electron transport simulation via the
Particle Heavy lon Transport code System (PHITS). The
simulation models the H-CT systems are known models
where these systems were designed for industrial and secu-
rity-based applications. Unlike traditional CT, a set of H-CT
images are constructed by first capturing the energy depos-
ited by a photon within the detector pixel, then 1individual
images are reconstructed using the energy from each X-ray
channel. This reconstruction results 1n a spectrum of values
for each voxel instead of a single integrated value.

Due to the complexity of an H-CT system, tomographic
images for each X-ray channel were reconstructed using a
MC simulation via PHITS. Each simulated scan 1s described
by user defined geometries, detector size, number of pixels
and projections, and the location of the source and position
of the object in the field of view. The set of H-CT 1images are
generated by applying a coordinate rotation to the source
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and detector with respect to the object for each projection.
Once the simulation was complete, a post-processing tech-
nique was used to generate sinogram data for each energy-
channel, this resulted 1n cross-sectional slices of the internal
and external structure of the imaged object.

In total, the data set for the functional data consisted of
394 simulated H-CT scans for the 22 different matenals
listed 1n Table 1. The materials 1n our data set were selected
due to their similarity and the difficulty to identily with
traditional CT or optical methods. In addition, each materal
was simulated 1n different shielding conditions: no shielding
(none), 2 mm thick aluminum (Al), or 2 mm polypropylene
(PP). Table 1 also details the total number of scans contain-
ing that material and the total number voxels in our data set
for a given material. All scans with H,O, concentrations
except 100% H,O, are contained in a single image. In

addition, two scans contained both H,O and 100% H,O,.

Each reconstructed image 1s a singular slice of the imaged
object and consists of 640x640 voxels, where each voxel
consists of 128 X-ray channels. FIG. 5 shows the median
curves for the varying concentrations of H,O,.

Manual segmentation of each scan was performed using
a custom MATLAB® utility. Our segmentation processes
was as follows. First, the image was used corresponding to
the first X-ray channel to find the boundary of the valid
imaging domain since voxels containing materials or shield-
ing are not distinguishable 1n this channel. Next the X-ray
channels (60-70) corresponding to the middle energy levels
were used to find voxels containing the material, the shield-
ing 1f applicable, and empty space. In most scans, there was
sufficient energy in these channels to distinguish the differ-
ent conditions, however, for some materials the X-ray chan-
nels 1n higher bands were needed. For all subsequent pro-
cessing, we treated each 1image as a gray scale 1image. Next,
we applied a flood fill on the 1mage to fill any holes and
remove artifacts. The flood fill was started in the center of
each material. This process aided 1n improving connectivity
between the voxels. A binary mask was then created by
performing a morphological closing on the processed 1mage.
Finally, the binary mask was first dilated and then eroded
using a 3-voxel radius, this guaranteed the corresponding
mask did not contain any partially filled voxels. FIG. 6,

shows the segmentation map for the varying concentrations
of H,O, with a polypropylene shielded.

TABLE 1
Number Number Shield
Material of Scans of Voxels Conditions
H,O 674,073 none, Al, PP
100% H-0, 10 338,533 none, PP
90% H-,0, 79 152,590 none, PP
80% H,0, 79 151,637 none, PP
70% H-0, 79 155,276 none, PP
60% H-0, 79 156,398 none, PP
50% H,0, 79 157,539 none, PP
40% H-O-, 79 159,610 none, PP
30% H-0, 79 157,443 none, PP
20% H-0, 79 160,974 none, PP
10% H,0, 79 147,851 none, PP
Explosive 472 668,298 none, Al, PP
Acrylic 20 421,160 none, PP
Al 20 421,160 none, PP
Delrin ® 20 421,160 none, PP
Lexan 19 400,102 none, PP
Mg 20 421,160 none, PP
Nylatron ® 20 421,160 none, PP
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TABLE 1-continued

Number Number Shield
Matenial of Scans of Voxels Conditions
Nylon 20 421,160 none, PP
Phenolic 20 421,160 none, PP
Salt 20 421,160 none, PP
Teflon ® 20 421,160 none, PP

Comparative Example

As a comparative example, a data driven method utilizing
a 1-D modification of the VGG convolutional neural net-
work (CNN) was performed on the functional data described
above. The VGG network consisted of 5 convolutional
blocks (VGGBIlock) and two fully connected blocks (FC-
Block) followed by a softmax output layer. The first four
convolutional blocks consisted of a 1-D convolutional neu-
ral network (CNN) layer, a rectified linear unit (Rel.U)
activation function, a 1-D batch normalization layer fol-
lowed by an average pooling layer. The last convolutional
block adds an additional 1-D CNN layer, Rel.LU activation
function, and 1-D BN layer, before the average pooling
layer. Each of the fully connected blocks consists of a fully
connected layer, a ReLLU activation function, and a dropout

layer with a dropout probability of 0.2. Our final architecture
1s as follows: VGGBlock (64) 'VGGBlock(128) ! VGG-

Block(256) ! VGGBlock(512) ! VGGBlock(512) ! FCBlock
(1024) ! FCBlock(1024) ! softmax(22), where the value 1n
parentheses 1ndicates the number of output dimensions for
each block.

The 1-D VGG network 1s implemented using the PyTorch
deep learning framework, where model training and evalu-
ation was performed using two Nvidia GeForcer Titan RTX
GPUs. The comparative example model was trained 1n a
fully supervised manner for 500 epochs, where each voxel
1s classified as one of the 22 different materials for which
data was provided. The network parameters were optimized
using mini-batch gradient decent to minimize cross-entropy
loss, where each mini-batch consisted of 4096 voxels.
Mini-batches were constructed using a stratified sampling
technique which allowed retention of the same proportion of
classes 1n each batch as 1n the training set. Optimization was
performed using the Adam optimization method using a
learning rate of 10-6.

Inventive Example

The physics informed model according to the method and
system according to the present disclosure 1s trained as
follows: First, the unprocessed voxels are aligned in phase
space using the EFDA method described above. Next,
UMAP 1s applied to the aligned voxels which allows pro-
jection of each aligned curve from 128 dimensions to two
dimensions. Finally, a classifier i1s trained on the UMAP
projected data points. The voxels were aligned in phase
using the fdasrst python package.

Dimensionality reduction was performed using the
python implementation of UMAP, where we use a custom
distance function as the metric space for our data. The
distance function 1s given as

1/2
D = ( f (g1 — f?z)zﬂff)
]

(4.1)
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where D 1s the distance between the square-root slope
functions of two different voxels in the training set. Unlike
Euclidean distance, the distance function in equation 4.1 1s
a proper distance metric 1n the SRSF space. For the other
hyperparameters, the default values recommended i1n the
UMAP documentation are utilized. FIG. 7 shows the 2-D
UMAP projection of the phase aligned voxels. Because
UMAP preserves the topological structure of the data points
we can observe distinct clustering between the different
classes, where there are a few sets of classes that overlap:
30% H,O, and 40% H,0,, 100% H,O, and Delrin, and

Nylon and phenolic.

The aligned, registered and dimensionally reduced data
from the method and system according to the present
disclosure 1s ufilized to train a classifier. Both a support
vector machine (SVM) and a random forest (RF) classifier
were trained on the UMAP projected data using the scikit-
learn machine learning API. For the SVM we used a radial
basis function kernel where the kernel coefficient, g=0:5,
and the regularization parameter, C=1. The RF classifier 1s
trained using 10 estimators and all other hyperparameters
were set to the default values provided 1n scikit-learn version

0.21. We did not perform any hyperparameter optimization
for either the SVM or RF classifier.

Results for the SVM, RF, and CNN classifiers are pro-

vided 1n Table 2 (per class accuracy) and Table 3 (recall,
precision, and F1 score). Each classifier achieves an average
accuracy of 97.6% (SVM), 98.6% (RF), and 64.7% (CNN).
Overall, the SVM and RF achieve similar performance,
however, the RF classifier outperforms the SVM on 40%
H,0,, 30% H,0,, Delrin, and Nylon. The SVM and RF
substantially outperform the CNN classifier for all materials,
except H,O, Al, and Nylatron which have comparable
performance for all three classifiers.

TABLE 2
Material SVM RF CNN
H-O 100.0 100.0 63.4
100% H,0, 00.5 00.9 54.8
90% H,0, 07.1 07.3 66.8
80% H-0, 07.9 08.1 86.1
70% H,0, 08.4 08.2 56.1
60% H,0, 06.7 07.0 67.5
50% H-,0, 06.4 06.4 78.3
40% H-0, 87.3 06.4 70.2
30% H,0, 87.0 06.4 69.3
20% H,0, 06.9 07.4 74.6
10% H-,0, 07.4 07.9 96.0
Explosive 100.0 100.0 87.9
Acrylic 09.6 09.5 6.8
Al 09.9 100.0 08.8
Delrin 03.4 07.2 17.9
Lexan 09.9 100.0 30.8
Mg 09.9 00.9 014
Nylatron 100.0 100.0 100.0
Nylon 84.4 89.8 20.9
Phenolic 07.9 08.8 38.6
Salt 09.9 00.9 02.0
Teflon 100.0 06.9 01.3
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TABLE 3
Precision [%] Recall [%] F1 [%]
Material SVM RF CNN SVM RF CNN SVM RF CNN
H,O 95.6 98.9 70.8  100.0 100.0 63.4 97.6 994 66.9
100% H-0, 98.4 96.7 75.6 995 999 54.8 99.0 9R.3 63.5
90% H-»O0, 96.3 96.9 44.0 97.1 97.3 66.8 96.6 97.1 53.1
80% H-,0, 990.1 97.6 64.7 979 O9R.1 86.1 984 978 73.9
70% H->0, 94.0 98.1 23.6 984 9R.2 56.1 96.0 9R%.1 33.2
60% H-0- R7.5 96.6 33.6 96.7 97.0 67.5 909 96.8 44 9
50% H-»0, 97.2 Q7.7 39.1 964 964 783 96.8 97.0 52.1
40% H,0, 9903 96.3 51.4 873 964 70.2 928 964 503
30% H-»0, 91.0 96.3 38.1 R7.0 964 69.3 R&.5 096.3 49 2
20% H-»0, 99.6 98.4 40.2 969 974 74.6 98.2 979 52.2
10% H-0, R5.0 984 52.2 974 979 96.0 90.1 9R.2 67.6
Explosive 997 100.0 92.5 100.0 100.0 87.9 99.8 100.0 90.1
Acrylic 9903 992 333 996 995 6.8 994 993 11.2
Al 100.0 100.0 90 % 99.9 100.0 98.8 100.0 100.0 993
Delrin 99.0 99 9 53.5 934 972 17.0 96.1 9R.5 26.%
Lexan 999 100.0 447 99.9 100.0 30.8 99.9 100.0 36.5
Mg 998 100.0 83 .8 999 999 91.4 999 999 R7.4
Nylatron 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Nylon 9903 O0R.% 35.0 84.4 RO.R 20.9 91.2 940 26.2
Phenolic 04.2 91.7 42.0 97.9 9R.8 3R.6 96.0 95.1 40.2
Salt 100.0 99.9 93.1 999 999 92.0 999 999 92.6
Teflon 100.0 999 90.2 100.0 999 91.3 100.0 999 90.7
25

While not wishing to be bound by theory, 1t 1s believed the
Inventive Example outperforms the CNN Comparative
Example because it 1s able to learn the topology of the data
manifold (see FIG. 7) once our data 1s aligned in phase.
When applying UMARP to the unprocessed voxels, the topol-
ogy of the manifold 1s unstructured as observed in FIG. 8
which shows a scatter plot of the UMAP 2-D projection. For

FIG. 8, the Fuclidean distance were used as the metric space.

From FIG. 8, it can be observed that there are no distinct
groupings ol the voxels by material type. This 1s a result of
noise along the phase component of each voxel. The method
and system according to the present invention in the Inven-
tive Example achieves an overall accuracy of 97.6% (SVM)/

08.6% (RF), which 1s a 32.9%/33.9% improvement when
compared to the data driven approach.
While the invention has been described with reference to

a preferred embodiment, 1t will be understood by those
skilled 1n the art that various changes may be made and
equivalents may be substituted for elements thereot without
departing from the scope of the mvention. In addition, many
modifications may be made to adapt a particular situation or
material to the teachings of the mvention without departing,
from the essential scope thereof. Therefore, 1t 1s intended
that the invention not be limited to the particular embodi-
ment disclosed as the best mode contemplated for carrying,
out this invention, but that the invention will include all
embodiments falling within the scope of the appended
claims.
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What 1s claimed 1s:

1. A method for training an artificial neural network
comprising;

obtaining functional data having phase and amplitude;

registering the functional data by phase-amplitude sepa-
ration of the functional data to produce separated phase
and amplitude components with an elastic distance and
performing statistical analysis on the separated phase
and amplitude components to produce aligned func-
tional data;

performing dimensional reduction on the aligned func-
tional data to produce a dimensional representation of
a functional space of the aligned functional data; and

performing, by a computer system, a training operation to
train an artificial neural network based on the dimen-
sional representation of the functional space.

2. The method of claim 1, wherein the registering func-
tional data includes elastic function data alignment.

3. The method of claim 2, wherein the elastic function
data alignment includes applying a square root slope func-
tion.

4. The method of claim 1, wherein the elastic distance 1s
a mean function utilized to warp functions of the phase and
amplitude of the functional data.

5. The method of claim 4, wherein the elastic distance 1s
defined as the following equation;:

L f2) = inf o - (@207 ||
=

where d_ is the elastic distance, J,, f, are any two
functions of the functional data, group 1" 1s a set of
orientation-preserving diffeomorphism representing
the phase of the functional data, g, and g, are the square
root slope function of the functional data, v 1s the

amount of time-warping of J, and J,.

6. The method of claim 1, wherein dimensional reduction
on the aligned functional data 1s performed with uniform
manifold approximation and projection.

7. The method of claaim 1, wherein the artificial neural
network 1s a classifier for material characterization.

8. The method of claim 7, wherein the classifier 1s a
support vector machine (SVM), a random forest (RF) clas-
sifier or convolutional neural network (CNN).
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9. A method for material characterization comprising:
training a classifier according to the method of claim 1;

scanning a sample with an x-ray computed tomography
scanner;

obtaining functional data from the computed tomography
scanner;

characterizing the material of the sample with the func-
tional data from the computed tomography scanner;
and

displaying the characterization result on a display.

10. A system {for training a classifier for a material
characterization comprising:

at least one processor; a non-transitory, computer-read-
able medium having instructions stored thereon that are
executable by the at least one processor to cause the

system to:
obtain the functional data having phase and amplitude;

register functional data by phase-amplitude separation of
the functional data to produce separated phase and
amplitude components with an elastic distance and
perform statistical analysis on the separated phase and

amplitude components to produce aligned functional
data;

perform dimensional reduction on the aligned functional
data to produce a dimensional representation of a
functional space of the aligned functional data; and

train a classifier with the dimensional representation of
the functional space.

11. The system of claim 10, wherein the functional data 1s
voxel data from an x-ray computed tomography scan.

12. The system of claim 10, wherein the registering
functional data includes elastic function data alignment.

13. The system of claim 10, wherein the elastic distance
1s the mean function utilized to warp functions of the phase
and amplitude.
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14. The system of claim 13, wherein the elastic distance
1s defined as the following equation:

(i, f2) = inflla - (g2o77 |
=

_1s the elastic distance, f,, J, are any two
functions of the functional data, group I 1s a set of
orientation-preserving diffeomorphism representing
the phase of the functional data, g, and g, are the square
root slope function of the functional data, v 1s the
amount of time-warping of §, and f..

15. The system of claim 10, wherein dimensional reduc-
tion on the aligned functional data 1s performed with uni-
form manifold approximation and projection.

16. The system of claim 10, wherein the classifier 1s one
of a support vector machine (SVM), a random forest (RF)
classifier or convolutional neural network (CNN).

17. The system of claim 10, wherein the dimensional
representation of the functional space 1s a fuzzy represen-
tation of the data manifold.

18. A system for material characterization comprising:

a computed tomography scanner;

a processor including classifier trained by the system of

claam 10; and

a display for displaying the output of the processor to

1dentify materials scanned by the computed tomogra-
phy scanner.

19. The system of claim 18, wherein the computed
tomography scanner 1s a hyperspectral computed tomogra-
phy scanner.

20. The system of claim 18, wherein the system 1dentifies
materials with an accuracy greater than 30% more accurate
than a process having a classifier trained utilizing functional
data that is not registered and aligned with the elastic
distance.

where d
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