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a b s t r a c t

The problem of estimating a target-layer trajectory, modeled by a straight line, in 2D point
clouds that contain target locations andoverwhelming clutter is studied. These point clouds
are generated by an image-based pre-processing tool, termed ATR, operating on SONAR
image data that results in: (1) point locations and (2) an ATR score: a measure of the
‘‘target-likeness’’ for each point. Themodel of choice assumes that the observed point cloud
is a superposition of two spatial processes: (1) a 1D Poisson process along the target-layer
line, corrupted by 2DGaussian noise, denoting target locations and (2) a 2D Poisson process
denoting clutter. It is further assumed that the target-likeness measure follows known
probability distributions for both target locations and clutter. The line is parameterized by
distance from the origin and the angle with respect to a horizontal axis, and the likelihood
of these parameters for observed data is derived. Using a maximum-likelihood approach, a
gradient-based estimate for line parameters and other nuisance parameters is developed.
A formal procedure that tests for the presence of a target-layer trajectory in the point
cloud data is additionally developed. The success of this method in both simulated and
real datasets collected by NSWC PCD is demonstrated.

Published by Elsevier B.V.

1. Introduction

The problem of detecting targets – both underwater and overground – is important in both civilian andmilitary contexts.
The term target is used to describe an object of interest in a scene that one would like to locate. The process of locating
underwater targets has military applications in mine countermeasures, but it can also be directed to the detection of
other more general important objects such as lost cargo or debris from a sunken vessel or aircraft. In the context of mine
countermeasures, targets are unspent explosive devices that have been left during wartime efforts in strategic marine
locations that are potentially catastrophic for transitingmilitary, passenger, andmerchant ships. In the context of recovering
precious cargo, targets may include anything. In the case of a downed airplane resulting in broken and scattered equipment,
it is often important to recover as much of the plane as possible so that investigators can determine what caused the crash.
In this paper we focus on the problem of detecting underwater targets that are distributed along trajectories. The main
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sensor for detecting underwater targets is side-scan SONAR, a (sound-based) imaging device that scans the ocean floor and
generates image maps of the observed terrain (Chandra et al., 2002). A SONAR device emits sound waves in different audio
frequencies and measures the waves reflected/scattered by different objects in an observation space; the strengths of these
returns form pixel values in resulting images. Image analysts design algorithms that study patterns of pixels in these images
to detect the resemblance of targets amongst a tremendous amount of natural and artificial debris that is littered across
the ocean floor. The approaches/algorithms for detecting target occurrences using image pixels are generically termed as
automated target recognition (ATR) (Chandra et al., 2002). Several ATR procedures with varying degrees of success have
been proposed over the years, relying on ideas ranging from signal processing, machine learning, and statistical modeling
(see Stack, 2011 and Ratches, 2011 for description of the state of the art). The general goal of ATR algorithms is to detect,
recognize, and help neutralize targets using SONAR images. Inmost general situations the current ATR performance remains
mediocre and one requires additional statisticalmodeling to achieve further improvements in target detection performance.

If we focus only on coordinates identified by an ATR algorithm as potential target locations, we obtain a 2D point cloud
in the region of interest. This assumption of point data is justified by the fact that the spatial extent of most targets in
SONAR images is typically only a few pixels – ranging from tens to hundreds – due to the small size of targets relative to
the bandwidths used in synthetic aperture SONAR (SAS) imaging. Thus, the limited spatial extent of targets allows us to
treat them as individual points in the observed spatial domain, and the focus shifts from appearance-based pixel patterns
to location-based spatial patterns of target locations. We will also assume the availability of an ATR score, a real-number
associated with each point, that quantifies the confidence an ATR algorithm has about the presence of a target at that point.
The higher the number, the more likely it is a target.

This labeled 2D point cloud does not consist of target locations only. The main challenge in target detection comes from
target-like objects that are present in imaged areas but are not targets. These include artificial debris (bottles, boxes, fish
traps, etc.) and natural objects (fish, rock, coral, etc.) that have appearances (pixel values, object size, and pixel patterns)
similar to targets in SONAR images. Since ATR algorithms rely on pixel patterns to perform target detection and classification,
this often leads to an ATR algorithm generating a large number of false detections over the search space, and it becomes
difficult to distinguish targets from these false detections, also termed clutter. Thus, these point clouds are heavily cluttered
with the clutter points far outnumbering the target locations.

If we assume that targets are laid by a single target-layer (vessel), then the knowledge of target-layer trajectory can
help discriminate between targets and clutter. For instance, one can focus only on detections that are reasonably close
to the target-layer trajectory for identifying potential targets. Points that are far away can be easily discarded as clutter.
Thus, the problem of estimation of target-layer trajectory becomes an important step in target detection. A target-layer
trajectory, or simply a trajectory, is potentially any smooth curve inR2, and estimating it without any additional information
is quite difficult. Note that the detected points do not have any time or sequence information associated with them. The
space of all smooth curves is infinite-dimensional and requires additional constraints to make the problem tractable. One
solution is to assume a simple geometry associated with the trajectory, such as a line or a quadratic, and restrict the
search space to the relatively small number of parameters characterizing that geometry. In this paper we assume that the
target-layer trajectories are straight-lines and focus on estimating their occurrences in the observed scene. The line
estimation is performed using spatial point data where each point represents a potential target location detected using
an ATR algorithm.

There have been several efforts that use a point-process model for target detection. Most of them directly focus on point
process models for target detection Agarwal et al. (2002), Lake (1998), Cressie and Lawson (1998), Trang et al. (2008), Trang
et al. (2011), Bryner et al. (2014) andWalsh and Raftery (2005), while some try this approach implicitly using clutter removal
Byers and Raftery (1998). The geometry of the underlying target-layer trajectory is seldom exploited in these papers. One
exception is Walsh and Raftery (2002), which assumes target locations are nearly linear and uses that extra knowledge to
help improve target estimation. Another example is Lake et al. (1997), which assumes collinearity of target locations to
perform target detection. In contrast to these papers, we will focus on the trajectory itself and will estimate its parameters
assuming a single straight-line model.

We will initially assume that the observed points are of two types: (1) targets: a set of points representing objects of
interest which are the points from a 1D Poisson process along the target-layer line randomly displaced by Gaussian noise
with unknown variance, and (2) clutter: a set of points arising froma 2DPoisson process on the observation domain. The two
processes are assumed to be independent of each other. The full observation process is a union of these two sets. Associated
with each point is an ATR score that reflects its likeness to a target. Taking a maximum-likelihood approach we derive
a likelihood function for a line model given the full set of observations, and maximize it using a gradient approach. This
framework is very similar to the oneused in Su et al. (2013) for estimating arbitrary curves (with known shapes) in a cluttered
point cloud. The main difference lies in the assumption of a straight-line trajectory and the availability of ATR scores. This
changes the likelihood functions and allows for a direct estimation of a line guided by the ATR scores. Later on we extend
the model to include: (1) estimation of multiple linear trajectories, and (2) presence of targets that are not associated with
target-layer trajectories but are scattered according to an independent Poisson process in the observed region.

The rest of the paper is arranged as follows. We start by describing the observation model and the associated likelihood
function, without the ATR scores, in Section 2, and expand the framework to include the ATR scores in Section 3. We then
present estimation results on three types of datasets in Section 4. Section 5 compares the performance of our line model
with RANSAC, a widely used algorithm for detecting lines or curves in point cloud data. Section 6 outlines and provides
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Fig. 1. A display of the model behind the observed point cloud. The points associated with the target-layer trajectory (dark line) are shown as red ‘o’ while
the background clutter is shown using blue ‘*’. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

examples of a formal procedure that tests the statistical significance of the fitted line model against a homogeneous null
model. We give some brief concluding discussion in Section 7.

2. Line detection model using point data

Let the region of interest for target detection be denoted by U ⊂ R2. If there are targets in U , we believe they arose by
a target-layer making a single pass over the region, following roughly a straight line, and scattering targets about this line.
The ATR pre-processing results in m locations Y = {y1, y2, . . . , ym} in U . Each location denotes either a target or clutter.
In the first step, we will ignore the ATR scores and treat all points as equal in the analysis. Later on, we will include these
scores in the likelihood function and study their influence in line estimation.

Our goal is to formulate amodel for the locations of targets and clutter points, estimate the parameters of this model, and
use this model to test the hypothesis that targets are present. We treat this as a binary hypothesis test—the null hypothesis
is that Y is simply clutter, and the alternate hypothesis is that Y is a superposition of targets scattered about some unknown
line L and clutter. If Y contains more points lying closer to some line than would be expected by chance under our model,
we reject the null hypothesis that all the points are clutter and conclude that a target line is present (see Fig. 1).

We now present the stochastic model behind the point observations.

1. Target points: The points associated with targets arise as follows. Random points s are generated on the line L by a
Poisson process with intensity γ (s), s ∈ L. Each point s from this process is then randomly displaced in R2 according to
the density f (y|s) on R2, which yields a point y that represents the location of a target. The collection of these randomly
displaced points y forms a Poisson process on R2 with intensity ρ(y) =


L f (y|s)γ (s) ds, y ∈ R2, where the integration

is over the line L, and ds denotes Lebesgue measure on L. We restrict our attention to the points lying in the region U .
The total number of targets in U will be a Poisson random variable with mean Γ =


U ρ(y) dy, where the integration is

over U and dy is Lebesgue measure on R2.
2. Clutter points: The points associated with clutter are modeled as a realization of a Poisson process with intensity λ(y)

on U . The number of clutter points is a Poisson variable with meanΛ =

U λ(y) dy.

We assume the Poisson processes for targets and clutter are independent, and thus, their superposition is a Poisson process
with intensity ξ(y) = λ(y)+ρ(y). The point cloud Y is a realization from this process. The density of the Poisson process Y
is P(Y ) = e−Λ−Γ

n(Y )
i=1 ξ(yi), where n(Y ) denotes the cardinality of Y . The null hypothesis is that all the points are clutter,

i.e. that ρ(y) ≡ 0 and the density of Y is Q (Y ) = e−Λ
n(Y )

i=1 λ(yi).
The line L, the intensities γ (·) and λ(·), and the density f (y|s) will be described (see below) in terms of parameters

whose values are not known a priori and must be estimated from the data. Therefore, in our hypothesis testing we will use
the generalized likelihood ratio test (GLRT). The GLRT statistic is given by

max
θ0

Q (Y |θ0)

max
θ

P(Y |θ)
, (1)

where θ0 and θ denote the parameters involved in the null and alternative hypotheses, respectively. We will make the
following assumptions:

1. The density f (y|s) is bivariate normal with mean s and variance σ 2I , i.e., the points y ∈ Y corresponding to targets are
obtained by adding i.i.d. N(0, σ 2I) noise to the points s sampled from L.

2. The intensities γ (s) and λ(y) are constant: γ (s) = γ for s ∈ L and λ(y) = λ for y ∈ U .
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With these assumptions, we have

ρ(y) = γασ (y), where ασ (y) =
exp


−d(y)2/(2σ 2)


σ
√
2π

, (2)

and d(y) is the minimum distance between the point y and L. Also, ξ(y) = λ + γασ (y), Γ = γ J where J =

U ασ (y) dy,

andΛ = λAwhere A is the area of U . We will call this our baseline model.
Appendix gives a derivation of (2) and formulas for computing the integral J when the region U is polygonal. Note that

ασ (y) is large if a point y is close to L, with the closeness measured relative to the scale σ . If σ is fairly small and the line L
stays away from the boundary of U , we can approximate the integral J by the length of the segment L ∩ U .

The line L will be characterized by the polar coordinates (r, φ) of the point on the line that is closest to the origin;
L is the line tangent to the circle of radius r (centered at the origin) at the point (r, φ). Note that ασ (y) in (2) and
the integral J given above depend implicitly on the line L, and thus they are functions of (r, φ, σ ). Define the vectors
v = (cos(φ), sin(φ)) and w = (− sin(φ), cos(φ)). Here, v is a unit vector perpendicular to L, andw is a unit vector parallel
to L. Let p(y) = v · y − r be the signed distance from the point y to L so that d(y) = |p(y)|.

DefineH to be the logarithm of P(Y |λ, γ , r, φ, σ ), and let θ = [λ, γ , r, φ, σ ] ∈ R5 denote the unknown parameters. The
function H : R5

→ R is then given by

H(θ) = −γ J − λA +

m
i=1

log(λ+ γασ (yi)),

and let θ̂ = argmaxθH(θ) be the maximizer. We will solve for the MLE θ̂ using a gradient approach. The derivatives of H
with respect to these five parameters are given by:

∂H
∂λ

= −A +

m
i=1

1
λ+ γασ (yi)

,

∂H
∂γ

= −J +

m
i=1

ασ (yi)
λ+ γασ (yi)

,

∂H
∂r

= −γ
∂ J
∂r

+

m
i=1

γασ (yi)
λ+ γασ (yi)


p(yi)
σ 2


,

∂H
∂φ

= −γ
∂ J
∂φ

+

m
i=1

γασ (yi)
λ+ γασ (yi)


−p(yi)(w · yi)

σ 2


,

∂H
∂σ

= −γ
∂ J
∂σ

+
γ

σ

m
i=1

ασ (yi)
λ+ γασ (yi)


p(yi)2

σ 2
− 1


.

Formulas for the partial derivatives of J are given in Appendix.
With regard to carrying out the GLRT, our situation is non-standard. Firstly, under the null hypothesis γ = 0 that Y is

simply clutter, our model does not satisfy the usual regularity conditions required for validity of the asymptotic chi-squared
distribution of −2 log(GLRT), where GLRT is given in (1). In particular, under the null it is easily seen that ∂H

∂r ,
∂H
∂φ

, and ∂H
∂σ

are identically zero so that the Fisher information matrix is singular. Secondly, if no restrictions are placed on the value of
σ , the maxσ in the denominator of (1) is infinite. This follows by noting that, if λ and γ are fixed at any positive values, and
r and φ are chosen so that some data point yi lies exactly on the line L, then H(θ) → ∞ as σ → 0. For these reasons, when
carrying out the GLRT we rely on critical points determined by Monte Carlo and, moreover, restrict the allowed values of σ
by requiring σ ≥ σ0 for some appropriately chosen value σ0. This last restriction is reasonable in our application since there
are technological limits (e.g., GPS location errors) on the accuracy of target locations.

The parameters involved in the null and alternative hypotheses are θ0 = λ and θ = (λ, γ , r, φ, σ ) with σ ≥ σ0. Using
the assumptions and facts stated above, the GLRT simplifies to

max
λ

Q (Y |λ)

max
λ,γ ,r,φ,σ

P(Y |λ, γ , r, φ, σ )
=

max
λ


e−λA

m
i=1
λ


max

λ,γ ,r,φ,σ


e−γ J−λA

m
i=1
(λ+ γασ (yi))

 .
The numerator maximization is easily seen to be e−m(m/A)m. Finding the denominator requires numerical optimization.

We use the fmincon function in MATLAB to perform a gradient-based, constrained optimization of the function H , where
our only constraint is that σ ≥ σ0. (The value of σ0 = 10−5 throughout this paper.) Since a gradient approach provides
only a locally-optimal solution, we use multiple initializations of the line to search a larger space. We retain all solutions
resulting from different initializations and select the best amongst them according to the likelihood function. Fig. 2 shows



D. Bryner et al. / Computational Statistics and Data Analysis 102 (2016) 1–22 5

Fig. 2. Estimation of target-layer trajectory using maximum-likelihood estimation. The left panel shows the point observations, where red circles indicate
ground truth target locations and blue stars indicate clutter. The center panel shows local solutions resulting from different initializations of the line,
colorized according to the H value. The right panel shows the best solution amongst these local results. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

an illustration of this idea using a dataset from the Naval Surface Warfare Center, Panama City Division (NSWC PCD). See
Section 4 for a detailed description of the data. The left panel of the figure shows the data, where red circles indicate
ground truth target locations and blue stars indicate clutter points. The center panel shows the resulting lines obtained
from the gradient-based optimization over θ formany different initial conditions, each colorized according to the associated
(locally-optimal)H value. The right panel shows only the linewith the highestH value from the center panel. Although there
is no ground truth line available to validate this result, the best estimated line seems reasonable. For this dataset m = 608,
U = [0, 1] × [0, 1], and the three parameters not associated with the line are estimated to be λ̂ = 551.2, γ̂ = 56.26, and
σ̂ = 0.008241.

3. Line detection model with ATR scores and multiple trajectories

3.1. Extensions

The baseline model of Section 2 can be extended in the following three ways:

1. Incorporate ATR scores: Firstly, we consider the situation where each observed point location yi has associated to it
an ATR score ci ∈ R+, and thus, our set of data consists of the m pairs (y1, c1), . . . , (ym, cm) ∈ U × R+. We assume
as before that the targets and clutter occur according to independent Poisson processes with intensities ρ(y) and λ(y),
respectively. In addition, we assume that the ATR scores for targets and clutter are independent of their locations, with
scores for targets being i.i.d. from the density g1, and scores for clutter i.i.d. from the density g0. Then, the pairs (y, c) for
targets form a marked Poisson process with intensity ρ(y)g1(c), and the pairs for clutter objects form a marked Poisson
process with intensity λ(y)g0(c). (Here we regard the locations y as ‘‘points’’ and the scores c as ‘‘marks’’.) Our data is
the superposition of these two independent marked Poisson processes, which is itself a marked Poisson process with
intensity ξ(y, c) ≡ λ(y)g0(c)+ ρ(y)g1(c). We will call this the baseline model with ATR scores.

2. Allow multiple target-layer trajectories: Secondly, we extend the model to allow multiple target-layer trajectories.
We suppose there are k such trajectories following lines L1, . . . , Lk, each described by its own vector of parameters
(γj, rj, φj, σj), j = 1, . . . , k, with interpretations identical to those in the single trajectory case of Section 2. The target
locations are now a superposition of k Poisson processes arising from the k trajectories, and the overall intensity of the
target locations is

ρ(y) =

k
j=1

γjαj(y), where αj(y) =
exp


−dj(y)2/(2σ 2

j )


σj
√
2π

,

and dj(y) is the minimum distance between the point y and the line Lj.
3. Inhomogeneous clutter and background target process: Thirdly, we extend the model to allow for a (possibly)

non-constant clutter intensity λ(y) = λf0(y) where f0 is some given intensity function. Finally, in some cases we shall
extend the model to allow the presence of some targets that do not arise from a linear target-layer trajectory, but rather
from a background target process that is an independent Poisson process with intensity βf1(y) for some given function
f1. This background process could represent previously placed targets in the region or some targets being placed in a
field-like arrangement rather than along a linear trajectory.

With these extensions, our marked Poisson process has an intensity function of the form

ξ(y, c) = λf0(y)g0(c)+ βf1(y)g1(c)+

k
j=1

γjαj(y)g1(c), (3)
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and the data (y1, c1), . . . , (ym, cm) has a density of

e
−λA−βB−


j
γjJj m

i=1

ξ(yi, ci), (4)

where A =


U
f0(y) dy, B =


U
f1(y) dy and Jj =


U
αj(y) dy, j = 1, . . . , k.

We solve for the MLE by maximizing the logarithm of this density

H(θ) = −λA − βB −

k
j=1

γjJj +
m
i=1

log ξ(yi, ci),

where θ denotes the vector of all the parameters in our model: λ, β , and (γj, rj, φj, σj), j = 1, . . . , k. The partial derivatives
of H are given by

∂H
∂λ

= −A +

m
i=1

f0(yi)g0(ci)
ξ(yi, ci)

,

∂H
∂β

= −B +

m
i=1

f1(yi)g1(ci)
ξ(yi, ci)

,

∂H
∂γj

= −Jj +
m
i=1

αj(yi)g1(ci)
ξ(yi, ci)

,

∂H
∂rj

= −γj
∂ Jj
∂rj

+

m
i=1

γjαj(yi)g1(ci)
ξ(yi, ci)


pj(yi)
σ 2
j


,

∂H
∂φj

= −γj
∂ Jj
∂φj

+

m
i=1

γjαj(yi)g1(ci)
ξ(yi, ci)


−pj(yi)(wj · yi)

σ 2
j


,

∂H
∂σj

= −γj
∂ Jj
∂σj

+
γj

σj

m
i=1

αj(yi)g1(ci)
ξ(yi, ci)


pj(yi)2

σ 2
j

− 1


,

where pj(y) = vj · y − rj, vj = (cos(φj), sin(φj)), and wj = (− sin(φj), cos(φj)). Formulas for computing Jj and its partial
derivatives are given in Appendix. As before, we use the constrained optimization function fmincon inMATLABwithmultiple
initializations to search for the best lines. After estimating θ, we can estimate the probability that any observed data pair
(yi, ci) corresponds to a target by

1 −
λf0(yi)g0(ci)
ξ(yi, ci)

.

3.2. Examples

We demonstrate the above gradient-based, constrained optimization of H using the same dataset as in the previous
section, except here we use additionally the ATR scores associated with the given points. Once again, we refer to Section 4
for a detailed description of the data. With respect to the extensions provided in the previous subsection (Section 3.1), the
model configuration is f0 = 1, g0 and g1 non-constant, f1 = 0, and k = 1. The results are shown in Fig. 3. Here, the bottom row
is analogous to the three panels of Fig. 2, and the top row consists of some extra images to visualize the ATR score data. The
top-left panel shows the two ATR score density curves, where the clutter score density g0(c) is given in blue and the target
score density g1(c) is given in red. These densities were estimated using a kernel estimate from an independent observation.
The center panel shows the data points colorized according to their ATR score,with the colorbar on the right side of the panel.
The right panel shows the data points colorized according to their ATR score log-likelihood ratio log(g1(ci)/g0(ci)), where
red circles represent those points with this value greater than zero and the blue stars represent those with this value less
than zero. In other words, the red points have an ATR score that is more target-like than clutter-like, and the blue points
have an ATR score that is more clutter-like than target-like. One can see that for this particular dataset, the two densities
are fairly similar, and therefore, the separability of the data based on ATR score alone is quite difficult. Since the points with
target-like ATR score are spread throughout the entire area instead of being concentrated along one line, the best fitted line
is one that splits the area roughly in half and has a large value of σ . The three model parameters not associated with the line
are now estimated to be λ̂ = 337.1, γ̂ = 299.1, and σ̂ = 0.3220.

In situations when the clutter points follow a Poisson process but not with a constant intensity, fitting the model with
a constant f0 can lead to undesirable results. Often times the best fit line is forced to run through a region of high density
clutter points. By extending the model to include inhomogeneous clutter (non-constant f0), any high density clutter regions
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Fig. 3. Estimation of target-layer trajectory using ATR scores. The top-left panel shows the ATR score densities g0(c) (blue) and g1(c) (red) for this dataset.
The top-center panel shows the data colorized according to ATR score. The top-right panel shows the data colorized according to sign(log(g1(ci)/g0(ci))).
The bottom row is analogous to Fig. 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

are considered background, and theMLE is allowed to pick out any truly linear pattern that stands out from the clutter. Fig. 4
illustrates the difference in results obtained from using homogeneous versus inhomogeneous f0 on three simulated datasets
with inhomogeneous clutter and a simulated target line. In the first two datasets the full point cloud is simulated from the
model, but in the third dataset we use real clutter and insert a simulated target line. The left column shows an image of f0(y)
for each dataset, the center column shows the best fitted line using the homogeneous clutter model, and the right column
shows the best fitted line using the model with the inhomogeneous f0 shown on the left. In all cases the true target line
was missed in the homogeneous case, and the fitted line was drawn instead through the areas of high density clutter. The
problem is rectified in the inhomogeneous case, and in all cases the gradient descent finds the correct target line.

After examining the difference in results obtained from using the homogeneous versus inhomogeneous clutter model,
we revisit the example shown in Fig. 3. In Fig. 5 we run the optimization with inhomogeneous f0 instead (keeping all other
model configurations the same) and obtain more reasonable results. The function f0 is estimated via a kernel estimate from
the whole data, using the isotropic Gaussian kernel and with bandwidth large enough to minimize the effects of any line
present in the data. (This same procedure is used to estimate f0 in all the cases with real data and non-constant f0.) Also, we
maintain that


U f0(u)du = |U|, which in this example is equal to 1. The gradient descent now picks out the most promi-

nent target line in the scene. Compare the center and right panels of Fig. 5 with the last two panels of Fig. 3. In this case,
λ̂ = 542.34, γ̂ = 65.23, and σ̂ = 0.0113, which shows that the MLE includes far less target points along the line relative
to the case with constant f0.

Finally, in Fig. 6 we show an example of fitting the extended model with more than one target line. Here, we use fully
simulated data from the model with homogeneous f0, g0 equal to the standard normal distribution, g1 equal to the normal
distribution withmean 1 and variance 1, f1 = 0, and k = 2 target lines. Clearly, the optimization procedure finds the correct
two target lines in this case.

4. Numerical results

In this section we present some experimental results on target-layer trajectory estimation using both point locations
and ATR scores. We will use a number of datasets to evaluate the algorithm. Since in the case of real data, it is difficult
to quantify the performance due to the lack of a ground truth target line, we also rely on simulated data to evaluate the
estimation procedure. We will use three different scenarios: (1) both target and clutter points, and their associated ATR
scores, are simulated from their respective models, (2) the target locations and their associated ATR scores are simulated
while the clutter data is taken from a real dataset, and (3) both the target and clutter points, and their associated ATR scores,
are taken from a real dataset.
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Fig. 4. Three examples of model fitting using non-constant clutter intensity f0 . Left: Plot of f0 . Center: Best fitted line using model with homogeneous
background clutter. Right: Best fitted line using model with the inhomogeneous f0 shown at left.

Fig. 5. Estimation of target-layer trajectory using ATR scores and non-constant f0 . Left: Plot of f0 . Center: Local solutions resulting from different
initializations of the line, colorized according to the H value. Right: The best solution amongst the local results. Compare this result to the bottom row of
Fig. 3, which shows results from using a constant f0 . (Note that the region U is centered at the origin in this example.) (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

4.1. Simulated targets with simulated clutter data

In this experiment, clutter points and target points are simulated according to the line trajectory model with ATR scores
described in Section 3. In Fig. 7, one can see the two simulated datasets in the left column. The clutter points are simulated
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Fig. 6. Estimation of two target-layer trajectories amidst homogeneous clutter. Left: Plot showing clutter points (blue) and target points (red). Center:
Local solutions resulting from different pairs of initializations, colorized according to the H value. Right: The best solution pair amongst the local results.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Estimation of target-layer trajectory using ATR scores in fully simulated data. Each row represents results from a different dataset. Left: the original
points colorized according toATR score; center: estimated lines frommultiple initializations, right: the original ground truth line in bluewith best estimated
line in black. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

from a homogeneous Poisson point process. There are expected to be 50 clutter points in the top row of Fig. 7, and 100
clutter points in the bottom row. The target points are simulated using a Poisson point process along a randomly generated
line and then perturbing the points away from the line using a Gaussian distribution with σ = 0.03. The occurrence rates
for target locations are selected so that targets are on average spaced 0.1080 units apart in the top row and 0.2700 units
apart in the bottom row. The ATR scores are generated by resampling with replacement from a real dataset that contains
ATR scores from both targets and clutter. Although the original ATR scores take values in [0, 1], the data points with ATR
score of less than 0.5 are removed in the pre-processing, as in the previous cases.

In the left panels, one can see the points with their respective ATR scores. Black indicates that the ATR score is low, and
red indicates that the ATR score is high. Note the relative difficulty, even for a human observer, in estimating where the
line is located. In the middle column of Fig. 7, we show the 50 estimated lines (not all distinct) obtained using random
initializations in each case. The color of the line indicates the value of the log-likelihood function H . The red circles denote
the true target locations, and the blue stars denote the locations of clutter points. In the far right panels the true line used
to simulate the data is plotted in blue, and the best fitted line is plotted in black.

4.2. Real clutter and simulated target locations

In this experiment we add simulated target locations to real clutter data in order to evaluate the performance of the line
estimation procedure. The clutter data is obtained by taking a subset of data collected by a side-scan sonar system deployed
by NSWC PCD that contains real ATR scores fromdetected contacts. Since target locations are known usingmanual detection
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in this data,we obtained a sample of clutter by simply removing points related to targets. Also, as a preprocessing step, points
that have an ATR score of less than 0.5 are removed.

The simulated target locations are generated over the region by simulating from a Poisson point process with rate γ
along the line and applying Gaussian noise with covariance σ 2I to the points on the line. The plots in Fig. 8 are laid out
similarly to those in Fig. 7 and display results on two datasets. The ATR scores for the simulated target data are generated by
sampling with replacement from a list of the ATR scores of true targets from the NSWC PCD dataset. The targets in the top
row are generated with an average spacing of 0.15 units, and the bottom row has an average spacing of 0.25 units, where
the region size is 2 units ×2 units. These examples are challenging because the spacing between the targets is relatively
large compared to the size of the region. For an increased target spacing, the occurrence of targets is relatively sparse and
it makes trajectory estimation more difficult. Despite this, the algorithm performs reasonably well in the cases presented
in Fig. 8.

As shown in light blue lines in the center panels of Fig. 8, the optimization is local and solutions far from the global solution
are often selected. However, we can overcome this limitation using multiple random initializations, as earlier, and reach a
global solution. To quantify the line estimation performance, there are several ideas. One is to compare the parameters of
the estimated line with those of the ground truth. A better measure seems to be ametric that compares the two lines as sets
of points. Towards that goal, the Hausdorff distance dH(·, ·) computes the maximum orthogonal projection of one point in
either line to the other line. For two line segments L1, L2 ⊂ U , this distance is given by

dH(L1, L2) = max{max
x∈L1

min
y∈L2

∥x − y∥,max
y∈L2

min
x∈L1

∥x − y∥}.

Since L1 and L2 are line segments, dH(L1, L2)will bemaximized at the boundary of U if U is bounded and convex. The left and
center panels of Fig. 9 show two visualizations of the Hausdorff distance calculation. The solid blue lines are L1 and L2, and
the dashed lines represent maximal projection distances from one line to the other, contained within U . The red dashed line
represents the maximum of these projection distances and thus represents the Hausdorff distance that is measured in both
cases. Here, U = [−1, 1] × [−1, 1], and the Hausdorff distances measured are 1.34 and 0.96 in the left and center panels,
respectively.

The right panel of Fig. 9 plots the Hausdorff distances measured from the following experiment. One thousand point
clouds were simulated from the baseline model (without ATR scores) using randomly generated parameters φ, r , and γ , a
fixed a set of clutter, and a fixed σ = 0.05. For each dataset, a best fit line is obtained from multiple initializations, and the
result is compared to the true line using the above Hausdorff distance between the two lines. The obtained distances are
then plotted against the number of simulated targets n. The bottom curve represents the first quartile, themiddle represents
the median, and the top represents the third quartile. One can see that, as the number of targets increases, the Hausdorff
distance as well as the interquartile range both tend to decrease, indicating an increase in accuracy of our estimated line.
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Fig. 9. Hausdorff distance between lines in U . The left and center panels show an example of the Hausdorff distance calculation. The right panel shows
Hausdorff distances between true and estimated lines, for 1000 realizations, plotted against the number of targets n. The three curves represent the sliding
quartiles using a window size of 20 with the median plotted in red. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

4.3. Real targets and clutter data

Next, we test our estimation procedure on two datasets of contacts obtained from an ATR system developed by NSWC
PCD. Acoustic data was collected from an autonomous underwater vehicle (AUV) equipped with a high resolution, high
frequency, synthetic aperture sidescan sonar. The vehicle traveled in a uniformly-spaced search pattern to cover the entire
test field, which was approximately one nautical square mile and contained about 15–20 targets of interest laying on the
seafloor in each case. The raw sonar data was then post-processed to form a complex-valued image via a k-space or wave
number beamformer (see Ch. 6 of Soumekh, 1999). The sonar imagery was then fed to an onboard ATR algorithm that
detected and output all potential target locations, or contacts. Associated with each contact, the algorithm also output a
classification score from0 to 1 indicating the likelihood of it being a target of interest.We direct the reader to the Refs. Tucker
and Azimi-Sadjadi (2011) and Isaacs and Tucker (2011) for more information on the detection and classification procedures
within the ATR algorithm. The data in Figs. 2, 3, 10, 11, and 13 represent the contact locations from these datasets that have a
score greater than 0.5, i.e., those contacts with a positive target classification. Datasets 1 and 2 differ in the following ways:
they were collected in different locations, the target fields were different, and a different sonar system was used in each
case. All of these factors contribute to a greater occurrence of background clutter in dataset 2 compared to that of dataset 1,
thus making for an interesting comparison of results from fitting our model.

1. Baseline model without and with ATR scores: Figs. 10 and 11 show the results of our estimation under the baseline
model on real dataset 1, and they are analogous to Figs. 2 and 3, which show results on real dataset 2. For real dataset 1we
havem = 471 andU = [0, 1]×[0, 1], andwithout using ATR scores the three parameters are estimated to be λ̂ = 347.1,
γ̂ = 96.99, and σ̂ = 0.006572. When the ATR scores are included in the analysis, we get λ̂ = 196.2, γ̂ = 279.7, and
σ̂ = 0.2140. Similar to the results for real dataset 2 shown in Section 3.2, since there are many points with target-like
ATR scores scattered widely throughout U and not necessarily in a compact linear fashion, the value of σ̂ is much larger
when ATR scores are considered compared to when they are not.

2. Extendedmodel using inhomogeneous clutter: However,weobserve (in Fig. 12) a similar phenomenonas in Section3.2
when we include inhomogeneous f0 in the model, whereby the MLE assigns more points as background clutter and less
as members of a target line when compared to the MLE obtained with homogeneous f0. Fig. 12 is analogous to Fig. 5, and
likewise one can compare Fig. 12with the last twopanels of Fig. 11. In this case λ̂ = 366.6, γ̂ = 81.72, and σ̂ = 0.006270,
which is similar to the results obtained with homogeneous f0 and without ATR scores shown in Fig. 10 but with a slightly
more selective target line.

3. Extended model using background target process: It is often possible in real data to have target locations that are not
associated with the trajectory being estimated, and this appears to be the case with real datasets 1 and 2. Thus, a more
appropriate model would be one that includes the extension detailed in Section 3.1 of a non-zero f1, i.e., the inclusion
of a background target process. As the inclusion of an inhomogeneous f0 rectifies the poor results shown in Figs. 3 and
11, so does the inclusion of a homogeneous f1. Here, we compute the MLE of θ for real datasets 1 and 2 using the model
with ATR scores and homogeneous f0 and f1. Fig. 13 shows the best fit line in each case, and they are nearly identical to
the best fit lines from Figs. 5 and 12. Tables 1 and 2 summarize the results for both real datasets under various model
configurations presented in this paper.

5. Comparison with RANSAC

Random sample consensus (RANSAC) (Fischler and Bolles, 1981) is an approach for fitting geometric models to noisy
point cloud data, and is widely used in computer vision applications to find lines and curves. Unlike our proposed line
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Fig. 10. Estimation of target-layer trajectory on real dataset 1 without using ATR scores. This figure is analogous to Fig. 2 in Section 2.

Fig. 11. Estimation of target-layer trajectory on real dataset 1 using ATR scores and assuming homogeneous clutter. This figure is analogous to Fig. 3 in
Section 3.

Fig. 12. Estimation of target-layer trajectory on real dataset 1 usingATR scores and inhomogeneous cluttermodel (non-constant f0). This figure is analogous
to Fig. 5 in Section 3. Compare to the bottom row of Fig. 11, which shows results from using a constant f0 .

model, the standard RANSAC algorithm does not handle marks such as ATR scores in the estimation, and thus we make a
simple modification to standard RANSAC to incorporate this additional information when applicable. Let ci denote the ATR
score, and letwi = ci/

m
i=1 ci denote the weight of the ith data point based on its ATR score. Instead of uniformly sampling

the data points, a core step in standard RANSAC, we perform a weighted sampling of the points so that the ith point has
probability wi of being selected. Furthermore, instead of just counting the number of elements in the consensus set S̃, we
compute a weighted measure of the set as


i∈S̃ wi. We will call this modified algorithm Weighted RANSAC, or WRANSAC,

and will compare results from our model-based approach to results from standard RANSAC and WRANSAC.
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Fig. 13. Estimation of target-layer trajectory using ATR scores and homogeneous background target process. Left: best line estimated from real dataset 1.
Right: best line estimated from real dataset 2.

Table 1
Results of model parameter estimation on real datasets 1 and 2 using homogeneous f0 . We show results from the cases without ATR scores, with ATR
scores, and with ATR scores and homogeneous background target process f1 .

Dataset Parameter Baseline w/o ATR Baseline w/ATR Extension w/ATR & bkgd targets

λ̂ 347.1 196.2 196.8
γ̂ 96.99 279.7 82.14

# 1 r̂ 0.6269 0.5328 0.6270
(m = 471) φ̂ 0.8823 0.2580 0.8838

σ̂ 0.006572 0.2140 0.005776
β̂ N/A N/A 171.2

λ̂ 551.3 337.1 334.9
γ̂ 56.26 299.1 54.91

# 2 r̂ 0.3984 0.6948 0.3963
(m = 608) φ̂ 0.1264 0.8472 0.1239

σ̂ 0.008241 0.3220 0.008626
β̂ N/A N/A 217.8

Table 2
Results of model parameter estimation on real datasets 1 and 2 using inhomogeneous f0 . We show results from the cases without ATR scores, with ATR
scores, and with ATR scores and homogeneous background target process f1 .

Dataset Parameter Baseline w/o ATR Baseline w/ATR Extension w/ATR & bkgd targets

λ̂ 377.7 366.6 220.5
γ̂ 72.94 81.72 78.13

# 1 r̂ 0.6275 0.6267 0.6270
(m = 471) φ̂ 0.8825 0.8821 0.8842

σ̂ 0.005212 0.006270 0.005541
β̂ N/A N/A 150.6

λ̂ 558.2 542.3 261.8
γ̂ 49.37 65.23 55.08

# 2 r̂ 0.3957 0.3989 0.3957
(m = 608) φ̂ 0.1227 0.1296 0.1230

σ̂ 0.007407 0.01127 0.008361
β̂ N/A N/A 290.7

We perform 100 independent trials for each combination of σ ∈ {5.4 × 10−3, 1.1 × 10−1
}, λ ∈ {10, 100}, and

γ ∈ {10, 50}, and U = [0, 1] × [0, 1], for a total of 800 independent trials. In each trial we simulate dataset according
to the chosen parameter values under our model and fit both RANSAC andWRANSAC as well as our baseline model. In these
datasets the underlying linear trajectories were generated randomly, and the densities g0, g1 were the same as those shown
in Fig. 3. We then evaluate the estimation performance in terms of Hausdorff distance of the estimated line from the ground
truth line. The top panel of Fig. 14 shows an overall summary of the results in the form of a boxplot. Clearly, on average our
model outperforms both RANSAC andWRANSAC in this experiment. In fact, our model outperforms RANSAC andWRANSAC
under all eight simulation scenarios.

We perform a similar experiment using real background clutter and simulated target points. An example that compares
the WRANSAC estimate with our model-based solution involving inhomogeneous clutter is shown in Fig. 15. As one can
see, the estimate from our proposed method is closer to the ground truth line than that of WRANSAC. Since the background
clutter comes from real data, there is no guarantee that the clutter is distributed homogeneously, and thus we make use
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of our model extension with an inhomogeneous background clutter model f0. To measure the overall performance, we
randomly generated 100 lines for each combination of parameter values σ ∈ {0.005, 0.1} and γ ∈ {10, 50} over randomly
selected regions of real observed background clutter. Note that λ is not applicable to this experiment since the background
clutter comes from real data. The bottom panel of Fig. 14 summarizes the results of this experiment, and as before the
model-based methods outperform both RANSAC and WRANSAC.
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6. Hypothesis test for line detection

Here, we design a procedure to test the null hypothesis that our data does not contain a target-layer line versus the
alternative that it does. Following the notation in Section 2 and given data (Y, c) = {(y1, c1), . . . , (ym, cm)}, the likelihood
function under the null model is noted by Q ((Y, c)|θ0), and the likelihood function under the proposed line model is noted
by P((Y, c)|θ0). The parameters included in the vector θ and the formula for P depend on the model extensions one wishes
to include from those presented in Section 3.1. For example, if the model includes the background target process but only
has one line, the parameter vector is given as θ = (λ, γ , r, φ, σ , β), and the likelihood function is given as

P((Y, c)|θ) = e−λA−βB−γ J
m
i=1

(λf0(yi)g0(ci)+ βf1(yi)g1(ci)+ γασ (yi)g1(ci)).

Wedesign thenullmodel to consist of terms in theproposedmodel that donot relate to the line. Therefore, if the proposed
model does not include the background target process, then θ0 = λ, and the likelihood for the null model is given as

Q1((Y, c)|θ0) = e−λA
m
i=1

(λf0(yi)g0(ci)).

If the proposed model contains the background target process, then θ0 = (λ, β), and the likelihood for the null model is
given as

Q2((Y, c)|θ0) = e−λA−βB
m
i=1

(λf0(yi)g0(ci)+ βf1(yi)g1(ci)).

One can perform the hypothesis test of a proposed linemodel that includes the background target process versus null model
1; however, the tested hypothesiswould then be that ofwhether there are targets present in the scene or not. The hypothesis
test is no longer specifically testing for a target line in this case.

As explained in Section 2, the usual regularity conditions that ensure validity of the asymptotic chi-squared distribution
of D = −2 log(GLRT), where GLRT is given in Eq. (1), do not apply in our situation. Therefore, we rely on a Monte Carlo
simulation to compare the value of D = d∗ (the value of D associated with the data) to an empirical distribution generated
under the null assumptions. The procedure is as follows:

1. Given the data (Y, c) = {(y1, c1), . . . , (ym, cm)} ⊂ U × R+, null model i = 1 or 2, clutter distribution f0(y), background
target distribution f1(y), clutter ATR density g0(c), and target ATR density g1(c), compute the GLRT statistic

d∗
= −2 log

max
θ0

Qi((Y, c)|θ0)

max
θ

P((Y, c)|θ)

 .
2. Generate {dj, j = 1, . . . ,N}, a set of N random samples from the distribution of D under the null hypothesis, via the

following.
(a) If i = 1 (null model 1), for j = 1, . . . ,N ,

i. Simulate a dataset withm points from the null model. That is, generatem clutter points
(Zj, c̃j) = {(zj,1, c̃j,1), . . . , (zj,m, c̃j,m)},

with zj,k i.i.d. from f0 and c̃j,k i.i.d. from g0.
ii. Compute the GLRT statistic

dj = −2 log

max
θ0

Q1((Zj, c̃j)|θ0)

max
θ

P((Zj, c̃j)|θ)

 .
(b) Else if i = 2 (null model 2), for j = 1, . . . ,N ,

i. Set the number of clutter points m0,j to be a Binomial(m, p) random variable with p = λ̂A/(λ̂A + β̂B) where
(λ̂, β̂) = argmaxλ,βQ2((Y, c)|λ, β), and set the number of background mines to bem1,j = m − m0,j.

ii. Simulate a dataset with m points from the null model via the following. Generate m0,j clutter points
(zj,1, c̃j,1), . . . , (zj,m0,j , c̃j,m0,j)with zj,k i.i.d. from the density on U proportional to f0 and c̃j,k i.i.d. from g0. Generate
m1,j background target points (zj,m0,j+1, c̃j,m0,j+1), . . . , (zj,m, c̃j,m)with zj,k i.i.d. from the density onU proportional
to f1 and c̃j,k i.i.d. from g1. Set (Zj, c̃j) to be the union of the clutter and background target points.

iii. Compute the GLRT statistic

dj = −2 log

max
θ0

Q2((Zj, c̃j)|θ0)

max
θ

P((Zj, c̃j)|θ)

 .
3. Compute the empirical p-value as p = |{j : dj > d∗

}|/N , where | · | denotes cardinality.
4. Select a significance level α for the hypothesis test. If p < α, then reject the null hypothesis and conclude that the data

arise from the line model.
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Fig. 16. Hypothesis testing on simulated data with increasing clutter level. Top row: best fit line for each case. Bottom row: histogram of samples from
null distribution of D along with the value of d∗ (vertical red line) for each respective case in the top row. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Remark. When computing the GLRT statistic in steps (1) and (2), the numerator is computed analytically in the case of
null model 1 and via constrained numerical optimization with λ, β ≥ 0 in the case of null model 2. In all instances the
denominator is computed via the numerical optimization technique covered in Sections 2 and 3 of selecting the best (highest
likelihood) solution from a fixed number of random initializations, ninit .

We carry out the hypothesis test outlined above on a series of simulated datasets. We generate the datasets by first
randomly selecting the parameters γ , σ , r , and φ and simulating a target line in U . Then, we fix the target line and build
each dataset by adding to the target line a random, uniformly generated set of clutter points. We forgo using ATR scores in
the analysis here and thus set g0 = g1 = 1 in the likelihood formulas above. Since there are no ATR scores in the analysis,
we do not consider the background target process in the proposed line model, and therefore we use null model 1 in the
hypothesis testing. For this demonstration, we create five datasets with the same target line and an increasing number of
clutter points, corresponding to a decreasing chance that the alternative hypothesis will be selected over the null in our
hypothesis test.

The parameter values used to simulate the datasets are the following: γ = 36, σ = 0.0161, r = 0.3179, and φ = 1.5885
on U = [0, 1] × [0, 1]. The simulated target line yielded 32 points, and we set the increasing number of clutter points for
each dataset to be 32, 160, 200, 240, and 320 for a total number of points m = 64, 192, 232, 272, and 352, respectively.
For our hypothesis test procedure above, we set ninit = 100 and N = 1000. The top row of Fig. 16 shows the best fitted
line overlayed on each dataset, and the bottom row shows the corresponding histogram of the dj’s generated from step
(2) above along with the value of d∗ indicated by the vertical red line. In each case the program fits the correct line to the
data; however, the empirical p-values increase as the number of clutter points increases. The five empirical p-values are 0,
0, 0.006, 0.281, and 0.728, respectively.

Now, we investigate the effect of the selection of the clutter model f0 on the hypothesis test results. Fig. 17 shows the
results of model fitting and hypothesis testing on the three inhomogeneous clutter datasets shown in Fig. 4 with each target
line removed. The top half of Fig. 17 shows results when we assume f0 is homogeneous, and the bottom half shows results
when f0 is set to the appropriate inhomogeneous clutter distribution. Since the clutter is inhomogeneous by nature, the
MLE when f0 is set to the value 1 is a line that runs through an area of high density clutter, and the hypothesis test in all
three cases yields a significant p-value. In other words, the hypothesis test yields a false positive in all three cases. This issue
is resolved in the bottom half of Fig. 17 when using the correct inhomogeneous clutter model. All three hypothesis tests
yield an empirical p-value greater than the standard significance level of α = 0.05, and the null model correctly cannot be
rejected in each case.

Additionally, we carry out the hypothesis test in a variety of model configurations on the two real datasets presented
in Section 4.3, again with ninit = 100 and N = 1000. For each dataset we perform the hypothesis test procedure outlined
above under the following four model scenarios, each with homogeneous f0 and inhomogeneous f0, for a total of eight tests.

1. Without ATR scores. Null model 1.
2. With ATR scores. Null model 1.
3. With ATR scores and homogeneous background targets. Null model 1.
4. With ATR scores and homogeneous background targets. Null model 2.

The plots of the histograms with GLRT statistic are shown for each case in Fig. 18, where ‘‘# 1’’ indicates real dataset 1, and
‘‘# 2’’ indicates real dataset 2. The empirical p-values are equal to 0 in all cases. A larger value of N is required to increase
the numerical precision of the p-value calculation; however, a cost of increased computation time follows. Since hypothesis
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Fig. 17. Line fitting and hypothesis testing on inhomogeneous clutter data. Left: Optimization results from multiple initializations, colorized according
to H value. Center: The best of the multiple solutions shown at left. Right: Histogram of samples from the null distribution of D along with the value of
the test statistic d∗ (vertical red line). Top half: Results with homogeneous clutter model. Bottom half: Results on the same data as the top half but with
inhomogeneous clutter model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 18. Hypothesis testing on real datasets 1 (‘‘# 1’’) and 2 (‘‘# 2’’) under various model configurations. Each panel shows a histogram of samples under
the null distribution of D along with the value of d∗ (vertical red line) for each respective case. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

testing under all possible model configurations yields a rejection of the null hypothesis in both datasets, we accept the
alternate hypothesis that there is a target line in both scenes.

7. Summary and discussion

To summarize our contribution, we have developed a statistical model for the problem of estimating a target-layer
trajectory, a straight line, using spatial point clouds generated by ATR algorithms. These point clouds are characterized by
excess clutter,making it challenging to detect target locations in them.Wemodel target locations as realizations of amarked
Poisson process, perturbed by a Gaussian observation noise, with marks provided by the ATR scores. Similarly, the clutter
is modeled as a homogeneous, marked Poisson process on the observation domain. Then, we use optimization techniques
to solve for MLE of model parameters and use them to test the presence of line in a given data. The results, demonstrated
on both simulated and real target data, show a good performance in line estimation. We also extend the model to include
situations where target points also come from a homogeneous Poisson process, in addition to the ones associated with the
target-layer trajectory.

In terms of further generalizing this model, one can study trajectories that are not lines but have known geometry, for
instance arcs, ellipses, polygons, etc. Since the current paper utilizes the polar representation of a straight line in defining the
log-likelihood and its derivatives, one would need to express the quantities of interest in those relevant parameters, but the
remaining optimization and inference framework should be similar. Another possibility is to allow unknown geometries for
the trajectories. For example, one can assume that the trajectory comes from a fixed shape class but allow some variability
within that class. The solution can come from active contour methods that initialize the trajectory arbitrarily and update
coordinates of the contour iteratively within the desired shape class.

Appendix. Computing J and its partial derivatives

In this appendix we drop the use of boldface for vectors. The intensity of targets at the point y ∈ R2 is γασ (y)with

ασ (y) =


L
fσ 2(y|s) ds,

where L is a line in R2, s denotes a point on this line, ds denotes Lebesgue measure on L (i.e., measure = length for intervals
on L), and ft(y|µ) is a bivariate normal density with mean µ and variance tI . If we rotate and translate the plane, we can
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move the line L to the x-axis and the point y to a point (0, b) on the y-axis. Here b = d(y) is the minimum distance between
y and L. Then the integral above becomes

ασ (y) =
1

2πσ 2


∞

−∞

exp(−(x2 + b2)/(2σ 2)) dx =
exp(−b2/(2σ 2))

√
2πσ 2

,

so that

ασ (y) =
exp(−d(y)2/(2σ 2))

√
2πσ 2

. (A.1)

Let (r, φ) be the polar coordinates of the line L (i.e., the polar coordinates of that point on the line that is closest to the origin),
and let v = (cosφ, sinφ) be the unit vector perpendicular to the line L. Then d(y) = |p(y)|, where p(y) = y · v − r , and we
may re-write Eq. (A.1) as

ασ (y) = ϕσ 2(p(y)), where ϕt(z) =
e−z2/(2t)

√
2π t

. (A.2)

(We shall use ϕt and Φt to denote the pdf and cdf of the normal distribution with variance t , and ϕ ≡ ϕ1 and Φ ≡ Φ1 for
the pdf and cdf when the variance equals 1.) In what immediately follows, the variance σ 2 is more convenient than σ as an
argument, and so we let t = σ 2 and define

At(y) = α√
t(y) = ϕt(p(y)). (A.3)

Let U be the fixed region in R2. We desire to compute

J ≡ J(r, φ, t) =


U
At(y) dy (A.4)

and its gradient ( ∂ J
∂r ,

∂ J
∂φ
,
∂ J
∂t ).

The bivariate normal density f ≡ ft(y|µ) satisfies the heat equation

∂ f
∂t

=
1
2


∂2f
∂y21

+
∂2f
∂y22


=

1
2
∇ · ∇f

for all µ. Since At(y) is a continuous superposition of such functions, it also satisfies the heat equation. Therefore, by the
divergence theorem, we have

∂

∂t


U
At(y) dy =

1
2


U

∇ · ∇At(y) dy =
1
2


(∇At(y)) · n̂ ds, (A.5)

where n̂ denotes the outward pointing unit normal on the contour surrounding U , and ds is an infinitesimal arc length. From
(A.3) we obtain ∇At(y) = ϕ′

t(p(y))v so that

∂ J
∂t

=
1
2


ϕ′

t(p(y))(v · n̂) ds. (A.6)

The desired function J is an integral (anti-derivative) of (A.6) with respect to t . It is easily verified that

∂

∂t


Φt(z)−

1
2


=

1
2
ϕ′

t(z) and lim
t→∞


Φt(z)−

1
2


= 0,

so that, by differentiating inside the integral, we see that

J =

 
Φt(p(y))−

1
2


(v · n̂) ds (A.7)

satisfies (A.6). This definition also satisfies J → 0 as t → ∞ so that it is the correct choice of the anti-derivative. (Actually,
one can replace 1

2 in (A.7) by any constant without affecting the value of J .)
Up to this point, we have made no assumptions about the region U . Now we restrict ourselves to polygonal regions.

Assume there are k vertices which (in counterclockwise order starting from an arbitrary vertex) are y1, y2, . . . , yk. Define
yk+1 = y1. Let S1, S2, . . . , Sk be the sides of the polygon, where Si is the segment joining yi and yi+1. Let n̂i be the outward
pointing unit normal on side Si, and dsi = (yi+1 − yi)/|yi+1 − yi| be the unit vector pointing along Si. Let θi be the angle
between dsi and the x-axis.

Then (A.7) can be written

J =

k
i=1

(v · n̂i)


Si
(Φt(p(y))− 1/2) ds. (A.8)
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As onemoves along segment Si from yi to yi+1, the function p(y)will increase as a linear function of the arc lengthwith slope

1d
1s

=
p(yi+1)− p(yi)

length(Si)
= cos(φ − θi) = v · dsi, (A.9)

where φ − θi is the angle between v and dsi. Therefore,
Si
(Φt(p(y))− 1/2) ds =

 pi+1

pi
(Φt(p)− 1/2) dp


1s
1d


, (A.10)

where we define pi = p(yi) for all i. This last integral has a closed form. Define

ψt(u) = tϕt(u)+ u

Φt(u)−

1
2


=

√
t ϕ


u

√
t


+ u


Φ


u

√
t


−

1
2


. (A.11)

It is easy to verify that

ψ ′

t (u) = Φt(u)−
1
2
,

so that pi+1

pi
(Φt(p)− 1/2) dp = ψt(pi+1)− ψt(pi),

and from (A.8), (A.9), and (A.10) we conclude

J =

k
i=1

(v · n̂i)

(v · dsi) (ψt(pi+1)− ψt(pi)). (A.12)

The i-th term in the summation (A.12) is undefined when the side Si is parallel to the line L. In this case v · dsi = 0, and
p(y) is constant on Si so that pi+1 = pi. But then it is clear from (A.8) that the i-th term should be

Φ


pi
√
t


−

1
2


(v · n̂i)× length(Si). (A.13)

For later reference we note that

(v · n̂i)

(v · dsi) = tan(θi − φ), (A.14)

which follows from (A.9) and the fact that the angle between v and n̂i is φ− (θi −π/2) so that v · n̂i = cos(φ− θi +π/2) =

sin(θi − φ).
The argument t has served its purpose, and we now re-define J and ψ as functions of σ =

√
t by everywhere replacing√

t by σ . This leads to

J ≡ J(r, φ, σ ) =

k
i=1

(v · n̂i)

(v · dsi) (ψσ (pi+1)− ψσ (pi)), (A.15)

where

ψσ (u) ≡ σ ϕ
 u
σ


+ u


Φ

 u
σ


−

1
2


. (A.16)

When computing (A.15), undefined terms in the summation are replaced by
Φ

pi
σ


−

1
2


(v · n̂i)× length(Si). (A.17)

Now we calculate the gradient of J(r, φ, σ ). In calculating these partial derivatives, we use the facts

∂ψσ (u)
∂u

= Φ

 u
σ


−

1
2

and
∂ψσ (u)
∂σ

= ϕ
 u
σ


, (A.18)

which are easily verified from (A.16).
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Differentiating (A.15) with respect to σ we easily obtain

∂ J
∂σ

=

k
i=1

(v · n̂i)

(v · dsi)

ϕ
pi+1

σ


− ϕ

pi
σ


. (A.19)

Undefined terms in the summation (A.19) are replaced by

−pi
σ 2
ϕ
pi
σ


(v · n̂i)× length(Si), (A.20)

which is the derivative of (A.17) with respect to σ .
Recalling that pi = yi · v − r and differentiating (A.15) with respect to r , we similarly obtain

∂ J
∂r

= −

k
i=1

(v · n̂i)

(v · dsi)

Φ

pi+1

σ


− Φ

pi
σ


. (A.21)

Undefined terms in the summation (A.21) are replaced by

−1
σ
ϕ
pi
σ


(v · n̂i)× length(Si), (A.22)

which is the derivative of (A.17) with respect to r .
Computing the partial of J with respect to φ is more difficult since v = (cos(φ), sin(φ)) is involved in all parts of (A.15).

Using (A.14) to re-write (A.15) as

J =

k
i=1

tan(θi − φ)(ψσ (pi+1)− ψσ (pi))

and then differentiating with respect to φ using the product rule leads to

∂ J
∂φ

=

k
i=1

tan(θi − φ)


Φ

pi+1

σ


−

1
2


yi+1 ·

∂v

∂φ


−


Φ

pi
σ


−

1
2


yi ·

∂v

∂φ



−

k
i=1

sec2(θi − φ) [ψσ (pi+1)− ψσ (pi)]

=

k
i=1

(v · n̂i)

(v · dsi)

Φ

pi+1

σ


−

1
2


(yi+1 · w)−


Φ

pi
σ


−

1
2


(yi · w)



−

k
i=1

1

(v · dsi)2 [ψσ (pi+1)− ψσ (pi)] , (A.23)

where
∂v

∂φ
= (− sin(φ), cos(φ)) ≡ w

is a unit vector perpendicular to v.
As usual, when Si and L are parallel, the i-th term in the above formula is undefined. Unfortunately, in this case the correct

answer is not (quite) obtained by simply differentiating (A.17) with respect to φ. To get a correct answer, we differentiate
the i-th term in the general expression (A.8) with respect to φ, and then evaluate the result when Si and L are parallel, in
which case v = ±n̂i, w = ±dsi (with the same choice of sign), and w · n̂i = 0. For convenience, we assume v = n̂i and
w = dsi; the choice does not affect the answer. The calculation is as follows:

∂

∂φ


(v · n̂i)


Si
(Φt(p(y))− 1/2) ds


=


∂v

∂φ
· n̂i


Si
(Φt(p(y))− 1/2) ds + (v · n̂i)


Si

∂

∂φ
(Φt(p(y))− 1/2) ds

=


∂v

∂φ
· n̂i


Si
(Φt(p(y))− 1/2) ds + (v · n̂i)


Si
ϕt(p(y))


y ·
∂v

∂φ


ds

(Now evaluate when Si and L are parallel.)

= 0 + (n̂i · n̂i)ϕt(pi)

Si


y · dsi ds



22 D. Bryner et al. / Computational Statistics and Data Analysis 102 (2016) 1–22

= ϕt(pi)
1
2


yi+1 · dsi2 −


yi · dsi2

= ϕt(pi)
1
2


yi+1 · dsi+


yi · dsi yi+1 · dsi−


yi · dsi

= ϕt(pi)

1
2
(yi + yi+1) · dsi× length(Si)

=
1
σ
ϕ
pi
σ

 1
2
(yi + yi+1) · w


(v · n̂i)× length(Si).

The changes introduced in the last line are to make it more closely parallel earlier expressions. This last line gives the
replacement for the i-th term in (A.23) when it is undefined.
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