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ABSTRACT

Constructing generative models for functional observations is an important task in statistical func-

tion analysis. In general, functional data contains both phase (or x or horizontal) and amplitude (or

y or vertical) variability. Traditional methods often ignore the phase variability and focus solely on

the amplitude variation, using cross-sectional techniques such as functional principal component

analysis for dimensional reduction and regression for data modeling. Ignoring phase variability

leads to a loss of structure in the data, and inefficiency in data models. Moreover, most methods

use a “pre-processing” alignment step to remove the phase-variability; without considering a more

natural joint solution.

This dissertation presents three approaches to this problem. The first relies on separating the

phase (x-axis) and amplitude (y-axis), then modeling these components using joint distributions.

This separation in turn, is performed using a technique called elastic alignment of functions that

involves a new mathematical representation of functional data. Then, using individual principal

components, one for each phase and amplitude components, it imposes joint probability models

on principal coefficients of these components while respecting the nonlinear geometry of the phase

representation space. The second combines the phase-variability into the objective function for

two component analysis methods, functional principal component analysis and functional principal

least squares. This creates a more complete solution, as the phase-variability is removed while

simultaneously extracting the components. The third approach combines the phase-variability into

the functional linear regression model and then extends the model to logistic and multinomial

logistic regression. Through incorporating the phase-variability a more parsimonious regression

model is obtained and therefore, more accurate prediction of observations is achieved. These

models then are easily extended from functional data to curves (which are essentially functions in

R2) to perform regression with curves as predictors.

These ideas are demonstrated using random sampling for models estimated from simulated and

real datasets, and show their superiority over models that ignore phase-amplitude separation. Fur-

thermore, the models are applied to classification of functional data and achieve high performance

in applications involving SONAR signals of underwater objects, handwritten signatures, periodic

body movements recorded by smart phones, and physiological data.
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CHAPTER 1

INTRODUCTION

The statistical analysis of functional data is fast gaining prominence in the statistics community as

this kind of “big data” is central to many applications. For instance, functional data can be found

in a broad swath of application areas ranging from biology, medicine, chemistry, geology, sports,

and financial analysis. One can easily encounter a problem where the observations are real-valued

functions on an interval, and the goal is to perform their statistical analysis.

By statistical analysis we mean to compare, align, average, and model a collection of random

observations. Figure 1.1 presents examples of functional data with the Panels a - c corresponding

to the average temperature in Celsius measured at 35 distinct sites in Canada, the growth velocity

of girls, and the x-gyorometer measurement of an iPhone 4 while riding a bicycle. The analysis

of such data has been of great interest and solutions have been proposed using the standard L2

metric to compute distances, cross-sectional (i.e., point-wise) means and variances, and principal

components of the observed functions [52].
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Figure 1.1: Examples of functional data which includes (a) the average Canadian temperature
measured at 35 different sites over 365 days, (b) the growth velocity for 21 different girls, and (c)
the gyrometer in the x direction measured using a iPhone 4 while riding a bicycle for 30 subjects.
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Questions then arise on how can we model the functions. Can we use the functions to classify

diseases? Or can we use them as predictors in a regression model? One problem occurs when

performing these type of analyses is that functional data can contain variability in time (x-direction)

and amplitude (y-direction) which complicates the analysis. The problem then becomes how do we

account for and handle this variability in the models that are constructed from functional data.

1.1 Motivation

Since the approach in functional data analysis treats the entire function as the unit of observa-

tion (as opposed to multivariate analysis which works with a vector of measurements), dimension

reduction becomes an important issue. Strictly speaking, since functional data intrinsically are infi-

nite dimensional, the process of dimension reduction becomes essential. There has been a great deal

of research devoted to dimension reduction in high-dimensional multivariate data (e.g., principal

component analysis (PCA) [22], partial least squares (PLS) [73], and multidimensional scaling [66]).

Dimension reduction in functional data has focused mainly on PCA [52], canonical correlation

analysis [42], and regression type problems [9, 50]. Specifically, these methods have focused on

extending the standard multivariate methods to functional data using the L2 framework. Moreover,

they implicitly assume that the observed functions are already temporally aligned and all the

variability is restricted only to the y-axis (or the vertical axis). By temporal alignment we mean

corresponding peaks and valleys line up along the x-axis (or the horizontal axis).

A serious challenge arises when functions are observed with flexibility or domain warping along

the x-axis, which in reality is quite common. This warping may come either from an uncertainty in

the measurement process, or may simply denote an inherent variability in the underlying process

itself. The warping then needs to be separated from the variability along the y-axis. An interesting

aspect of functional data is that the underlying variability can be ascribed to two sources. The

variability exhibited in functions after alignment is termed the amplitude (or y or vertical) variabil-

ity and the warping functions that are used in the alignment are said to capture the phase (or x or

horizontal) variability. A more explicit mathematical definition of amplitude- and phase-variability

will be made in Chapter 2.

When the phase-variability is ignored the analysis can be misleading and incorrect models

can be constructed. A prominent example of this situation is functional principal component
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analysis (fPCA) [52] which is used to discover dominant modes of variation in the data and has

been extensively used in modeling functional observations. If the phase-variability is ignored, the

resulting model may fail to capture patterns present in the data and will lead to inefficient data

models.

Fig. 1.2 provides an illustration of this using simulated functional data. This data was simulated

using the equation yi(t) = zie
−(t−ai)2/2, t ∈ [−6, 6], i = 1, 2, . . . , 21, where zi is i.i.d. N (1, (0.05)2)

and ai is i.i.d. N (0, (1.25)2). The top-left plot shows the original data, each sample function

here is a unimodal function with slight variability in height and a large variability in the peak

placement. One can attribute different locations of the peak to the phase-variability. If one takes

the cross-sectional mean of this data, ignoring the phase-variability, the result is shown in the top-

middle plot. The unimodal structure is lost in this mean function with large amounts of stretching.

Furthermore, if one performs fPCA on this data and imposes the standard independent normal

models on fPCA coefficients (details of this construction are given later), the resulting model will

lack this unimodal structure. Shown in the top-right plot are random samples generated from

such a probability model on the function space where a Gaussian model is imposed on the fPCA

coefficients. These random samples are not representative of the original data; the essential shape

of the function is lost, with some of the curves having two, three, or even more peaks.

The reason why the underlying unimodal pattern is not retained in the model is that the phase

variability was ignored. We argue that a proper technique is to incorporate the phase and am-

plitude variability into the model construction, which in turn incorporates into the component or

regression analysis. While postponing details for later, we show results obtained by a separation-

based approach in the bottom row. The mean of the aligned functions is shown in the bottom left

panel of Fig. 1.2. Clearly retained is the unimodal structure, and the random samples generated

under a framework that model the phase and amplitude variables individually have the same struc-

ture. Some random samples are shown in the bottom right panel; these displays are simply meant

to motivate the framework, the mathematical details are provided later in the dissertation. This

example clearly motivates the need for the inclusion of warping for modeling functional data that

contains phase-variability.

Research in functional data analysis has a wide breadth across multiple areas that include:

• Fitting function to discrete data
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Figure 1.2: Samples drawn from a Gaussian model fitted to the principal components for the
un-aligned and aligned data.

• Summary statistics

• Dimension reduction

• Clustering and classification

• Registration

• Component analysis

• Regression

• Developing functional priors for Bayesian analysis

• Modeling

In most of these areas, the functions are assumed to be aligned and the phase-variability problem

is ignored or solved using a registration component. In each of these areas, one can find data that
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is warped and a more complete solution is needed. In this dissertation, we focus on the areas of

clustering and classification, component analysis, and regression with respect to warped data.

1.2 Contributions

We propose three approaches to the phase-variability problem. First, one can simply align

the functional data prior to performing a component analysis tool. After alignment we have the

separated phase and amplitude components where we can estimate the sample means and covariance

on the phase and amplitude components, respectively. From the estimated summary statistics, we

can perform a component analysis method (e.g., fPCA) on the phase and amplitude. Then we

model the original data using joint Gaussian or non-parametric models on the dimension-reduced

representations. Second, the phase-variability can be incorporated into the component analysis

to create a warping-invariant or “elastic” component analysis. In this approach the objective

function for the component analysis method is modified to include a phase-variability term. This

in turn alters how the optimization is performed and the data is aligned while the corresponding

components are extracted. Third, the phase-variability can be incorporated into the regression

model to create a warping-invariant or “elastic” regression model. Similar to the second approach,

the regression model is modified to include a phase-variability term. This in turn alters how the the

model is identified and the data is aligned while the corresponding model coefficients are computed.

The last two approaches provide a more natural approach to the analysis as the alignment is not a

“pre-processing” step, but rather part of the complete solution.

The remainder of this dissertation is organized as follows. Chapter 2 reviews functional data

analysis methods and various alignment methods for function data. Specifically, we review the elas-

tic method based on the extended Fisher-Rao metric of [40, 63]. The Fisher-Rao method provides a

novel transformation of the data, which then provides a proper distance, thus satisfying all desired

properties in alignment, such as symmetry (optimal alignment of f to g is same as that of g to f),

positive definiteness (the cost term between any two functions is nonnegative and it equals zero

if and only if one can be perfectly aligned to the other), and the triangle inequality. Given this

theoretical superiority over other published methods, we will use this method in the construction of

our analysis. Chapter 3 presents performing modeling and classification using fPCA on the phase

and amplitude components extracted from the alignment of the data and presents results using
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several data sets which include a simulated data set, a signature data set from [75] , an iPhone

action data set from [44], and a SONAR data set. Chapter 4 then develops the method of joint

alignment and component analysis. We will focus on two methods: fPCA and functional partial

least squares (fPLS). In each of these settings we will construct an objective function that includes

phase-variability, and construct methods for optimizing the objective functions with results demon-

strated on the iPhone action data set and the gait data from [52]. Chapter 5 develops the joint

alignment and functional linear regression model. We will then use this model to develop the func-

tional logistic and multinomial logistic regression models; and provide results on the classification

of biomedical data. In Chapter 6, we will extend the regression models from Chapter 5 to use open

curves in R2 as predictors and demonstrate results on the classification of shapes. Lastly, Chapter 7

provides concluding remarks and future research directions.
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CHAPTER 2

LITERATURE REVIEW

In this chapter we summarize the state of the art in functional data analysis and previous work

on phase and amplitude separation of functional data. We will provide a review of the current

work in functional-based component analysis and functional regression. Finally, we will provide a

brief description of the elastic method for functional alignment and motivation on our use of this

framework throughout this work.

2.1 Functional Data Analysis

The goal of functional data analysis is to represent, display, study, explain, and compare func-

tions. In other words, it is the same goal of any area of statistical study; as we would like to discover

ways to represent the data in such a way that we can study the patterns of variation, compute

statistics, and generate models of the data. The work of [23, 47, 50, 52, 54] have extended tools

from multivariate statistics or developed new tools to accomplish this goal. We will describe the

summary statistics of functional data, smoothing of functional data, principal component analysis,

and linear regression models using this type of data. For a more complete review of this topic the

reader is referred to [52].

2.1.1 Summary Statistics

Let f be a real-valued function with the domain [0, 1]; the domain can easily be transformed

to any other interval. For concreteness, only functions that are absolutely continuous on [0, 1] will

be considered; let F denote the set of all such functions. In practice, since the observed data is

discrete, this assumption is not a restriction. Assume that we have a collection of functions, fi(t),

i = 1, . . . , N and we wish to calculate statistics on this set. The classical summary statistics apply

to function data in a cross-sectional manner. The mean function is constructed using

f̄(t) =
1

N

N∑
i=1

fi(t)
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which is the average of the set of functions, {fi} point-wise across the replications. We can define

the variance function similarly as

var(f(t)) =
1

N − 1

N∑
i=1

(
fi(t)− f̄(t)

)2
and the standard deviation function is the point-wise square root of the variance function.

The covariance function summarizes the dependence of functions across different time values

and is computed for all t1 and t2

covf (t1, t2) =
1

N − 1

N∑
i=1

(
fi(t1)− f̄(t1)

) (
fi(t2)− f̄(t2)

)
.

The correlation function is then computed using

corrf (t1, t2) =
covf (t1, t2)√

var(f(t1)) var(f(t2))
.

All of these summary statistical functions are the functional analogues of the covariance and cor-

relation matrices in multivariate statistical analysis. On that note, if we have two sets of functions

fi and gi, i = 1, . . . , N we can calculate a cross-covariance function

covf,g(t1, t2) =
1

N − 1

N∑
i=1

(
fi(t1)− f̄(t1)

)
(gi(t2)− ḡ(t2)) ,

and the cross-correlation function

corrf,g(t1, t2) =
covf,g(t1, t2)√

var(f(t1)) var(g(t2))
.

2.1.2 Smoothing Functional Data

As assumed earlier the construction of functional observations, fi is done using discrete data

and this process is done separately or independently for each observation. In some situations, the

signal-to-noise ration is low, or the data is noisy, or the discrete observations are few in number.

This can cause problems in generating sufficient summary statistics and it can be essential to use

information in neighboring or similar functions to get better estimates. Therefore, we seek methods

to smooth the functions and interpolate between samples to improve the statistical estimates.
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Representing functions by basis functions. We can represent a function by a set of basis

functions, θi, i = 1, . . . , k. An example of types of basis can be the power series, Fourier series, and

B-spline basis functions. We can represent a function f by a linear expansion

f(t) =

p∑
i=1

biθi

in terms of p basis functions θi and coefficients bi. By setting the dimension of the basis expansion

p we can control the degree to which the functions are smoothed. If we choose p large enough we

can fit the data well, but might fit any additive noise. If we choose p too small we remove structure

from the data that might be important to the analysis. Therefore, the choice of p is important in

determining the amount of smoothing desired. It should be noted that there is not one universally

acceptable basis for functional data analysis. The type of data and problem application will dictate

which basis is best for the problem. For example, one might choose the Fourier basis if the data is

periodic as the basis is periodic and will generally fit the data well.
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Figure 2.1: Example of smoothing of functional data by changing the number of basis elements.

We can find the basis coefficients, bi by minimizing the least-squares criterion

b∗ = argmin
b

(f −Θb)T(f −Θb)

where f is a vector containing the values of the function fi, Θ is a matrix whose columns are the

basis functions θi, and b = [b1, . . . , bp]. The solution to this problem is the standard least squares

solution

b∗ = (ΘTΘ)−1ΘTf .
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We can also use a weighted least squares approach using a matrix W as the weights,

b∗ = (ΘTWΘ)−1ΘTW f .

In some applications this might be desirable if the noise added to the function is known and the

covariance matrix, Σn of the noise can be calculated and we therefore can set W = Σn. Fig. 2.1

presents an example smoothing a measured SONAR signal [69] while increasing the number of basis

elements p. A B-spline basis was used and as p increases we observe a better fit of the data and

eventually over-fitting to the noise, as p decreases more smoothing occurs.

Kernel Smoothing. Another type of smoothing of functional data is kernel smoothing. The

smooth function f̂(t) is computed at a given point and is a linear combination of local observations,

f̂(t) =

n∑
i=1

Sj(t)f(tj)

for some defined weight functions Sj . The most popular weight function are those defined by the

Nadaraya-Watson estimator [48, 72] and is constructed using the weights

Sj(t) =
Kern[(tj − t)/h]∑
r Kern[(tr − t)/h]

,

where Kern is a kernel function obeying Mercer’s conditions and h is the bandwidth of the kernel.

For more methods on constructing weights see the method of Gasser and Müller [16] and Ramsay

and Silverman [52].

Roughness Penalty. Another popular way to smooth functional data is to add a roughness

penalty to the least-squares fit. The way to quantify the notion of roughness is the square of the

second derivative, [D2f(t)]2 which is also known as the curvature at t. Therefore, a natural measure

of a function’s roughness is the integrated squared second derivative

pen(f) =

∫
[D2f(t)]2 dt.

We then can define a compromise that trades of smoothness against data fit of a basis using the

penalized least-squares fit,

b∗ = argmin
b

(f −Θb)T(f −Θb) + λ pen(Θb),

and the parameter λ is the smoothing parameter and controls the amount of smoothing. Fig. 2.2

presents an example of smoothing the same data in Fig. 2.1 using the roughness penalty for different

values of λ.
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Figure 2.2: Example of smoothing of functional data by changing the amount of smoothing penalty.

2.1.3 Functional Principal Component Analysis

The motivation for functional principal component analysis (fPCA) is that the directions of

high variance will contain more information then direction of low variance. Let f1, · · · , fn be a

given set of functions, the optimization problem for fPCA can be written as

min
wi

E‖f − f̂‖2 (2.1.1)

where f̂ = µf +
∑n

i=1 βiwi(t) is the fPCA approximation of f with corresponding mean µf , βi =∫
(f − µf )wi(t) dt, and basis functions {wi(t)}.

We then use the sample covariance function cov(t1, t2) to form a sample covariance matrix K.

Taking the SVD, K = UΣV T we can calculate the directions of principle variability in the given

functions using the first p ≤ n columns of U . Moreover, we can calculate the observed principal

coefficients as 〈fi, Uj〉.

One can then use this framework to visualize the principal-geodesic paths. The basic idea is to

compute a few points along geodesic path τ 7→ f̄(t) + τ
√
ΣjjUj for τ ∈ R in L2, where Σjj and Uj

are the jth singular value and column, respectively.

2.1.4 Functional Regression

In functional data analysis, regression modeling is where the function variables are used as

predictors to estimate a scalar response variable. More precisely, let the predictor functions be
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given by {fi : [0, T ] → R, i = 1, 2, . . . , n} and the corresponding response variables be yi. The

standard functional linear regression model for this set of observations is

yi = α+

∫ T

0
fi(t)β(t) dt+ εi, i = 1, . . . , n (2.1.2)

where α ∈ R is the intercept, β(t) is the regression-coefficient function and εi ∈ R are random

errors. This model was first studied in [50] and [9]. The model parameters are usually estimated

by minimizing the sum of squared errors (SSE),

{α∗, β∗(t)} = argmin
α,β(t)

n∑
i=1

|yi − α−
∫ T

0
fi(t)β(t) dt|2.

These values form maximum-likelihood estimators of parameters under the additive white-Gaussian

noise model. One problem with this approach, is that for any finite n, since β is a full function

there are infinitely many solutions for β without imposing any further restrictions; it is an element

of an infinite-dimensional space while its specification for any n is finite dimensional. Ramsay [52]

proposed two approaches to handle this issue: (1) Represent β(t) using p basis functions in which

p is kept large to allow desired variations of β(t), and (2) add a roughness penalty term to the

objective function (SSE) which selects a smooth solution by finding an optimal balance between

the SSE and the roughness penalty. The basis can come from any of the basis functions described

earlier, or fPCA [54].

Current literature in functional linear regression is focused primarily on the estimation of the co-

efficient of β(t) under a basis representation. For example, [10, 14, 21, 25] discuss estimation and/or

inference of β(t) for different cases for the standard functional linear model and the interpretation

of β(t). Focusing on prediction of the scalar response, [8] studied the estimation of
∫
fi(t)β(t) dt.

In some situations the response variable, yi is categorical and the standard linear model will not

suffice. James [23], extended the standard functional linear model to functional logistic regression

to be able to handle such situations. Müller and Stadtmüller [47], extend the generalized model

to contain a dimension reduction by using a truncated Karhunen-Loève expansion. Recently, [17]

included variable selection to reduce the number of parameters in the generalized model.

2.2 Phase-Amplitude Separation

All of the methods in the previous section assume the data has no phase-variability or is aligned.

For most data that is observed, this is not the case. For example Fig. 2.3a presents protein profiles
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of five patients with Acute Myeloid Leukemia (AML) [38] which exhibit no alignment at all. These

profiles should be aligned, but due to sensor and measurement error, this is not the case. Delaying

the details till Section 2.2.2, we can align the profiles [70] for statistical analysis and the aligned

profiles are presented in Fig. 2.3b. There exists a large set of literature on the registration or

alignment of functional data, in part due to the work of Ramsay and Silverman [52], Kniep and

Gasser [36], and Müller et al. [43, 65]. The main difference between them lies in the choice of the

cost function used in the alignment process.

First, we will define some mathematical representation of warping. Let Γ be the set of warping

functions. For any f ∈ F and γ ∈ Γ, the composition f ◦ γ denotes the time-warping of f by γ.

In a pairwise alignment problem, the goal is to align any two functions f1 and f2. A majority of

past methods use cost terms of the type (infγ∈Γ ‖f1 − f2 ◦ γ‖) to perform this alignment. Here ‖ · ‖

denotes the standard L2 norm.
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Figure 2.3: Example of data with a) phase- and amplitude-variability and b) aligned data.

2.2.1 Previous Work

Liu and Müller [43] use warping functions that are convex combinations of functions of the type:

γi(t) =

( ∫ t
0 |f (ν)i (s)|pds∫ 1
0 |f (ν)i (s)|pds

)(1/p)

, where ν and p are two parameters, with the recommended values being

ν = 0 and p = 1. The warped functions are then analyzed using standard statistical techniques

under the Hilbert structure of square-integrable functions. Tang and Müller [65] then follow the

previous work by aligning the functions using the area-under- the curve as the metric.
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Ramsay and Silverman [52] proposed using warping functions of the structure γ(t) = C0 +

C1

∫ 1
0 exp(W (u))du, where C0 and C1 are constants that are fixed by the requirement that γ(t) = t,

and W (u) controls the actual warping. The alignment is done by minimizing the second-eigenvalue

of the functional analogue of the cross-product matrix XTX

T (f1, f2) =

[ ∫
f1(t)

2dt
∫
f1(t)f2 ◦ γ(t)dt∫

f2 ◦ γ(t)f1(t)dt
∫
f2 ◦ γ(t)2dt

]
,

where f1 and f2 are the two functions to be registered. Additionally, they apply regularization to

the minimization problem to impose smoothness on the structure of γ(t).

James [24] proposed an approach that calculates moments for each function and then aligns

the functions by matching the moments. The motivation behind using moments is that they

are intended to capture the locations of important features (e.g., maximums and minimums) of

the functional data. The proposed warping functions in this case were linear and of the form

γ(t) = αi+βit. Gervini and Gasser [19] uses a self-modeling framework where the warping functions

are assumed to be linear combinations of q components, which are estimated from the data. In

other words, a semi-parametric model is constructed for the functional data.

Recently, Sangalli et al. [56, 57] proposed a method that jointly clusters and aligns the functional

data using a modified k-means approach. The alignment is done by finding warping functions of

the linear form similar to [24] that maximize a similarity index. The similarity index is defined to

be

ρ(f1, f2) =
1

d

n∑
p=1

∫
f ′1p(t)f

′
2p(t)dt√∫

f ′1p(t)
2dt
√∫

f ′2p(t)
2dt

,

where fip(t) is the pth time sample of function fi. Geometrically speaking, the similarity index is

the average of the cosines of the angles between the derivatives of the functions f1 and f2.

In the meantime several other communities, often outside statistics, have studied registration

of functions in one or higher dimensions, e.g., in matching MRI images [2, 13, 64], shape analysis

of curves [27, 35, 41, 45, 62, 76, 77], shape analysis of surfaces [39], etc. The problem of curve

registration is especially relevant for phase-amplitude separation needed in functional data analysis,

since the case for R1 is essentially that of real valued functions.

The majority of past methods in the statistical literature (e.g., [19, 24, 37, 43, 65]) study the

problem of registration and comparisons of functions, either separately or jointly, by solving:

inf
γ∈Γ

‖f1 − (f2 ◦ γ)‖. (2.2.1)

14



The use of this quantity is problematic because it is not symmetric. The optimal alignment of f1 to

f2 gives a different minimum, in general, when compared to the optimal alignment of f2 to f1. One

can make Eqn. 2.2.1 symmetric by using double optimization, inf(γ1,γ2)∈Γ×Γ ‖(f1 ◦ γ1)− (f2 ◦ γ2)‖.

However, this problem is degenerate, in the sense that the solution can be made infinitesimally

small as long as the range(f1) and range(f2) intersect, even if the two functions f1 and f2 are quite

different. Another way of ensuring symmetry is to add the two terms: infγ∈Γ ‖f1− (f2 ◦γ)‖+‖f2−

(f1 ◦γ)‖. Although this expression is symmetric, it still does not lead to a proper distance between

the space of functions.

The basic quantity in Eqn. 2.2.1 is also commonly used to form objective functions of the type:

Eλ,i[µ] = inf
γi∈Γ

(
‖(fi ◦ γi)− µ‖2 + λR(γi)

)
, i = 1, 2, . . . , n , (2.2.2)

where R is a smoothness penalty on the γis to keep them close to γid(t) = t [52]. The optimal

γ∗i are then used to align the fis, followed by a cross-sectional analysis of the aligned functions.

There are couple of issues here: 1) How is the parameter λ chosen for the regularization, this could

vastly vary from problem to problem and 2) What should the mean, µ, be? It cannot be a mean of

the fis since the quantity in Eqn. 2.2.1 is not a proper distance. Specifically, the cost function does

not have the properties of symmetry (optimal alignment of f to g is same as that of g to f), positive

definiteness (the cost term between any two functions is nonnegative and it equals zero if and only

if one can be perfectly aligned to the other), and the triangle inequality. Additionally, many past

methods perform component separation and modeling in two distinct steps, under different metrics.

Moreover, the group structure of Γ is seldom utilized and the construction of the warping functions

usually does not result in a proper group.

Another large problem with the use of the L2 metric is known as the pinching problem [51].

Specifically, if we have two functions, f1 and f2 and the range(f1) is entirely above the range(f2)

the L2 metric becomes degenerate and pinching of the warped function occurs. Using the L2 norm

or inner product we can demonstrate the pinching effect for four cases:

1. supγ ‖f ◦ γ‖

2. infγ ‖f1 − f2 ◦ γ‖

3. supγ 〈f1, f2 ◦ γ〉

4.
∑n

i=1 infγi ‖fi ◦ γi − µ‖2
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These cases are of importance as the L2 norm and inner product are commonly used throughout

most of the published work in functional data analysis.
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(a) L2 norm
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Figure 2.4: Demonstration of pinching problems in F space under (a) the L2 distance and (b) the
L2 norm.

In case 1) we desire to have the norm preserved under the warping of f , however this is not the

case in F space as ‖f ◦ γ‖ 6= ‖f‖ as the ‖f ◦ γ‖ can be made as large as the range of f . Fig. 2.4

presents examples of cases 2) and 3) in Panels a and b, respectively. The functions f1 = sin(t)

and f2 = 3 sin(t), t ∈ [0, π] are shown as the blue and orange curves, respectively. In Panel a we

demonstrate finding the γ that minimizes the L2 norm between f1 and f2 and the dashed blue curve

is the warped f2 ◦ γ using the optimal γ. A similar effect is seen in Panel b where we demonstrate

finding the γ that maximizes the L2 inner product between f1 and f2 and the dashed blue curve

is the warped f2 ◦ γ using the optimal γ. Both the L2 norm and inner-product become degenerate

and the resulting functions are “pinched.” In case 4) if the functions fi have a point in common

in their ranges then µ(t) will be a constant function and be degenerate. For example, if for all ti

we have fi(ti) = µ, then we can find γi(t) = ti for all t which gives a cost function value of 0 and

a degenerate solution. This is important in the multiple alignment problem as one seeks to find

a µ(t) to align the set of functions, {fi(t)} to. One solution to the pinching is to place a penalty

on the warping functions as in Eqn. 2.2.2, though the issue here is how is the penalty parameter λ

chosen.

Recently, Srivastava et al. [31, 40, 63] adapted a shape-analysis approach that has been termed

elastic shape analysis [27, 41, 62]. The basic idea in this method is to introduce a mathematical

16



representation; called the square-root slope function or SRSF (details in the next section) that

improves functional alignment, and provides fundamental mathematical equalities that lead to a

formal development of this topic. Moreover, the metric used in the alignment is a proper distance

and avoids the pinching effects of the standard L2 metric in F space without the use of a penalty.

2.2.2 Phase and Amplitude Separation Using Elastic Analysis

In this section, we review the elastic method for functional data alignment. The details are

presented in companion papers [40, 63]. This comprehensive framework addresses three important

goals: (1) completely automated alignment of functions using nonlinear time warping, (2) separation

of phase and amplitude components of functional data, and (3) derivation of individual phase and

amplitude metrics for comparing and classifying functions. For a more comprehensive introduction

to this theory, including asymptotic results and estimator convergences, we refer the reader to these

papers as we will only present the algorithm here.

Let Γ be the set of boundary-preserving diffeomorphisms of the unit interval [0, 1]: Γ = {γ :

[0, 1] → [0, 1]| γ(0) = 0, γ(1) = 1, γ is a diffeomorphism}. As before elements of Γ play the role of

warping functions. For any f ∈ F and γ ∈ Γ, the composition f ◦ γ denotes the time-warping of f

by γ. With the composition operation, the set Γ is a group with the identity element γid(t) = t.

To overcome the problem of the alignment (infγ∈Γ ‖f1−f2◦γ‖) not being symmetric nor positive

definite Srivastava et al. [62] introduced a mathematical expression for representing a function.

This function, q : [0, 1] → R, is called the square-root slope function or SRSF of f , and is defined

in the following form:

q(t) = sign(ḟ(t))

√
|ḟ(t)| .

It can be shown that if the function f is absolutely continuous, then the resulting SRSF is square-

integrable (see [55] for a proof). Thus, we will define L2([0, 1],R), or simply L2, to be the set

of all SRSFs. For every q ∈ L2 and a fixed t ∈ [0, 1], the function f can be obtained precisely

using the equation: f(t) = f(0) +
∫ t
0 q(s)|q(s)|ds, since q(s)|q(s)| = ḟ(s). Therefore, the mapping

from F to L2 × R, given by f 7→ (q, f(0)) is a bijection [55]. The most important property of

this framework is the following. If we warp a function f by γ, the SRSF of f ◦ γ is given by:

q̃(t) = (q, γ)(t) = q(γ(t))
√
γ̇(t). With this expression it can be shown that for any f1, f2 ∈ F and

γ ∈ Γ, we have

‖q1 − q2‖ = ‖(q1, γ)− (q2, γ)‖ , (2.2.3)
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where q1, q2 are SRSFs of f1, f2, respectively. This is called the isometry property and it is central

in suggesting a new cost term for pairwise registration of functions: infγ∈Γ ‖q1 − (q2, γ)‖. This

equation suggests we can register (or align) the SRSFs of any two functions first and then map

them back to F to obtain registered functions. The advantage of this choice is that it is symmetric,

positive definite, and satisfies the triangle inequality. Technically, it forms a proper distance1 on

the quotient space L2/Γ. Moreover, this metric does not exhibit the pinching problem as does the

L2 metric in F space. We mention that this cost function has a built-in regularization term and

does not require any additional penalty term. Please refer to papers [40, 63] for more details. In

case one wants to control the amount of warping or elasticity this can be done as described in [74].

The isometric property in Eqn. 2.2.3 leads to a distance between functions that is invariant to

their random warpings:

Definition 1 (Amplitude or y-distance). For any two functions f1, f2 ∈ F and the corresponding

SRSFs, q1, q2 ∈ L2, we define the amplitude or the y-distance da to be:

da(f1, f2) = inf
γ∈Γ

‖q1 − (q2 ◦ γ)
√
γ̇)‖. (2.2.4)

It can be shown that for any γ1, γ2 ∈ Γ, we have da(f1 ◦ γ1, f2 ◦ γ2) = da(f1, f2).

Optimization Over Γ. The minimization over Γ can be performed in many ways. In case

Γ is represented by a parametric family, then one can use the parameter space to perform the

estimation as [37]. However, since Γ is a nonlinear manifold, it is impossible to express it completely

in a parametric vector space.

Remark: The set of warping functions Γ is not a closed set and, therefore, the maximizer of

log-likelihood over γi may not be in Γ. From a technical perspective, this situation can be handled by

enlarging the set of warping functions to include all nondecreasing, absolutely-continuous functions

with the same boundary conditions (γ(0) = 0 and γ(1) = 1). This set, termed Γ̃ is a closed set and

has the property that Γ is dense in Γ̃. The optimization over γi can now be performed in the larger

set Γ̃. From a practical point of view, the change from Γ to Γ̃ is not significant since the former is

dense in latter.

1We note that restriction of L2 metric to SRSFs of functions whose first derivative is strictly positive, e.g.,
cumulative distribution functions, is exactly the classical Fisher-Rao Riemannian metric used extensively in the
statistics community [1, 11, 15, 30, 53].
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In this dissertation we use the standard Dynamic Programming algorithm [3] to solve for an

optimal γ. It should be noted that for any fixed partition of the interval [0, 1], this algorithm

provides the exact optimal γ that is restricted to the graph of this partition.

2.2.3 Karcher Mean and Function Alignment

In order to separate phase and amplitude variability in functional data, we need a notion of

the mean of functions. Basically, we compute a mean function and in the process warp the given

functions to match the mean function. Since we have a proper distance in da, in the sense that

it is invariant to random warping, we can use that to define this mean. For a given collection of

functions f1, f2, . . . , fn, let q1, q2, . . . , qn denote their SRSFs, respectively. Define the Karcher mean

of the given function as a local minimum of the following cost functions:

µf = argmin
f∈F

n∑
i=1

da(f, fi)
2 (2.2.5)

µq = argmin
q∈L2

n∑
i=1

(
inf
γi∈Γ

‖q − (qi, γi)‖2
)
. (2.2.6)

(This Karcher mean has also been called by other names such as the Frechet mean, intrinsic mean

or the centroid.) These are two equivalent formulations, one in the function space F and other in

the SRSF space L2, i.e., µq = sign(µ̇f )
√

|µ̇f |. Note that if µf is a minimizer of the cost function,

then so is µf ◦ γ for any γ ∈ Γ since da is invariant to random warpings of its input variables. So,

we have an extra degree of freedom in choosing an arbitrary element of the set {µf ◦ γ|γ ∈ Γ}. To

make this choice unique, we can define a special element of this class as follows. Let {γ∗i } denote

the set of optimal warping functions, one for each i, in Eqn. 2.2.6. Then, we can choose the µf to

that element of its class such that the mean of {γ∗i }, denoted by γµ, is γid, the identity element.

(The notion of the mean of warping functions and its computation are described later in Chapter 3

and summarized in Algorithm 3.1). The algorithm for computing the Karcher mean µf of SRSFs

is given in Algorithm 2.1, where the iterative update in Steps 2-4 is based on the gradient of the

cost function given in Eqn. 2.2.6.

This procedure results in three items:

1. µq, preferred element of the Karcher mean class {(µq, γ)|γ ∈ Γ},

2. {q̃i}, the set of aligned SRSFs,
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Algorithm 2.1 Phase-Amplitude Separation

1: Compute SRSFs q1, q2, . . . , qn of the given f1, f2, . . . , fn and select µ = qi, where i =

argmin1≤i≤n ||qi − 1
n

∑n
j=1 qj ||.

2: For each qi find the γ∗i such that γ∗i = argminγ∈Γ
(
‖µ− (qi ◦ γ)

√
γ̇‖
)
. The solution to this

optimization comes from the dynamic programming algorithm.

3: Compute the aligned SRSFs using q̃i 7→ (qi ◦ γ∗i )
√
γ̇∗i .

4: If the increment ‖ 1
n

∑n
i=1 q̃i−µ‖ is small, then stop. Else, update the mean using µ 7→ 1

n

∑n
i=1 q̃i

and return to step 2.

5: The function µ represents a whole equivalence class of solutions and now we select the preferred

element µq of that orbit:

1. Compute the mean γµ of all {γ∗i } (using Algorithm 3.1). Then compute µq = (µ ◦

γ−1
µ )

√
˙γ−1
µ .

2. Update γ∗i 7→ γ∗i ◦ γ−1
µ . Then compute the aligned SRSFs using q̃i 7→ (qi ◦ γ∗i )

√
γ̇∗i and

aligned functions using f̃i 7→ fi ◦ γ∗i

3. {f̃i}, the set of aligned functions, and

4. {γ∗i }, the set of optimal warping functions.

To illustrate this method, we run the algorithm on the data previously used in [37]. The indi-

vidual functions are given by: yi(t) = zi,1e
−(t−1.5)2/2 + zi,2e

−(t+1.5)2/2, t ∈ [−3, 3], i = 1, 2, . . . , 21,

where zi,1 and zi,2 are i.i.d. N (1, (0.25)2). (Note that although the elastic framework was developed

for functions on [0, 1], it can easily be adapted to an arbitrary interval). Each of these functions

is then warped according to: γi(t) = 6
(
eai(t+3)/6−1

eai−1

)
− 3 if ai 6= 0, otherwise γi = γid (γid(t) = t is

the identity warping). Here ai are equally spaced between −1 and 1, and the observed functions

are computed using fi(t) = (yi ◦ γi)(t). A set of 21 such functions forms the original data and is

shown in Panel d of Fig. 2.5 with corresponding SRSFs in Panel a. Panel b presents the resulting

aligned SRSFs using our method {q̃i} and Panel c plots the corresponding warping functions {γ∗i }.

The corresponding aligned functions {f̃i} is shown in Panel e. It is apparent that the plot of {f̃i}

shows a tighter alignment of functions with sharper peaks and valleys, and thinner bands around

the mean. This indicates that the effects of warping generated by the γis has been completely

removed and only the randomness from the yis remain.

We also compare the performance of Algorithm 2.1 with some published methods including: the

moment based matching (MBM) method of [24] and the minimum second-eigenvalue (MSE) method
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Figure 2.5: Alignment of the simulated data set using Algorithm 2.1.

of [52] on a more difficult simulated data and a real SONAR data set. The original simulated data

are shown in Figs. 2.6a and the data consists of 39 unimodal functions which have been warped

with equally spaced centers along the x-axis and, have slight variation in peak-heights along the

y-axis. Figs. 2.6 c, d, and e present the alignment results for our elastic method, the MBM method,

and the MSE method, respectively. The original SONAR data are shown in Fig. 2.6b and the data

consists of 131 measured SONAR signals that contain measurement ambiguity. Fig. 2.6 f, g, and

h present the alignment results for our elastic method, the MBM method, and the MSE method,

respectively.

For the simulated data the elastic method performs the best, while the MBM method performs

fairly well with a little higher standard deviation. The MBM method and the MSE method both

have a few numerical issues that lead to blips in the functions. For the SONAR data, only the

elastic method performs well; as MBM and MSE methods fail to align the data. We can also
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Figure 2.6: Comparison of alignment algorithms on a difficult unimodal data set (second row) and
a real SONAR data set (bottom row).
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quantify the alignment performance using the decrease in the cumulative cross-sectional variance

of the aligned functions. For any functional dataset {gi(t), i = 1, 2, . . . , n, t ∈ [0, 1]}, let

Var({gi}) =
1

n− 1

∫ 1

0

n∑
i=1

(
gi(t)−

1

n

n∑
i=1

gi(t)

)2

dt ,

denote the cumulative cross-sectional variance in the given data. With this notation, we define:

Original Variance = Var({fi})

Amplitude Variance = Var({f̃i})

Phase Variance = Var({µf ◦ γi}).

The phase- and amplitude-variances for the different alignment algorithms shown in Fig. 2.6 are

listed below in Table 2.1; with the simulated unimodal data on the top two rows and the SONAR

data on the bottom two rows: Based on its superior performance and theoretical advantages, we

Table 2.1: The comparison of the amplitude variance and phase variance for different alignment
algorithms on the Unimodal and SONAR data sets.

Unimodal

Component Original Variance Elastic Method MBM MSE

Amplitude-variance 4.33 0.004 0.23 .02
Phase-variance 0 4.65 4.31 4.54

Sonar

Amplitude-variance 2.89e-5 1.53e-5 3.02e-5 2.42e-5
Phase-variance 0 1.48e-5 1.30e-5 1.36e-5

choose the elastic method for separating the phase and amplitude components. For additional

experiments and asymptotic analysis of this method, please refer to [40, 63]. Recently, Cheng [12]

has extended the elastic work using a Bayesian approach where they use a Dirichlet prior on the

warping functions and a Markov chain Monte Carlo algorithm for finding the Karcher mean.

2.2.4 Functional Component Analysis with Alignment

Most of the current statistical papers that use some form of component analysis or statistical

analysis on the function data is done post alignment. Specifically, the alignment is done a priori

and both the analysis and alignment are done using a separate cost function. Sangalli et al. [56, 57]
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performs k-means after alignment. Similarly, James [24] follows his MBM with standard-PCA and

all of the methods demonstrated by Ramsay and Silverman in [52] assume the data is already

aligned.

Instead of doing the procedures separately, the idea should be that of solving the alignment

problem and the component analysis problem under the same cost function. The basic idea is to

avoid treating warping as a pre-processing step; where the individual functions are warped according

to an objective function that is different from the metric used to compare them. We feel the criteria

for registration and comparison not only to be consistent, but actually to be the same. In other

words, the domain warping of functions should be an integral part of the functional analysis.

Recently, Kniep and Ramsay [37] presented a joint cost function for performing alignment and

performing functional principal component analysis (fPCA). The cost function was constructed such

that the functions were aligned to the principal components and therefore the principal components

were extracted as the warping functions are calculated. However, this method suffers from the same

issues addressed in Section 2.2.2 where the cost function is the standard L2 in F space and is not

a proper distance. Moreover, the selection of the mean is somewhat arbitrary given the true mean

cannot be calculated.

Zhou and Torre [78] developed a method of combining canonical correlation analysis (CCA) and

alignment, where their alignment is done using Dynamic Time Warping (DTW) [49]. Using the

L2 cost function of CCA, they compute the canonical coordinates while calculating the alignment

matrices of DTW. This approach has some pitfalls for functional data as they assume their data is

zero-mean. One cannot always assume zero-mean warped data. Specifically, if a data is warped by

{γi} and the mean is not zero, the true mean is not known and the data cannot be centered. The

cost function they use also suffers the same problems as [37] since it is the standard L2 in F space

as it is not a proper distance. Additionally, their cost function is of the type inf(γ1,γ2)∈Γ×Γ ‖(f1 ◦

γ1)− (f2 ◦ γ2)‖ which is degenerate as explained in Section 2.2.2.

2.2.5 Functional Linear Regression with Alignment

As with functional component analysis most of the published regression methods ignore the

phase-variability or pre-align the data. If the data is pre-aligned using an alignment method

(e.g., [63], [52]) the underlying structure that separates classes in for instance a logistic regression

model may be distorted. Recently, [18] has proposed a functional linear regression model that
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includes phase-variability in the model. It uses a random-effect simultaneous linear model on the

warping parameters and the principal component scores (of aligned predictor functions). However,

the method involves landmark representations that limits its use in general regression models,

particularly when the response is a categorical variable.

Therefore, we propose using the SRSF framework, motivated by benefits as explained previously,

to construct cost functions for component analysis and regression models that are elastic. In other

words, we can construct cost functions that perform the modeling and align the functions, while

maintaining a proper metric.
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CHAPTER 3

MODELING PHASE AND AMPLITUDE

COMPONENTS

This chapter discusses the problem of modeling and classifying functional data after the phase and

amplitude have been separated using the method described in Chapter 2.2.2. After the separation

of phase- and amplitude-components, we will define two types of distances. One is a y- distance;

defined to measure amplitude differences between any two functions ( and independent of their

phase-variability), computed as the L2 distance between the SRSFs of the aligned functions. The

other is an x-distance, or the distance on their phase components, that measures the amount of

warping needed to align the functions. We will show that either of these distances provides useful

measures for computing summary statistics, performing fPCA, and discriminating between function

classes. The main contribution of this chapter is a modeling framework to characterize functional

data using phase and amplitude separation. The basic steps in this procedure are: 1) Align the

original functional data to obtain the aligned functions (describing amplitude variability) and the

warping functions (describing phase-variability); 2) Estimate the sample means and covariance

on the phase and amplitude, respectively. This step uses a nonlinear transformation on the data

to enable use of L2 norm (and cross-sectional computations) for generating summary statistics

(see Section 3.1); 3) Based on the estimated summary statistics, perform fPCA on the phase

and amplitude, respectively; 4) Model the original data by using joint Gaussian or non-parametric

models on both fPCA representations; 5) As a direct application, the model can be used to perform

likelihood-based classification of functional data. We will illustrate this application using several

data sets which include a simulated data set, a signature data set from [75], an iPhone action

data set from [44], and a SONAR data set. Additional results are presented in companion papers

[67–70].
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Figure 3.1: Depiction of the SRSF space of warping functions as a sphere and a tangent space at
identity ψid.

3.1 Phase-Variability: Analysis of Warping Functions

First, we would like to study the phase-variability of the given functions, available to us in the

form of the warping functions {γ∗i } resulting from Algorithm 2.1. An explicit statistical modeling

of the warping functions can be of interest since they represent the phase-variability of the original

data. As mentioned earlier, the space of warping functions, Γ, is a nonlinear manifold and cannot

be treated as a Hilbert space directly. Therefore, we will use tools from differential geometry to

be able to perform statistical analysis and modeling of the warping functions. This framework has

been used previously, but in different application areas, e.g., modeling parameterizations of curves

[60] and studies of execution rates of human activities in videos [71]. It also relates to the square-

root representation of probability densities introduced by [4].

Let γ1, γ2, . . . , γn ∈ Γ be a set of observed warping functions. Our goal is to develop a probability

model on Γ that can be estimated from the data directly. There are two problems in doing this

in a standard way: (1) Γ is a nonlinear manifold, and (2) it is infinite dimensional. The issue of

nonlinearity is handled using a convenient transformation which coincidentally is similar to the

definition of SRSF, and the issue of infinite dimensionality is handled using dimension reduction,

e.g., fPCA, which we will call horizontal fPCA. We are going to represent an element γ ∈ Γ by
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the square-root of its derivative ψ =
√
γ̇. Note that this is the same as the SRSF defined earlier

for fis and takes this form since γ̇ > 0. The identity map γid maps to a constant function with

value ψid(t) = 1. Since γ(0) = 0, the mapping from γ to ψ is a bijection and one can reconstruct

γ from ψ using γ(t) =
∫ t
0 ψ(s)

2ds. An important advantage of this transformation is that since

‖ψ‖2 =
∫ 1
0 ψ(t)

2dt =
∫ 1
0 γ̇(t)dt = γ(1) − γ(0) = 1, the set of all such ψs is a Hilbert sphere S∞, a

unit sphere in the Hilbert space L2. In other words, the square-root representation simplifies the

complicated geometry of Γ to a unit sphere. The distance between any two warping functions is

exactly the arc-length between their corresponding SRSFs on the unit sphere S∞:

dp(γ1, γ2) = dψ(ψ1, ψ2) ≡ cos−1

(∫ 1

0
ψ1(t)ψ2(t)dt

)
. (3.1.1)

Fig. 3.1 shows an illustration of the SRSF space of warping functions as a unit sphere.

The definition of a distance on S∞ helps define a Karcher mean of sample points on S∞.

Definition 2. For a given set of points ψ1, ψ2, . . . , ψn ∈ S∞, their Karcher mean in S∞ is defined

to be a local minimum of the cost function ψ 7→
∑n

i=1 dψ(ψ,ψi)
2.

Now we can define the Karcher mean of a set of warping functions using the Karcher mean in S∞.

For a given set of warping functions γ1, γ2, . . . , γn ∈ Γ, their Karcher mean in Γ is γ̄(t) ≡
∫ t
0 µψ(s)

2ds

where µψ is the Karcher mean of
√
γ̇1,

√
γ̇2, . . . ,

√
γ̇n in S∞. The search for this minimum is

performed using Algorithm 3.1:

Algorithm 3.1 Karcher Mean of Warping Functions

1: Let ψi =
√
γ̇i be the SRSFs for the given warping functions. Initialize µψ to be one of the ψis

or simply w/‖w‖, where w = 1
n

∑n
i=1 ψi.

2: while ‖v̄‖ is small do

3: for i = 1:n do

4: Compute the shooting vector vi = θi
sin(θi)

(ψi − cos(θi)µψ), θi = cos−1 (〈µψ, ψ〉). By

definition, each of these vi ∈ Tµψ(S∞).

5: end for

6: Compute the average v̄ = 1
n

∑n
i=1 vi ∈ Tµψ(S∞).

7: Update µψ 7→ cos(ε‖v̄‖)µψ + sin(ε‖v̄‖) v̄
‖v̄‖ , for a small step size ε > 0.

8: end while

9: Compute the mean warping function using γ̄(t) =
∫ t
0 µψ(s)

2ds.
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Since S∞ is a nonlinear space (a sphere), one cannot perform principal component analysis on it

directly. Instead, we choose a vector space tangent to the space at a certain fixed point, for analysis.

The tangent space at any point ψ ∈ S∞ is given by: Tψ(S∞) = {v ∈ L2|
∫ 1
0 v(t)ψ(t)dt = 0}. In

the following, we will use the tangent space at µψ to perform analysis. Note that the outcomes

of Algorithm 3.1 include the Karcher mean µψ and the tangent vectors {vi} ∈ Tµψ(S∞). These

tangent vectors, also called the shooting vectors, are the mappings of ψis into the tangent space

Tµψ(S∞), as depicted in Fig. 3.1. In this tangent space we can define a sample covariance function:

(t1, t2) 7→ 1
n−1

∑n
i=1 vi(t1)vi(t2). In practice, this covariance is computed using a finite number of

points, say T , on these functions. One obtains a T×T sample covariance matrix instead, denoted by

Kψ. The singular value decomposition (SVD) of Kψ = UψΣψV
T
ψ provides the estimated principal

components of {ψi}: the principal directions Uψ,j and the observed principal coefficients 〈vi, Uψ,j〉.

This analysis on S∞ is similar to the ideas presented in [61], although one can also use the idea of

principal nested sphere for this analysis [28].

As an example, we compute the Karcher mean of a set of random warping functions. These

warping functions are shown in the left panel of Fig. 3.2 and their Karcher mean is shown in the

second panel. Using the {vi}’s that result from Algorithm 3.1, we form the covariance matrix Kψ

and take its SVD. The first three columns of Uψ are used to visualize the principal geodesic paths

in the third, fourth, and fifth panels.

3.2 Amplitude Variability: Analysis of Aligned Functions

Once the given observed SRSFs have been aligned using Algorithm 2.1, they can be statistically

analyzed in a standard way, (in L2) using cross-sectional computations in the SRSF space. This is

based on the fact that da (Eqn. 2.2.4) is the L2 distance between the aligned SRSFs. For example,

one can compute the principal components for the purpose of dimension reduction and statistical

modeling using fPCA. Since we are focused on the amplitude-variability in this section, we will call

this analysis vertical fPCA.

Let f1, · · · , fn be a given set of functions, and q1, · · · , qn be the corresponding SRSFs, µq is their

Karcher Mean, and let q̃is be the corresponding aligned SRSFs using Algorithm 2.1. In performing

vertical fPCA, one should not forget about the variability associated with the initial values, i.e.,

{fi(0)}, of the given functions. Since representing functions by their SRSFs ignores this initial
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Figure 3.2: From left to right: (a) the observed warping functions, (b) their Karcher mean, (c)
the first principal direction, (d) second principal direction, and (e) third principal direction of the
observed data.

value, this variable is treated separately. That is, a functional variable f is analyzed using the

pair (q, f(0)) rather than just q. This way, the mapping from the function space F to L2 × R is a

bijection. In practice, where q is represented using a finite partition of [0, 1], say with cardinality

T , the combined vector hi = [qi fi(0)] simply has dimension (T + 1) for fPCA. We can define a

sample covariance operator for the aligned combined vector h̃i = [q̃i fi(0)] as

Kh =
1

n− 1

n∑
i=1

E[(h̃i − µh)(h̃i − µh)
T] ∈ R(T+1)×(T+1) , (3.2.1)

where µh = [µq f̄(0)]. Taking the SVD, Kh = UhΣhV
T
h we can calculate the directions of principle

variability in the given SRSFs using the first p ≤ n columns of Uh and can be converted back to the

function space F , via integration, for finding the principal components of the original functional

data. Moreover, we can calculate the observed principal coefficients as
〈
h̃i, Uh,j

〉
.
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One can then use this framework to visualize the vertical principal-geodesic paths. The basic

idea is to compute a few points along geodesic path τ 7→ µh + τ
√
Σh,jjUh,j for τ ∈ R in L2, where

Σh,jj and Uh,j are the jth singular value and column, respectively. Then, obtain principle paths in

the function space F by integration as described earlier. Figure 3.3 shows the results of vertical

fPCA on the simulated data set from Fig. 2.5. It plots the vertical principal-geodesic paths of

the SRSFs, qτ,j for τ = −2,−1, 0, 1, 2 and j = 1, 2, 3 and the vertical principal-geodesic paths in

function space. The first 3 singular values for the data are: 0.0481, 0.0307, and 0.0055 with the

rest being negligibly small. The first principal direction corresponds to the height variation of the

second peak while the second principal component captures the height variation of the first peak.

The third principal direction has negligible variability.
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Figure 3.3: Vertical fPCA of aligned functions in simulated data set of Fig. 2.5. The first row
shows the main three principal directions in SRSF space and the second row shows the main three
principal directions in function space.

3.3 Modeling of Phase and Amplitude Components

To develop statistical models for capturing the phase and amplitude variability, there are several

possibilities. Once we have obtained the fPCA coefficients for these components we can impose
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probability on the coefficients and induce a distribution on the function space F . Here we explore

two possibilities: a joint Gaussian model and a non-parametric model.

Let c = (c1, . . . , ck1) and z = (z1, . . . , zk2) be the dominant principal coefficients of the amplitude-

and phase-components, respectively, as described in the previous two sections. Recall that cj =〈
h̃, Uh,j

〉
and zj = 〈v, Uψ,j〉. We can reconstruct the amplitude component using q = µq +∑k1

j=1 cjUh,j and fs(t) = f s(0) +
∫ t
0 q(s)|q(s)|ds. Here, fs(0) is a random initial value. Simi-

larly, we can reconstruct the phase component (a warping function) using v =
∑k2

j=1 zjUψ,j and

then using ψ = cos(‖v‖)µψ + sin(‖v‖) v
‖v‖ , and γs(t) =

∫ t
0 ψ(s)

2ds. Combining the two random

quantities, we obtain a random function fs ◦ γs.

3.3.1 Gaussian Models on fPCA Coefficients

In this setup the model specification reduces to the choice of models for fs(0), c, and z. We are

going to model them as multivariate normal random variables. The mean of f s(0) is f̄(0) while the

means of c and z are zero vectors. Their joint covariance matrix is of the type:

 σ20 L1 L2

LT
1 Σh S

LT
2 S Σψ

 ∈

R(k1+k2+1)×(k1+k2+1). Here, L1 ∈ R1×k1 captures the covariance between f(0) and c, L2 ∈ R1×k2

between f(0) and z, and S ∈ Rk1×k2 between c and z. As discussed in the previous sections

Σh ∈ Rk1×k1 and Σψ ∈ Rk2×k2 are diagonal matrices and are estimated directly from the data. We

will call this resulting probability model on the fPCA coefficients as pGauss.

3.3.2 Non-parametric Models on fPCA Coefficients

An alternative to the Gaussian assumption made above is the use of kernel density estimation

[58], where the density of f s(0), each of the k1 components of c, and the k2 components of z can

be estimated using

pker(x) =
1

nb

n∑
i=1

K
(
x− xi
b

)
where K(·) is the smoothing kernel, which is a symmetric function that integrates to 1, and b > 0

is the smoothing parameter or bandwidth. A range of kernel functions can be used, but a common

choice is the Gaussian kernel.
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3.4 Modeling Results

We will now evaluate the models introduced in the previous section using random sampling.

We will first estimate the means and the covariances from the given data, estimate the model

parameters, then generate random samples based on the estimated models. We demonstrate results

on two simulated data sets used in Figs. 2.5 and 2.6 and one real data set being the Berkeley growth

data1. For the first simulated data set, shown in Fig. 2.5, we randomly generate 35 functions from

the amplitude model and 35 domain-warping functions from the phase model, then combine them

to generate random functions. The corresponding results are shown in Fig. 3.4, where the first

panel is a set of random warping functions, the second panel is a set of corresponding amplitude

functions, and the third panel shows their compositions. Comparing them with the original datasets

(Fig. 2.5) we conclude that the random samples are very similar to the original data; at least under a

visual inspection. The proposed models are successful in capturing the variability in the given data.

Furthermore, if we compare these sampling results to the fPCA-based Gaussian model directly on

f (without separating the phase and amplitude components) in the last panel of Fig. 3.4, we notice

that our model is more consistent with the original data. A good portion of the samples from the

non-separated model only contain three peaks or have a higher variation than the original data,

with some barely representing the original data.

For the second simulated data set we use the data shown in Fig. 2.6 and perform vertical and

horizontal fPCA. As before, we randomly generate 35 functions from the amplitude model and

35 domain-warping functions from the phase model and then combine them to generate random

functions. The corresponding results are shown row of Fig. 3.5, where the first panel is a set of

random warping functions, the second panel is a set of corresponding amplitude functions, and

the last panel shows their compositions. Comparing them with the original data in Fig. 2.6 we

conclude that the random samples are very similar to the original data. Under visual inspection,

the proposed models are successful in capturing the variability in the given data. In this example

performing fPCA directly on the function space does not correctly capture the data and fails to

generate any single unimodal function shown in the last panel.

For the Berkley growth data, we again develop our phase and amplitude models, then randomly

generate 35 functions from the amplitude model and 35 domain- warping functions from the phase

1http://www.psych.mcgill.ca/faculty/ramsay/datasets.html
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Figure 3.4: Random samples from jointly Gaussian models on fPCA coefficients of γs (left) and fs

(middle), and their combinations fs ◦ γs (right) for Simulated Data 1. The last plot are random
samples if a Gaussian model is imposed on f directly without any phase and amplitude separation.

model. We then compose them to generate random functions. The corresponding results are shown

row of Fig. 3.6, where the first panel is a set of random warping functions, the second panel is a

set of corresponding amplitude functions, and the last panel shows their compositions. Comparing

them with the original data set in the last panel we conclude that the random samples are similar

to the original data; and at least under a visual inspection, the proposed models are successful in

capturing the variability in the given data.

3.5 Classification using Phase and Amplitude Models

An important use of statistical models of functional data is in classification of future data into

pre-determined categories. Since we have developed models for both amplitude and phase, one or

both can be used for classification and analyzed for their performance. Here we use a classical setup:

a part of the data is used for training and estimation of model parameters, while the remaining part

is used for testing. This partition is often random and repeated many times to obtain an average

classification performance.

34



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

0.0 0.2 0.4 0.6 0.8 1.0

−5

0

5

10

Figure 3.5: Random samples from jointly Gaussian models on fPCA coefficients of γs (left) and fs

(middle), and their combinations f s ◦ γs (right) for Simulated Data 2. The last panel shows the
random samples resulting from a Gaussian model imposed on f directly.

Amplitude-Based Classification. As described earlier, we can impose a probability model

on the amplitude components data using the principal subspace associated with the aligned SRSFs.

The actual model is imposed on the principal coefficients (c1, c2, . . . , ck1), with respect to the basis

Uh,1, Uh,2, . . . , Uh,k1 . These basis elements in turn, are determined using the training data. We can

select a k1 such that the cumulative energy
∑k1

j=1Σh,jj/
∑T+1

j=1 Σh,jj is above a certain threshold,

e.g., 90 percent. There are two choices of models: Gaussian and kernel-density estimator. Classifi-

cation is performed by constructing the appropriate models for each class C1, · · · , CL of the data.

Then, for a test sample h̃j ∈ RT+1 project it to the principal subspace using an orthonormal basis

Uhl ∈ R(T+1)×k1 , one for each class, and calculate the likelihood under each class. The model with

the largest likelihood represents the class assigned to h̃j . Therefore, our classification rule is:

classify(h̃j) = argmax
Cl

pa(U
T
hlh̃j |Khl, µhl) , where pa = pGauss or pker . (3.5.1)

Phase-Based Classification. Similarly, for the phase components, we can represent the

shooting vectors, {vi}, in a lower order dimensional space using the first k2 columns of Uψ. Where
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Figure 3.6: From left to right: Random samples from jointly Gaussian models on fPCA coefficients
of γs and fs, respectively, and their combinations fs ◦ γs for the Berkley Growth data. The last
panel shows the original data used in this experiment.

k2 can be chosen similar to k1 as described above. Once again, we can either define a Gaussian

model or a kernel density estimator on these principal coefficients. We can estimate the model

parameters for each class C1, · · · , CL using the training data. Then, for a test sample’s shooting

vector vj , we project it to each model’s subspace and calculate the likelihood of vj under each

pre-determined class. Therefore, our classification rule is:

classify(vj) = argmax
Cl

pψ(U
T
ψlvj |Kψl) where pψ = pGauss or pker . (3.5.2)

Joint Classification. Assuming independence we can combine the amplitude and phase clas-

sification rules as,

classify(h̃j , vj) = argmax
Cl

pa(U
T
hlh̃j |Khl, µhl)pψ(U

T
ψlvj |Kψl) (3.5.3)

and classification is as described previously.
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3.6 Classification Results

In this section, we describe classifying functional data after phase and amplitude separation

using pairwise distances using the distances calculated us Eq. 2.2.4 and Eq. 3.1.1 and classifying

functional data using phase and amplitude models.

3.6.1 Pairwise Distances

In this section, we present the classification results on a SONAR data set and a simulated data

to study the effect of traditional additive noise on our metrics.

Simulated Data. We conducted a simulation study using a data set where each class is

represented by a sine function and each class has a different amplitude and phase shift. We studied

a five-class problem with the amplitudes for the 5 classes being 1, 0.88, 0.76, 0.64, and 0.52,

respectively. The phase shift for each class was ((k − 1) ∗ π) for k = 1, · · · , 5 classes and the data

were generated by randomly warping the classes.

The original classes are shown in Fig. 3.7(a) and the randomly warped data for the 5 classes

is shown in Fig. 3.7(b); the warping functions are generated randomly. The additive noise was

generated as white Gaussian noise with mean zero and variance σ, where σ was changed for the

desired signal-to-noise ratio (SNR) Then it was smoothed using a moving average with a window

of size 3. The choice of the smoothing allows for numerical robustness in the calculation of the

SRSFs.

The pairwise distances were calculated for the standard L2, dNaive, dp, and da and classification

was performed using the leave-one-out (LOO) cross-validated nearest-neighbor classifier for varying

degrees of noise. The distance dNaive corresponds to the quantity minγ ‖f1 − f2 ◦ γ‖ that has often

been used in the literature for functional alignment. We denote this method as a “naive” warping

method and refer the associated distance matrix to as (dNaive)ij = ||fi − fj ◦ γ̃ij ||. Note that the

data in the original domain does not obey the isometry property. Therefore, the distance matrix

dNaive is not symmetric.

Fig. 3.8 presents the classification rates for this data set versus SNR. We can see that da

outperforms the Naive and the L2 methods. This implies that when the compositional noise is

accounted for in the model with a proper distance, we get better classification performance. In this
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Figure 3.7: Simulated data of 5 classes with 20 functions in each class.

example, the distance dp expectedly gives poor performance since the same random warping was

used for all the classes.

Overall, our nonlinear warping method using a proper distance performed well on the simu-

lated data and greatly increases classification performance. Additionally, this system shows vast

improvement over the standard L2 distance and current alignment techniques such as dNaive.

SONAR Data. The data set used in these experiments were collected at the Naval Surface

Warfare Center Panama City Division (NSWC PCD) test pond. For a description of the pond and

measurement setup the reader is referred to [29]. The raw SONAR data was collected using a 1 -

30kHz LFM chirp and data was collected for nine proud targets that included a solid aluminum

cylinder, an aluminum pipe, an inert 81mm mortar (filled with cement), a solid steel artillery shell,

two machined aluminum UXOs, a machined steel UXO, a de-militarized 152mm TP-T round, a

de-militarized 155mm empty projectile (without fuse or lifting eye), and a small aluminum cylinder

with a notch. The aluminum cylinder is 2ft long with a 1ft diameter; while the pipe is 2ft long

with an inner diameter of 1ft and 3/8 inch wall thickness.

The acoustic signals were generated from the raw SONAR data to construct target strength

as a function of frequency and aspect angle. Due to the relatively small separation distances

between the targets in the measurement setup, the scattered fields from the targets overlap. To
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Figure 3.8: Classification rates in the presence of additive noise.

generate the acoustic templates (i.e., target strength plot of frequency versus aspect), synthetic

aperture sonar (SAS) images were formed and then an inverse imaging technique was used to

isolate the response of an individual target and to suppress reverberation noise. A brief summary

of this process is as follows: The raw SONAR data are matched filtered and the SAS image is

formed using the ω − k beamformer [59]. The target is then located in the SAS image and is

windowed around selected location. This windowed image contains the information to reconstruct

the frequency signals associated with a given target via inverting the ω−k beamformer [34] and the

responses were aligned in rage using the known acquisition geometry. For the nine targets, 2000

different data collections runs were done, and 1102 acoustic color templates were generated using

the method described above from the data set. From the acoustic color maps, one-dimensional

functional data was generated by taking slices at aspect value of 0◦ and therefore generating 1102

data samples. We will apply our method to this SONAR data, where there are n = 1102 SONAR

signals with nine target classes and the numbers of functions in the nine classes are {ni}9i=1 =

{131, 144, 118, 118, 121, 119, 120, 114, 117} and are sampled using 483 points. A selected subset of

functions in each class from the original data is shown in Fig. 3.9. We observe that the original

data are quite noisy, due to both the compositional and the additive noise, increasing variability

within class and reducing separation across classes. This naturally complicates the task of target

classification using SONAR signals
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Figure 3.9: Original SONAR functions in each of the nine classes.

To have a robust estimate of the SRSF {qi}, we first smooth the original functions 25 times

{fi} using a standard box filter [1/4, 1/2, 1/4]. That is, numerically we update the signals at each

discrete point by fi(xk) →
(
1
4fi(xk−1) +

1
2fi(xk) +

1
4fi(xk+1)

)
.

To determine the effect of smoothing on the classification performance, we conducted a small

study on the number of times the smoothing filter is applied. Table 3.1 presents the classification

performance versus applying the smoothing filter 0, 25, 75, 125, and 175 times. It is interesting to

note that the performance is quite stable with respect to smoothing and applying the box filter 25

times gives only slightly better performance. Hence, we use that level of smoothing for each signal

for the rest of the analysis.
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Table 3.1: Classification rates versus amount of smoothing applied.

Amount of Smoothing 0 25 75 125 175

dp 0.57 0.58 0.59 0.58 0.55
da 0.63 0.73 0.67 0.64 0.60

dNaive 0.61 0.64 0.62 0.57 0.51
L2 0.43 0.44 0.45 0.45 0.44

We first compute the standard L2 distance between each pair, i.e., (L2)ij = ‖fi − fj‖, i, j =

1, . . . , n. The matrix of pairwise L2 distances are shown as a gray scale image in Fig. 3.10a.

This image of the pairwise distances looks very noisy, underlying the difficulty of classification

using SONAR data. Based on this distance matrix, we perform classification by using the LOO

cross-validation on the standard nearest-neighbor method. It is found that the accuracy is 0.44

(489/1102). We then computed distances da and dp between all pairs of signals and these distance

matrices are shown as gray scale images in Fig. 3.10b and 3.10c, respectively. Note that, in theory, dp

and da should lead to symmetric matrices but, in practice, due to the numerical errors these matrices

are not exactly symmetric. So, we force them to be symmetric using dp → (dp + dTp )/2, da →

(da + dTa )/2, where the superscript T indicates the transpose of a matrix.

In the image of da (Fig. 3.10b), we find that the pairwise distances are more structured than the

L2 distances. We also perform classification using the LOO cross-validated nearest-neighbor based

on the da distances. The accuracy turns out to be 0.73 (803/1102), a significant improvement over

the result (0.44) in the standard L2 distances. Interestingly, we find that the dp distances also have

strong indication of the target class in the data. In Fig. 3.10c, we see that the dp image have some

clusters (dark squares) along the main diagonal. The classification accuracy by dp turns out to be

0.58 (643/1102), which is also higher than the classification performance of the standard L2 norm

in the function space.

Since dp and da each only partially describe the variability in the data, which corresponds to

the phase and amplitude differences between the functions, there is a possibility of improvement if

dp and da are used jointly. One simple idea is to linearly combine these two distances and use the

weighted distance to perform classification on the data. Here the amplitude and phase are being

treated as two different “features” of the signals. To accurately represent the contribution from

each distance, we first normalize dp and da by the maximum values in the matrices, respectively.
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Figure 3.10: The pairwise distances using the L2 (a), da (b), and dp (c) metrics.

That is, dp → dp
max dp

, da → da
max da

. Then, for τ ∈ [0, 1], we define

dτ = τdp + (1− τ)da.

dτ is a weighted average of dp and da with d0 = da and d1 = dp.

The next step is the estimation of an optimal τ . Towards this end, we randomly select 50%

of the given signals as training data and evaluate the LOO classification performance for different

values of τ . Since this selection is random, the resulting evolution is potentially random. Figure

3.11a shows the performance profile versus τ for 100 randomly selected training data. An average of

these curves is superimposed on the same plot (thick solid line). A histogram of the optimal values

of τ for different random selections of the training data is shown in b. Both these figures show

that a broad range of τ values, from 0.3 to 0.7, all result in a decent increase in the classification

performance over the individual metrics dp and da, and the general pattern of increase is similar.

In fact, if we use the full data and plot the LOO classification performance versus τ , we obtain the

plot shown in c. The overall shape (and the location of the maximizer) of this curve is very similar

to the curves in a and underscores the independence of different observations. From this study, we

select a value, say τ = 0.41 and use that to perform LOO classification on the full data.

When τ = 0.41 is used, we get an accuracy of 0.76 (839/1102), which is higher then the accuracy

of the L2, da, and dp distances. This indicates that the variability in the SONAR signals are better

characterized when we separate the phase and amplitude variabilities, and better classification can

be achieved when both variabilities are utilized.
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Figure 3.11: (a) Evolution of classification performance versus τ for randomly selected training
data. The average of these curves is drawn on the top. (b) The histogram of optimal τ values for
different random selections of training data. (c) Overall performance versus τ for the full data.

Next, we compute the “naive” distance between any two signals presented in the previous

section, according to (dNaive)ij = argminγ∈Γ ‖fi − fj ◦ γ‖. We also perform the cross-validated

nearest-neighbor using the dNaive and find that the accuracy is 0.64 (702/1102). This is slightly

better than the accuracy by dp, but worse than that of da. This indicates that even a simple method

of warping can help remove certain warping noise in the SONAR data. However, the performance

is not as good as the more formal SRSF-based warping.

Next, we generated a cumulative match characteristic (CMC) curve [5] for the distances dp,

da, dτ (τ = 0.41), dNaive, and L2. A CMC curve plots the probability of classification against the

returned candidate list size and is presented in Fig. 3.12. Initially, da and dτ outperform the other

distances with dNaive slightly outperforming dp. After a slight increase in the returned list size,

dp begins to outperform dNaive and our method rapidly approaches over 0.90 classification rate, in

contrast to the dNaive and the standard L2 distances.

3.6.2 Phase and Amplitude Models

In this section, we present the classification results on a signature data [75], an iPhone-generated

action data set from [44], and the SONAR data set using models developed using vertical and

horizontal fPCA.

Signature Data. In this section, we test our classification method on a signature recognition

data set from [75]. The data was captured using a WACOM Intuos tablet. The data set consists
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Figure 3.12: CMC Comparison of L2, dNaive, dp, da and the weighted dτ (τ = 0.41) distances for
0◦ aspect angle.

of signature samples from 40 different subjects with 20 real signature samples of the subject and

another 20 samples, which are forgeries of the subject’s signature. In our analysis we are going

to distinguish between the real and forged signature for two of the subjects using the tangential

acceleration. The tangential acceleration is computed as fi(t) =
√
[X ′′

i (t)]
2 + [Y ′′

i (t)]
2. To again

have a robust estimate of the SRSF {qi}, we first smooth the original signals 100 times {fi} using

the standard box filter described previously. The smoothed acceleration functions are aligned

in each class (real vs. fake) using the alignment algorithm from Chapter 2.2.3 (Algorithm 2.1).

An example signature with 10 realizations is shown in Fig. 3.13 along with the corresponding

acceleration functions for both the real and fake signatures, the corresponding aligned functions,

and warping functions.

Models were generated for the three classes, as was outlined in Section 3.3, by performing ver-

tical and horizontal fPCA on the aligned data and the warping functions, respectively. We then

impose a multivariate Gaussian model, pGauss, on the reduced data for each class, it is assumed

here that the cross-covariances L1 and L2 are zero. The threshold to select the number of dimen-

sions, k1 and k2, was set at 95%. Classification for just the amplitude component was performed as

described in Section 3.6 using the classification rule in (Eqn. 3.5.1) and was evaluated using 5-fold

cross-validation. Similarly, the classification rule in (Eqn. 3.5.2) was used for the phase compo-
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Figure 3.13: From left to right: the original signature samples for one of the subjects, the corre-
sponding tangential acceleration functions for both the real and fake signatures, the corresponding
aligned functions, and warping functions.

nent. Moreover, the joint classification was performed using (Eqn. 3.5.3). Table 3.2a presents the

the mean and standard deviation (shown in parentheses) of the classification rates from the cross-

validation for the three rules. It also compares to the standard L2 where models were generated

directly on the original data, dimension reduction with fPCA, and imposing a multivariate normal

distribution. Corresponding results for another subject, U13 is presented in Table 3.2b.

The classification rates have a low standard deviation indicating good generalization, though

there is a little variation for the phase only model. For both subjects the amplitude only rule greatly

outperforms both the phase only rule and the standard L2 with the best performance of 93% and

75% for subjects U1 and U13, respectively. As the phase only rule performs poorly combining it

with the amplitude only rule it brings down the overall performance. The alignment and modeling

using a proper distance improves the overall classification performance of the data. To compare the

results between pGauss and pkern, we classified the data again forming models using pkern which was

discussed in Section 3.6, where each of the k1 and k2 components has an estimated density using

a kernel density estimator and independence is assumed. We used the Gaussian kernel function
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Table 3.2: Mean classification rate and standard deviation (in parentheses) for 5-fold cross-
validation on the signature data.

(a) Subject U1

Gaussian Kernel Density

amplitude only 0.93 (0.07) 0.78 (0.19)
phase only 0.65 (0.16) 0.75 (0.09)

phase and amplitude 0.90 (0.05) 0.80 (0.07)
standard L2 0.60 (0.14) 0.55 (0.11)

(b) Subject U13

Gaussian Kernel Density

amplitude only 0.75 (0.14) 0.78 (0.21)
phase only 0.50 (0.01) 0.50 (0.01)

phase and amplitude 0.58 (0.11) 0.60 (0.10)
standard L2 0.50 (0.01) 0.53 (0.06)

and the bandwidth was selected automatically based upon the data using the method presented by

[6]. Classification using the three classification rules were performed using 5-fold cross- validation.

Table 3.2a and Table 3.2b present the the mean and standard deviation of the classification rates

from the cross-validation for the three rules as well as comparing to the standard L2. Models were

generated directly on the original data using fPCA and the kernel density estimator for subjects

U1 and U13, respectively. We see an improvement in the phase only method for subject U1 and

reduction in performance for the other methods; this suggest the warping functions have some

non-Gaussian behavior. However, for subject U13, there is a minimal change between the Gaussian

and kernel estimator.

iPhone Action Data. This data set consists of aerobic actions recorded from subjects using

the Inertial Measurement Unit (IMU) on an Apple iPhone 4 smartphone. The IMU includes a

3D accelerometer, gyroscope, and magnetometer. Each sample was taken at 60Hz, and manually

trimmed to 500 samples (8.33s) to eliminate starting and stopping movements and the iPhone is

always clipped to the belt on the right hand side of the subject. There is a total of 338 functions

for each measurement on the IMU and the actions recorded consisted of biking, climbing, gym bike,
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jumping, running, standing, treadmill, and walking. The number of samples being 30, 45, 39, 45,

45, 45, 44, and 45, respectively for each action. For more information on the data set the reader

is referred to [44]. For our experiments we used the accelerometer data in the x-direction. Again,

to have a robust estimate of the SRSF {qi}, we first smooth the original signals 100 times {fi}

using the standard box filter described in the previous section. As with the previous data set, the

smoothed iPhone data is aligned in each class (activity) using our method. A selected subset of

functions from three activities is shown in Fig. 3.14 along with corresponding aligned functions and

warping functions.
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Figure 3.14: Original iPhone functions for the walking, jumping, and climbing activities in the first
column (in corresponding descending order) with the corresponding aligned functions and warping
functions in the second and third columns, respectively.

47



To perform the classification, models were generated for the 8 classes by performing vertical

and horizontal fPCA on the aligned data and the warping functions; then imposing a multivariate

Gaussian on the reduced data for each class. The threshold to select the number of dimensions, k1

and k2, was set at 95%. Classification was performed as in the previous section. Table 3.3 presents

the mean and standard deviation of the classification rates for the cross-validation for all three

rules as well as comparing to the standard L2. The classification rates have a low standard devia-

Table 3.3: Mean classification rate and standard deviation (in parentheses) for 5-fold cross-
validation on the iPhone data.

Gaussian Kernel Density

amplitude only 0.60 (0.04) 0.62 (0.05)
phase only 0.34 (0.06) 0.35 (0.06)

phase and amplitude 0.62 (0.08) 0.62 (0.07)
standard L2 0.12 (0.02) 0.12 (0.02)

tion indicating good generalization. The phase only rule and the amplitude only rule, drastically

out-perform the standard L2 with the combination providing the best performance at 62%. The

alignment and modeling using a proper distance improves the overall classification performance of

the data. We again used the kernel density estimator to compare the results with the Gaussian

kernel and the results are presented in Table 3.3. Using the kernel density estimator we see only

minor improvements in the phase only rule, suggesting the Gaussian assumption is sufficient for

this data.

SONAR Data. The data set used in these experiments was the sonar data as described in

Section 3.6.1. As with the previous data sets, the smoothed SONAR data is aligned in each class

using our method. Models were generated for the three classes by performing vertical and horizontal

fPCA on the aligned data and the warping functions then, imposing a multivariate Gaussian on

the reduced data for each class, with the aligned data shown in Fig. 3.15. The threshold to select

the number of dimensions, k1 and k2, was set at 90%. Table 3.4 presents the classification rates for

the cross-validation for all three rules as well as comparing to the standard L2.

The classification rates have low standard deviation indicating good generalization for the

SONAR data. The phase only rule and the amplitude only rule out perform the standard L2

with the combination providing the best performance at 54%. The alignment and modeling using
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Table 3.4: Mean classification rate and standard deviation (in parentheses) for 5-fold cross-
validation on SONAR data.

Gaussian Kernel Density

amplitude only 0.44 (0.03) 0.47 (0.02)
phase only 0.42 (0.02) 0.43 (0.02)

phase and amplitude 0.54 (0.03) 0.53 (0.03)
standard L2 0.33 (0.01) 0.34 (0.02)

a proper distance improves the overall classification performance of the data. We again used the

kernel density estimator to compare the results with the Gaussian assumption and the results are

presented in Table 3.4. Using the kernel density estimator we see improvements in the classifica-

tion results. However, there is not a dramatic improvement suggesting the Gaussian assumption is

sufficient for this data.
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Figure 3.15: Aligned and smoothed SONAR functions in each of the nine classes.
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CHAPTER 4

JOINT ALIGNMENT AND COMPONENT

ANALYSIS

This chapter discusses the problem of elastic component analysis, in which we incorporate the

phase-variability into the objective function of the component analysis. This, in turn, alters how

the the optimization is performed. The warping functions are computed at the same time the

corresponding components are extracted. The solution is a more natural approach to the analysis

as the alignment is not a “pre-processing” step, but rather part of the complete solution using one

metric.

We assume that we have the functions and their corresponding square-root slope functions

(SRSFs) as described in the Chapter 2. We have two goals in this chapter: First, is to perform

elastic functional principal component analysis (fPCA) where the objective is to maximize the

variance in data that has phase-variability. Second, is to perform elastic functional partial least

squares (fPLS) where the objective is to maximize the covariance between two functions, f and g,

which both contain phase-variability.

4.1 Functional Principal Component Analysis

The motivation for fPCA is that the directions of high variance will contain more information

then direction of low variance. Let f1, · · · , fn be a given set of functions, the optimization problem

for fPCA can be written as

min
wi

E‖f − f̂‖2 (4.1.1)

where f̂ = µf +
∑n

i=1 βiwi(t) is the fPCA approximation of f with corresponding mean µf , βi =∫
(f − µf )wi(t) dt, and basis functions {wi(t)}. The expectation is taken over f .

Since our desire is to obtain a warping invariant fPCA we now introduce warping of the functions

into Eq. 4.1.1 as

min
{wi}

E

[
min
γ

‖f ◦ γ − (µf +
n∑
i=1

αiwi)‖2
]

(4.1.2)
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where αi =
∫
(fi ◦ γ − µf )wi(t) dt. The problem with Eq. 4.1.2 is that cost function is neither

symmetric nor positive definite. Moreover if we look at the sample version of Eqn. 4.1.2

min
{wi}

1

N

N∑
j=1

[
min
γj

‖fj ◦ γj − (µf +

n∑
i=1

αjiwi(t))‖2
]
,

we have the pinching problem as demonstrated in Chapter 2. For example, if the functions fi have a

point in their ranges that is common, an optimal set {γ∗i } can be found such that µf (t) will become

a constant and f̂ will be zero. In this case the cost function will become zero and the solution is

degenerate. An simple example of this problem is shown in Fig. 4.1 where the original functions

are a bounded half-period sine function, sin(2πt), randomly shifted along the x-axis. The original

functions, aligned functions {fi ◦γi}, and optimal warping functions {γ∗i } are shown in Panels a, b,

and c, respectively. In this case the warping functions spread the functions out such that they are

identical and the mean becomes a constant. This solution is degenerate as the principal components

are zero and are not representative of the original data.
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Figure 4.1: Example of pinching problem in functional principal component analysis with warping.

To address this problem, we use the extended Fisher-Rao metric and the square-root slope

function or SRSF of f , where the Fisher-Rao metric is the standard L2 metric, as was demonstrated

in Chapter 2.2.2. Since the metric is isometric, it is invariant to simultaneous warping of the inputs

and avoids the above mentioned problems

min
{wqi}

E

[
min
γ

‖(q, γ)− (µq +

n∑
i=1

αiwqi)‖2
]

(4.1.3)
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where αi =
∫
((qi, γi)−µq)wqi(t) dt. This is different from doing fPCA on functions after alignment

as was done previously in Chapter 3, since we are simultaneously optimizing over the principal

coordinates and the warping.

In practice, where we have an ensemble set functions, the expectation is replaced with a sum-

mation

Hpca = min
{wqi}

1

N

N∑
j=1

[
min
γj

‖(qj , γj)− (µq +

n∑
i=1

αjiwqi)‖2
]
. (4.1.4)

The algorithm for computing this minimization is given in Algorithm 4.1, where it is done by a

two part process where the fPCA is calculated for the current set of SRSFs and then the SRSFs

are aligned to the principal components. In this process the fPCA is computed using the vertical

fPCA as explained in Chapter 3.2. Note that if q̂ is a minimizer of the cost function, then so is q̂ ◦γ

for any γ ∈ Γ since the cost function is invariant to random warpings of its input variables. So, we

have an extra degree of freedom in choosing an arbitrary element of the set {q̂ ◦ γ|γ ∈ Γ}. To make

this choice unique, we can define a special element of this class as follows. Let {γ∗i } denote the

set of optimal warping functions, one for each i, in Eqn. 4.1.4. Then, we can choose the q̂ to that

element of its class such that the mean of {γ∗i }, denoted by γµ, is γid, the identity element. (The

notion of the mean of warping functions and its computation are described in Algorithm 3.1.)

This procedure results in five items:

1. µf , the mean function,

2. {q̃i}, the set of aligned SRSFs,

3. {γ∗i }, the set of optimal warping functions,

4. {f̃i}, the set of aligned functions, and

5. {wfi(t)}, the principal eigenfunctions

One can then use this framework to visualize the vertical principal-geodesic paths. The basic idea

is to compute a few points along geodesic path τ 7→ µ+ τ
√
Σjjwj for τ ∈ R in L2, where Σjj and

wj are the jth singular value and eigenfunction, respectively.

A test of the convergence of the algorithm was done on the two peak simulated data set from

Fig. 2.5. The algorithm converged in 6 iterations and the cost function is shown in Fig. 4.2.

52



Algorithm 4.1 Simultaneous Alignment and Extraction of Principal Components

1: Initialization Step: Select µq = qi, where i = argmin1≤i≤n ||qi − 1
n

∑n
j=1 qj ||, set {γi} = γid, set

l = 1.

2: while ‖H(l+1) −H(l)‖2 < ε do

3: Compute Kh = 1
n−1

∑n
i=1E[(h̃i − µh)(h̃i − µh)

T]

4: Take the SVD of Kh = UhΣhV
T
h and set wi, i = 1, . . . , n be the n left singular vectors

5: Compute αji =
∫
((qj , γ)− µq)wqi(t) dt ∀j

6: For each qi find the γ
(l)∗
i such that

γ
(l)∗
i = argmin

γ∈Γ

‖(qi, γi)− (µq +
n∑
j=1

αijwqj )‖2
 .

The solution to this optimization comes from the dynamic programming algorithm.

7: Compute the aligned SRSFs using q̃i 7→ (qi ◦ γ(l)∗i )

√
˙

γ
(l)∗
i .

8: Update the mean using µq 7→ 1
n

∑n
i=1 q̃i

9: end while

10: Update γ∗i 7→ γ
(1)∗
i ◦ γ(2)∗i ◦ · · · ◦ γ(l)∗i

11: The function µ represents a whole equivalence class of solutions and now we select the preferred

element µq of that orbit:

1. Compute the mean γµ of all {γ∗i } (using Algorithm 3.1) Then compute µq = (µ◦γ−1
µ )

√
˙γ−1
µ

2. Update γ∗i 7→ γ∗i ◦ γ−1
µ

3. Update wqj = (wqj ◦γ−1
µ )

√
˙γ−1
µ Then compute the aligned SRSFs using q̃i 7→ (qi ◦γ∗i )

√
γ̇∗i

12: Map the SRSFs, µq, and wq back to the function space F using f̃i(t) = fi(t0)+
∫ t
t0
q̃i(s)|q̃i(s)| ds

4.1.1 Numerical Results

To illustrate the developed fPCA method, we run the algorithm on the data used previously

in [37] and as was explained in Chapter 2.2.2. As a reminder, the individual functions are given

by: yi(t) = zi,1e
−(t−1.5)2/2 + zi,2e

−(t+1.5)2/2, t ∈ [−3, 3], i = 1, 2, . . . , 21, where zi,1 and zi,2 are

i.i.d. normal with mean one and standard deviation 0.25. (Note that although this framework

was developed for functions on [0, 1], it can easily be adapted to an arbitrary interval). Each of

these functions is then warped according to: γi(t) = 6( e
ai(t+3)/6−1
eai−1 )− 3 if ai 6= 0, otherwise γi = γid

(γid(t) = t is the identity warping). Here ai are equally spaced between −1 and 1, and the observed

functions are computed using fi(t) = yi(γi(t)).
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Figure 4.2: Evolution of cost function for Algorithm 4.1.

A set of 21 such functions forms the original data and is shown in Panel a of Fig. 4.3. Panel

b presents the resulting aligned functions using our method in Algorithm 4.1 {f̃i} and Panel c

plots the corresponding {γ∗i } using three principal components. It is apparent that the plot of {f̃i}

shows a tighter alignment of functions with sharper peaks and valleys and thinner bands around

the mean. This indicates that the effects of warping generated by the γis have been completely

removed and only the randomness from the yis remains. Fig. 4.4 presents the principal-geodesic

paths, fτ,j for τ = −2,−1, 0, 1, 2 and j = 1, 2, 3, in Panels a, b, and c, respectively. The first

principal direction mainly corresponds to the height variation of the second peak, while the second

principal component mostly captures the height variation of the first peak. The later components

have relatively negligible variance.

We then evaluated the algorithm on the Berkley growth data, specifically the male growth

velocity curves. A set of 39 such functions form the original data and is shown in Panel a of Fig. 4.5.

Panel b presents the resulting aligned functions using our method in Algorithm 4.1 {f̃i} and Panel

c plots the corresponding {γ∗i } using three principal components. Again, we see an overall good

alignment of the data. Fig. 4.6 presents the principal-geodesic paths, fτ,j for τ = −2,−1, 0, 1, 2

and j = 1, 2, 3, in Panels a, b, and c, respectively. The first principal direction mainly corresponds

to the initial value of the function, the second component contains peak variation, and the third

component contains overall variation.
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Figure 4.3: Alignment results on simulated data from Algorithm 4.1.
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Figure 4.4: Principal directions on simulated data from Algorithm 4.1.

Next, we compare our results to a similar method described by Kneip and Ramsay [37] for

both the simulated and growth data. The difference between their method and ours is the SRSF

representation and the use of a proper distance. In [37] they perform the analysis in F space using

the standard L2 metric, which is not a proper distance. Fig. 4.7 presents alignment results using

the method described in [37] with the corresponding principal directions in Fig. 4.8. The alignment

is good and comparable to our method. However, the principal directions that are provided are

different from those from our method in Fig. 4.4. Both the first and second principal directions

contain the variability in both peaks.

Next, we evaluated the growth data and Fig. 4.9 presents alignment results using Kneip and

Ramsay’s method with the corresponding principal directions in Fig. 4.10 using the same number
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Figure 4.5: Alignment results on Berkley Growth data from Algorithm 4.1.
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Figure 4.6: Principal directions on Berkley Growth data from Algorithm 4.1.

of principal components (3) as our method. First, visually the removal of the phase-variability is

not as good as our method, since a few of the peaks are not aligned. The principal directions are

vastly different from those produced using our method in Fig. 4.6, with all three principal directions

having variability across the functions. The differences in the results are largely due to two reasons:

1) Kneip and Ramsay use the MSE alignment method in their algorithm which has initialization

issues and lacks performance using more complicated data sets as was shown in Chapter 2.2.3. 2)

They use the standard L2 metric, which is not isometric and is not the right type of metric to

perform this analysis. Therefore, using the SRSF framework and a proper metric shows increased

performance over current published methods.
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Figure 4.7: Alignment results on simulated data using Kneip and Ramsay’s method described in
[37].

We can also quantify the alignment performance using the decrease in the cumulative cross-

sectional variance of the aligned functions. Using the metrics from Chapter 3 we can compare the

phase- and amplitude-variances for the elastic method and Kneip and Ramsay’s, which are listed

below in Table 4.1 with the simulated unimodal data on the top row and the growth data on the

bottom row:

Table 4.1: The comparison of the amplitude variance and phase variance for different fPCA algo-
rithms on the Simulated and Berkley Growth data set.

Data Component Original Variance Elastic Method Kneip

Simulated
Amplitude-variance 0.083 0.018 0.019

Phase-variance 0 0.062 0.060

Berkley Growth
Amplitude-variance 42.32 20.06 24.65

Phase-variance 0 41.29 27.25

The alignment performance for the simulated data is comparable between the two methods

as both methods achieve nearly the same amplitude- and phase-variance. However, for the more

difficult Berkley growth curves our method out performs the other method. This can be seen by

the larger increase in the phase-variance which attributes to a better alignment of the data. The

amplitude variance is also greatly reduced which also indicates a tighter alignment of functions.
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Figure 4.8: Principal directions on simulated data using using Kneip and Ramsay’s method de-
scribed in [37].

Table 4.2 presents the resulting singular values as a percentage of the cumulative energy resulting

form the elastic method in Algorithm 4.1 and Kneip and Ramsay’s method from [37]. Panel a

presents the singular values resulting from the simulated data and we see that Kneip and Ramsay’s

method packs all of the energy into the first component and the elastic method is in the first 4

components. All of the energy clearly should not be attributed to the first component as there is

more than one type of variation in the data. Panel b presents the singular values resulting from the

Berkley Growth data and we see that Kneip and Ramsay’s method only obtains 70% of the energy

in the first four components and the elastic method obtains 95% of the energy in the first four

components. The difference here can be attributed to the better alignment of the elastic methods

as it is able to accurately capture the modes of variation. Kneip and Ramsay’s method fails to

align the the data well and the components capture more variation from the lack of alignment.

Fig. 4.11a and b presents the first 10 singular values for the simulated data and Berkley growth

data, respectively. The blue curve corresponds to performing standard fPCA on the un-aligned

data, the orange curve corresponds to the elastic method in Algorithm 4.1, and the green curve

corresponds to Kneip and Ramsay’s method [37]. Performing standard fPCA on the original data

we note that a good portion of the singular values are significant. After performing Algorithm 4.1

we see the amount of energy in the singular values is significantly reduced from the alignment of

the data. Our method outperforms Kneip and Ramsay’s method in reducing the energy as in both
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Figure 4.9: Alignment results on Berkley Growth data using Kneip and Ramsay’s method described
in [37].

cases the singular values from their method contain more energy than our method. This suggests

that we obtain a tighter alignment and more compact representation.

4.2 Functional Partial Least Squares

Functional Partial Least Squares (fPLS) is used to find the fundamental relations between

two functions (f and g). Often, it is used in regression, where the variables used as independent

variables in the regression analysis display a high degree of correlation; because those variables

might be measuring the same characteristics. This problem is known as multi-colinearity, where a

high degree of correlation among the predictive variables increases the variance in the estimates of

the regression parameters. Therefore, the parameter estimates in a regression model may change

with a slight change in data and hence, are not stable for prediction. Comparing with fPCA, which

only captures the characteristics of the response function and not the predictive variables, a fPLS

model will try to find the direction in the f (response) space that explains the maximum variance

direction in the g (predictive) space. In other words, fPLS can be viewed as a covariance maximizer

in which we have a pair of observed random functions (f, g). This can be stated as the following

maximization problem

{w∗
f , w

∗
g} = argmax

wf ,wg

cov(〈f, wf 〉 , 〈g, wg〉)
‖wf‖‖wg‖

. (4.2.1)

Using the same reasons as mentioned previously, we will replace the standard L2 inner product

with the Fisher-Rao inner product due its theoretical properties, and use the SRSF transformation
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Figure 4.10: Principal directions on Berkley Growth data using Kneip and Ramsay’s method
described in [37].

for ease of computation. The benefit of the SRSF transformation is that in the SRSF space the

standard L2 inner product is the Fisher-Rao inner product and is a proper metric and does not

exhibit the pinching effect demonstrated in Chapter 2.2.1.

Let f1, · · · , fn be a given set of functions, and qf1, · · · , qfn be the corresponding SRSFs. Simi-

larly, let g1, · · · , gn be another given set of functions, and qg1, · · · , qgn be the corresponding SRSFs.

The fPLS optimization problem in SRSF space is

{w∗
qf
, w∗

qg} = argmax
wqf ,wqg

cov(
〈
qf , wqf

〉
,
〈
qg, wqg

〉
)

‖wqf ‖‖wqg‖
. (4.2.2)

Since our desire is obtain a warping invariant fPLS we now introduce warping of the SRSF into

Eq. 4.2.2. Let rf =
〈
(qf , γ), wqf

〉
and rg =

〈
(qg, γ), wqg

〉
, then the elastic version of the objective

functions is,

{w∗
qf
, w∗

qg , γ
∗} = argmax

wqf ,wqg ,γ

(
E[maxγ(rfrg − E[rf ]E[rg])]

‖wqf ‖‖wqg‖

)
. (4.2.3)

In practice, where we have an ensemble set functions, the covariance function is replaced with a

summation. Let rf,i =
〈
(qf,i, γi), wqf

〉
and rg,i =

〈
(qg,i, γi), wqg

〉
be the sample inner products and

we can write Eqn. 4.2.3 as

{w∗
qf
, w∗

qg , {γ
∗
i }} = argmax

wqf ,wqg ,{γi}

(
1
N

∑N
i=1(rf,irg,i − r̄f r̄g)

‖wqf ‖‖wqg‖

)
(4.2.4)

where r̄f = 1
N

∑N
i=1 rf,i and r̄g =

1
N

∑N
i=1 rg,i are the means of rf and rg, respectively.
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Table 4.2: Resulting singular values percentage of cumulative energy on simulated and growth data
from Algorithm 4.1 and [37].

(a) Simulated

1st 2nd 3rd 4th

Elastic Method 40.41 68.26 76.15 80.61
Kneip and Ramsay 86.13 99.88 99.97 99.98

(b) Berkley Growth

1st 2nd 3rd 4th

Elastic Method 75.39 90.42 93.56 95.37
Kneip and Ramsay 31.66 56.27 63.89 69.87

4.2.1 Optimization over {γi}

Next, we focus our attention on solving the objective function in Eqn. 4.2.4 for the warping

functions, {γi}. We will use the standard gradient ascent method and will represent an element

γ ∈ Γ by the square-root of its derivative ψ =
√
γ̇ as was motivated in Chapter 3.1. The important

advantage of this transformation is that since ‖ψ‖2 =
∫ 1
0 ψ(t)

2dt =
∫ 1
0 γ̇(t)dt = γ(1) − γ(0) = 1,

the set of all such ψs is a Hilbert sphere S∞, a unit sphere in the Hilbert space L2. In other words,

the square-root representation simplifies the complicated geometry of Γ to a unit sphere.

By taking this transformation the maximization in Eqn. 4.2.4 over {γi} can be written as

Hγ = max
{γi}

 1

N

N∑
i=1

rfi(ψi)rgi(ψi)−
1

N

N∑
i=1

rfi(ψi)
1

N

N∑
j=1

rgj(ψj)

 (4.2.5)

where

rfi(ψi) =

∫ 1

0
qf

(∫ t

0
ψi(x)

2 dx

)
ψi(t)wqf (t) dt

rgi(ψi) =

∫ 1

0
qg

(∫ t

0
ψi(x)

2 dx

)
ψi(t)wqg(t) dt.

We now wish to take the derivative of Eqn. 4.2.5 with respect to the kth square-root derivative

warping function, ψk. The first term’s derivative is

1

N

(
∂rfk(ψk)

∂ψk
rgk(ψk) + rfk(ψk)

∂rgk(ψk)

∂ψk

)
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Figure 4.11: Resulting singular values on simulated and growth data from standard fPCA, Algo-
rithm 4.1, and [37].

with the remaining terms from the summation being zero. The partial derivatives of rfk and rgk

are

∂rfk(ψk)

∂ψk
= 2ψk(t)

∫ 1

t
q̇fk

(∫ x

0
ψk(s)

2 ds

)
ψk(x)wqf (x) dx+ qfk

(∫ t

0
ψk(s)

2 ds

)
wqf (t)

∂rgk(ψk)

∂ψk
= 2ψk(t)

∫ 1

t
q̇gk

(∫ x

0
ψk(s)

2 ds

)
ψk(x)wqg(x) dx+ qgk

(∫ t

0
ψk(s)

2 ds

)
wqg(t)

The derivative of the second term contains 3 terms: one for when i = j = k, one for when

i = k, j 6= k, and i 6= k, j = k. The remaining terms from the summations are zero and the

derivative is

1

N2

(
∂rfk(ψk)

∂ψk
rgk(ψk) + rfk(ψk)

∂rgk(ψk)

∂ψk

)
+

1

N2

∂rfk(ψk)

∂ψk

∑
j 6=k

rgj(ψj)

+
1

N2

∂rgk(ψk)

∂ψk

∑
i 6=k

rfi(ψi)
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Combining the two derivatives we get the gradient of the objective function as

h(ψk) =
1

N

(
∂rfk(ψk)

∂ψk
rgk(ψk) + rfk(ψk)

∂rgk(ψk)

∂ψk

)
− 1

N2

(
∂rfk(ψk)

∂ψk
rgk(ψk) + rfk(ψk)

∂rgk(ψk)

∂ψk

)
− 1

N2

∂rfk(ψk)

∂ψk

∑
j 6=k

rgj(ψj)

− 1

N2

∑
i 6=k

rfi(ψi)
∂rgk(ψk)

∂ψk

We then find the optimal set of {ψi} and therefore {γi} using gradient descent, as described in

Algorithm 4.2.

Algorithm 4.2 Optimization over {γi} for fPLS

1: Set ψ
(0)
i = ψid, for i = 1, . . . , N and set l = 1

2: while ‖Hγ(l + 1)−Hγ(l)‖2 < ε do

3: for i = 1 : N do

4: Calculate the gradient h(ψ
(l)
i )

5: Find the tangent vector in the direction of h at ψ
(l)
i using h−

〈
h, ψ

(l)
i

〉
ψ
(l)
i

6: Update ψi component according to ψ
(l+1)
i = cos(δ‖h‖)ψ(l)

i + sin(δ‖h‖) h
‖h‖ for a step size

δ > 0. This update is simply the exponential map on that sphere at the point ψ
(l)
i applied to

the tangent vector

7: end for

8: Calculate γ∗i =
∫ t
0 ψ

l+1
i (s)2 ds, i = 1, . . . , N

9: l = l + 1

10: end while

A test of the convergence of the algorithm was done using a simulated data set. The functions

were constructed according to fi = ci sin(2πt) and gi = di sin
2(2πt) where ci, di ∼ U [0.5, 1]. The

functions fi and gi were then warped randomly. Since, fi and gi consist of only one component

we can analytically determine the weight functions wf and wg that maximize Eqn. 4.2.4 to be

wf = 1√
2
sin(2πt) and wg =

√
8
3 sin

2(2πt). Fig. 4.12 presents the generated functions for fi and gi

in Panels a and b, respectively. Using this data and the determined weight functions, wf and wg,

we evaluated Algorithm 4.2 on the simulated data. The algorithm converged in 100 iterations and

the cost function is presented in Fig. 4.13.
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Figure 4.12: Simulated fi and gi for the testing of Algorithm 4.2.

4.2.2 Full Optimization

Now, we turn our attention to solving the full objective function in Eqn. 4.2.4. First, we will

assume that the {γi} are fixed. Our objective function is then

H = max
wqf ,wqg

(
1
N

∑N
i=1(rf,irg,i − r̄f r̄g)

‖wqf ‖‖wqg‖

)
,

which is a Rayleigh quotient.

The optimal solution of this Rayleigh quotient is the singular-value decomposition (SVD) of

the sample covariance matrix. In practice, where qf and qg is represented using a finite partition

of [0, 1], say with cardinality T , the vectors qfi and qgi have dimension T . We, then, can define a

sample covariance operator for rfi and rgi as

K =
1

N − 1

N∑
i=1

(rfi − r̄fi)(rgi − r̄gi)
T (4.2.6)

Taking the SVD, K = UΣV T we can calculate wqf using the first column of U and wqf as the first

column of V . The weight functions wqf and wqg can then be converted back to the function space

F , via integration, for finding the weight functions of the original functional data.

After we have the weight functions, we will find the warping functions using the dominant or

first weight function. Then, after we have found the optimal warping functions, we will find all
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Figure 4.13: Evolution of cost function for Algorithm 4.2.

the components using the aligned data. Algorithm 4.3 presents the overall method for finding the

optimal {wqfj}, {wqgj}, and {γi}.

This procedure results in five items:

1. {wfi}, the f weight functions,

2. {wgi}, the g weight functions,

3. {q̃fi}, {q̃gi}, the two sets of aligned SRSFs,

4. {f̃i}, {g̃i}, the two sets of aligned functions, and

5. {γ∗i }, the set of optimal warping functions.

4.2.3 Numerical Results

To illustrate the developed elastic fPLS method, we evaluated Algorithm 4.3 on the simulated

data described in Section 4.2.1. It was also evaluated on two real data sets, the gait data described

in [42] and the iPhone action data set from [44].

Simulated Pair Data. Using the simulated data set from Section 4.2.1 we demonstrate

the results of Algorithm 4.3. The original data for fi and gi is presented in Figs. 4.12a and

b, respectively. Fig. 4.14 presents the resulting aligned functions and warping functions from
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Algorithm 4.3 Functional Partial Least Squares with Warping

1: Initialization Step: Find the first weight functions wqf and wqg from the left and right singular

vectors from the covariance matrix K, set l = 1

2: while ‖H l −H l−1‖2 < ε do

3: Find {γ∗i } using Algorithm 4.2

4: Compute the aligned SRSFs q̃fi and q̃gi using q̃i 7→ (qi ◦ γ(l)∗i )

√
˙

γ
(l)∗
i for qfi and qgi

5: Calculate wqf and wqg from the left and right singular vectors from the covariance matrix

K, formed using q̃fi and q̃gi

6: l = l + 1

7: end while

8: Form covariance matrix K using final q̃fi and q̃gi

9: Take singular value decomposition of K

10: Take {wqfj} as the n left singular vectors and {wqgj} as the n right singular vectors

11: Map the SRSFs, {wqfj}, and {wqgj} back to the function space F using f̃i(t) = fi(t0) +∫ t
t0
q̃i(s)|q̃i(s)| ds

Algorithm 4.3. Figs. 4.15a and b presents the resulting weight functions from Algorithm 4.3 for wf

and wg, respectively.

Figs. 4.15c and d present the resulting weight functions found using the standard fPLS frame-

work for the original fi and gi before warping. The standard fPLS framework consists of forming

the covariance matrix between fi and gi and taking the SVD. The weight functions are then the

resulting left and right singular vectors. It should be noted that this framework ignores the phase-

variability found in the data. The blue curve in Fig. 4.15 is the first component and the green and

pink curves are the next two components. First, the warped functions and warping functions show

a clustering of two sets, which actually gives a higher cost function value. The cost function has

a value of 0.003 for the original un-warped data. Using our algorithm, the cost function reaches a

value of 2.0103. The reason for this is that the data can be warped in the cost function such that it

reaches a higher maximal value than that of the original un-warped functions. This is the result of

grouping the functions, one set of functions generates positive values for both of the inner-products

for fi and gi. Similarly, the other half gives negative values for both the inner products of fi and

gi; when multiplied together is a positive value and therefore the addition generates a higher cost

function value.
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Figure 4.14: The aligned simulated data (a) f̃i, (b) g̃i, and corresponding (c) warping functions for
the simulated data.

However, our method recovers only one dominant weight function wf and one dominant weight

function wg, which is expected as our data was constructed with only one basis. This can be seen

by first looking at the functions in Fig. 4.15, which for both the elastic weight functions and original

weight functions the blue curve has smoothness and regularity. The remaining curves are noise.

Moreover, if we examine the resulting singular values in Table 4.3, we see that for the original data

and the elastic method we have only one dominant singular value resulting in one dominant weight

function. If we look at the singular values resulting from executing the standard fPLS framework

on the warped data, we see we have two dominant singular values.

Table 4.3: Resulting singular values on Simulated Data from Algorithm 4.3.

1st 2nd 3rd 4th

Original Un-Warped Data 3.25e-02 7.75e-18 6.18e-18 5.48e-18
Warped Data 1.01 1.35e-01 1.94e-03 2.07e-04
Elastic Method 201.43 8.30e-02 9.94e-03 6.18e-03

Gait Data. Next, we tested the algorithm on the gait data presented in [42] which has been

randomly warped. Fig. 4.16a and b presents the original gait data which consist of the angular

rotations in the sagittal plane of the hip and knee of 39 normal 5-year-old children. The observations

are taken over a gait cycle consisting of one double step taken by each child, and time is measured
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Figure 4.15: The fPLS weight functions (a) wf and (b) wg resulting from Algorithm 4.3 and the
original weight functions (c) wf and (d) wg resulting from standard fPLS on the original un-warped
simulated data.

in terms of the cycle. In all cases the cycle has been discretized (mathematically) to a regular

grid of 80 points. The original data was then warped randomly to produce phase-variations and

Fig. 4.16c and d presents the the randomly warped gait data for the hip and knee, respectively.

Fig. 4.17 presents the resulting aligned functions and warping functions resulting from Algo-

rithm 4.3. Figs. 4.18a and b presents the resulting weight functions from Algorithm 4.3 for wf and

wg, respectively. As with the simulated data, we see the same two groups of aligned functions which

can be attributed to the algorithm achieving a higher objective function value of 91.65 over the

original un-warped data achieving 10.73 using the standard fPLS framework. The weight functions

resulting from our method are different than those resulting from the standard fPLS framework on

the original data (Figs. 4.18c and c). This can be attributed to the two grouping alignment of {fi}
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Figure 4.16: Original Gait data for the (a) hip and (b) and the randomly warped data for the (c)
hip and (d) knee.

and {gi} from our algorithm.

We can also examine the singular values as with the simulated data. Table 4.4 presents the

percentage of the cumulative energy for the first four singular values. Specifically, each column

represents the percentage of the cumulative energy resulting from the ith singular value. The first

four singular values from the standard fPLS framework for the original data are significant and

each adds to the energy. This is also similar for the standard fPLS framework for the warped

data. Our method packs most of the energy into the first four singular values with the first weight

function being dominant. This is from the fact that the warping functions are found using the first

component, so the resulting aligned data will have most of its energy in the first component.

iPhone Action Data. Finally, we test our method on the iPhone action data set. This

data set consists of aerobic actions recorded from subjects using the Inertial Measurement Unit
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Figure 4.17: The aligned Gait data (a) f̃i, (b) g̃i, and corresponding (c) warping functions.
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Figure 4.18: The fPLS weight functions (a) wf and (b) wg resulting from Algorithm 4.3 and the
original weight functions (c) wf and (d) wg resulting from standard fPLS on the original un-warped
Gait data.
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Table 4.4: Resulting singular values percentage of cumulative energy on Gait data from Algo-
rithm 4.3.

1st 2nd 3rd 4th

Original Data 23.10 37.59 48.49 55.50
Warped Data 54.78 69.51 75.17 79.06
Elastic Method 88.27 90.63 92.49 93.68

(IMU) on an Apple iPhone 4 smartphone and is described in more detail in Chapter 3.6.2. For our

experiments we used the gyrometer data in the x-direction and y-direction for the biking action.

To have a robust estimate of the SRSFs {qfi} and {qgi}, we first smooth the original signals 25

times, {fi} and {gi}, using the standard box filter described in Chapter 3.6.1. Figs. 4.19a and b

present the original data for the x-gyrometer and y-gyrometer, respectively.
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Figure 4.19: Original iPhone bike data for the (a) x-gyrometer and (b) y-gyrometer.

Fig. 4.20 presents the aligned x- and y-gyrometer and corresponding warping functions in Panels

a, b, and c, respectively. Comparing to the original functions, there is is some shifting of peaks

with a most of the alignment being linear shifts. The warping functions in Panel c demonstrate

the small amount of warping that was required for the alignment as most of the warping functions

are close to γid. The corresponding weight functions wf and wg are presented in Fig. 4.21a and b,

respectively. All three components for both wf and wg showed significant singular values. As with

the previous data sets, the objective function from our algorithm achieves a higher value of 0.74

compared to the standard fPLS framework on the original data of 0.32.
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Figure 4.20: The aligned iPhone action data (a) f̃i, (b) g̃i, and corresponding (c) warping functions.
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Figure 4.21: The fPLS weight functions (a) wf and (b) wg resulting from Algorithm 4.3 for iPhone
action data.
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CHAPTER 5

JOINT ALIGNMENT AND FUNCTIONAL

REGRESSION

This chapter discusses the problem of elastic regression analysis, in which we incorporate phase-

variability in a non-parametric way into the functional linear regression model. This alters how the

model parameters are identified as the warping is now an additional parameter in the model. As

with the elastic component analysis, this approach is more natural and creates more parsimonious

regression models for data that contains phase-variability.

As in the previous chapter we assume that we have the functions and their corresponding

square-root slope functions (SRSFs) as described in the Chapter 2. We have three goals in this

chapter: First is to develop the elastic functional linear regression model. Second, we derive the

functional logistic regression model and the multinomial logistic model from the linear model.

Finally, we demonstrate the power of the elastic models in classification of physiological data.

5.1 Elastic Functional Linear Regression

One of the commonly studied problems in functional data analysis is functional linear regression.

More precisely, let the predictor functions be given by {fi : [0, T ] → R, i = 1, 2, . . . , n} and the

corresponding response variables be yi. The standard functional linear regression model for this

set of observations is

yi = α+

∫ T

0
fi(t)β(t) dt+ εi, i = 1, . . . , n (5.1.1)

where α ∈ R is the intercept, β(t) is the regression-coefficient function and εi ∈ R are random errors.

The model parameters are usually estimated by minimizing the sum of squared errors (SSE),

{α∗, β∗(t)} = argmin
α,β(t)

n∑
i=1

|yi − α−
∫ T

0
fi(t)β(t) dt|2.

These values form maximum-likelihood estimators of parameters under the additive white-Gaussian

noise model. As stated in Chapter 2 one of the problems with this approach, is that since β(t)
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is infinite dimensional, we have infinite degrees of freedom to form β(t) in which we can make

the SSE equal zero. Ramsay [52] proposed to represent β(t) using p basis functions in which p is

hopefully large enough to capture all variations of β(t) or use a penalty term which shrinks the

variability of β(t) or smooths it response. However, this model assumes the data is aligned and has

no phase-variability.

To define a model that contains phase-variation we use previous notation, however to remind

the reader: Let f be a absolutely continuous real-valued function on [0, 1] and F denotes the set

of all such functions. Also, let Γ be the set of boundary-preserving diffeomorphisms of the unit

interval [0, 1], i.e. Γ = {γ : [0, 1] → [0, 1]| γ(0) = 0, γ(1) = 1, γ is a diffeomorphism}. Γ is a group

with the action of composition and the identity element given by γid(t) = t. Its elements play the

role of warping functions. For any f ∈ F and γ ∈ Γ, the composition f ◦γ denotes the time-warping

of f by γ.

Incorporating time warping into the functional regression model in Eqn. 5.1.1 gives us a pre-

dictive variable that is defined as

y0i = α+

∫ 1

0
f0i (t)β(t) dt

yi = y0i + εi, i = 1, . . . , n. (5.1.2)

The predictive functions are then observed under phase-variability

fi = f0i ◦ γi, (5.1.3)

and we will identify this model by minimizing the SSE with the observed pair (yi, fi). The estima-

tion problem now includes maximization of the likelihood over the warping functions, in addition

to the quantities α and β:

{α∗, β∗(t), {γ∗i }} = argmin
α,β(t),{γi}

n∑
i=1

|yi − α−
∫ 1

0
(fi ◦ γi)(t)β(t) dt|2. (5.1.4)

However, Chapter 2.2.2 demonstrated that the computation of optimal time warping in the orig-

inal function space has some fundamental and practical issues. These include the pinching effect

(singularity in matching) and non-symmetric nature of L2 norm between the warped functions.

Specifically, if the functions fi(t), i = 1, . . . , n are constructed using fi(t) = cif(t) where ci > 0

the solution to the cost function in Eqn. 5.1.4 becomes degenerate. For example we can construct
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functions fi using

f(t) =

{
4t 0 < t < 1/2
4− 4t 1/2 ≤ t ≤ 1

and if we assume α = 0 then

yi =

∫ 1

0
(fi ◦ γi)(t)β(t) dt

=

∫ 1

0
ci(f ◦ γi)(t)β(t) dt.

An optimal solution can be found such that β(t) would be a constant β and we can find a γi such

that yi
ciβ

=
∫ 1
0 f(γi(t))dt. Since, β(t) is a constant it has no meaning in the regression model and

the solution is therefore degenerate.

A simple example of this problem is shown in Fig. 5.1 where the original functions are con-

structed as described above using ci ∈ {1, 1.1, 1.2, 1.25}. The original functions, aligned functions

{fi ◦ γi}, and optimal warping functions {γ∗i } are shown in Panels a, b, and c, respectively. In this

case the warping functions pinch the functions to obtain a SSE value of 0 forming a degenerate

solution.
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Figure 5.1: Example of pinching problem in functional linear regression with warping.

Additionally, from Chapter 2.2.1 we know that ‖f ◦ γ‖ 6= ‖f‖. In other words we can make

‖f ◦ γ‖ any value we want in the range of f just by selecting a γ to select that point. To address

these and related problems, we introduced a mathematical expression for representing a function.

This function, q : [0, 1] → R, is called the square-root slope function or SRSF of f , and is defined
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in the following form:

q(t) = sign(ḟ(t))

√
|ḟ(t)| .

With this transformation we now have ‖q ◦ γ‖ = ‖q‖ which preserves the energy of q. We suggest

an alternative data model where we use SRSFs {qi}, rather than {fi} themselves as predictors.

The rest of the model remains same and in SRSF space is defined to be

y0i = α+

∫ 1

0
q0i (t)β(t) dt

yi = y0i + εi, i = 1, . . . , n. (5.1.5)

The predictive functions are then observed under phase-variability

qi = (q0i , γi), (5.1.6)

and we will identify this model by minimizing the SSE with the observed pair (yi, qi), where the

expectation is over q. That is,

{α∗, β∗(t), {γ∗i }} = argmin
α,β(t),{γi}

n∑
i=1

|yi − α−
∫ 1

0
(qi, γi)(t)β(t) dt|2. (5.1.7)

It should be mentioned that if β̂ is a minimizer of the cost function, then so is β̂ ◦ γ for any γ ∈ Γ

since the cost function is invariant to random warpings of its input variables. So, we have an extra

degree of freedom in choosing an arbitrary element of the set {β̂ ◦ γ|γ ∈ Γ}. To make this choice

unique, we can define a special element of this class as follows. Let {γ∗i } denote the set of optimal

warping functions, one for each i, in Eqn. 5.1.7. Then, we can choose the β̂ to that element of its

class such that the mean of {γ∗i }, denoted by γµ, is γid, the identity element. (The notion of the

mean of warping functions and its computation are described in Algorithm 3.1.)

5.1.1 Maximum-Likelihood Estimation Procedure

In the elastic model, we need to estimate α∗, β∗, and {γ∗i } using Eqn. 5.1.7. Note that the

optimization is of significant challenge because α and β(t) are parameters in the regression and γi

is the time warping in each observation. In this dissertation, we propose an iterative procedure to

update them alternatively.
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Optimization over warping functions. First, we will assume that α and β(t) are given

and our goal is to solve for the set of optimal warping functions, {γ∗i }. Since the summation in

Eqn. 5.1.7 is over i, we can estimate the elements of the set {γi} individually for each i. Specifically,

we can move the minimization over γi inside the summation and each γ∗i can be found by solving

γ∗i = argmin
γi

|yi − α−
∫ 1

0
(qi, γi)(t)β(t) dt|2. (5.1.8)

To first the solve the minimization in Eqn. 5.1.8, we can easily get

γm = argmin
γi

∫
(qi, γi)(t)β(t) dt = argmin

γi
‖(qi, γi) + β‖2

γM = argmax
γi

∫
(qi, γi)(t)β(t) dt = argmin

γi
‖(qi, γi)− β‖2.

The solution to these two optimization problems comes from the dynamic programming algorithm

[3]. Next, let ym =
∫
(qi, γm)(t)β(t) dt and yM =

∫
(qi, γM )(t)β(t) dt, we can find the optimal γ∗i

using the following algorithm:

Algorithm 5.1 Optimization over γi for Elastic Functional Linear Regression

1: if yi > α+ yM then

2: γ∗i = γM

3: end if

4: if yi < α+ ym then

5: γ∗i = γm

6: end if

7: if α+ ym < yi < α+ yM then

8: Look for the optimal warping function in the following form:

γ = sγM + (1− s)γm, s ∈ [0, 1]

9: Let f(γ) = yi − α−
∫
(qi, γ)(t)β(t) dt and g(s) = f(sγM + (1− s)γm)

10: Then g(0) = f(γm) > 0, and g(1) = f(γM ) < 0 and based on the intermediate value

theorem, we can use a secant-type method for finding the optimal s∗, such that g(s∗) = 0

11: end if

Optimization over α and β. In this step we assume that the {γi} are fixed, and adopt

a conventional basis-based approach for estimating α∗ and β∗. The coefficient function β(t) is

represented by a set of basis functions (such as the Fourier basis or a B-spline basis) [θi, i =
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1, . . . , p], and takes the form β(t) =
∑p

i=1 biθi, where bi ∈ R is the coefficient. We can combine

all the parameters – intercept α and coefficients bis – in a vector form b = [α, b1, . . . , bp]
T and

y = [y1, . . . , yn]
T. The regression model then can be written as,

y = ZTb+ εi, (5.1.9)

where Z = [1 Θ] and the (i,j)th entry in Θ is
∫
(qi, γi)(t)θj(t) dt. We then can estimate optimal

parameter vector b∗ the using ordinary least squares,

b∗ = (ZTZ)−1ZTy (5.1.10)

and the optimal β∗(t) =
∑p

i=1 b
∗
i θi.

To perform the overall minimization we alternate between finding the optimal warping functions

{γi} and finding the optimal b. The algorithm for computing optimal α, β, and {γi} is given in

Algorithm 5.2.

Algorithm 5.2 Elastic Functional Linear Regression

1: Initialization Step: set {γi} = γid, calculate SRSFs {qi}, set l = 1.

2: while ‖H(l+1) −H(l)‖2 < ε do

3: Find α(l) and β(l)(t) using basis-based OLS

4: Find {γi}(l) using Algorithm 5.1

5: Calculate SSE H(l) =
∑n

i=1 |yi − α(l) −
∫
(qi, γ

(l)
i )(t)β(l)(t) dt|2

6: l = l + 1

7: end while

8: Find the mean (γµ) of {γ∗i } using Algorithm 3.1

9: Update γ∗i 7→ γ∗i ◦ γ−1
µ

10: Update β(l) = (β(l) ◦ γ−1
µ )

√
˙γ−1
µ

11: Compute the aligned SRSFs using q̃i 7→ (qi ◦ γ∗i )
√
γ̇∗i .

12: Map the SRSFs, β(t), and q̃i back to the function space F using f̃i(t) = fi(t0)+
∫ t
t0
q̃i(s)|q̃i(s)| ds

This procedure results in four items:

1. α∗, optimal α

2. β∗(t), optimal regression function,

3. {γ∗i }, the set of optimal warping functions, and

4. {f̃i}, the set of aligned functions.
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5.1.2 Prediction

After the model has been identified, the next question that arises is how the prediction is

performed. The answer is simple if the test data has not been observed with phase variation as

prediction would be computed using

yi = α+

∫ 1

0
qi(t)β(t) dt. (5.1.11)

However, a problem arises when the input has been observed with phase variation. The prediction

would be performed using

yi = α+

∫ 1

0
(qi, γi)(t)β(t) dt, (5.1.12)

but the question remains on what γi should be.

To solve this problem, we propose the following: 1) Take the observed SRSF, qi and find the

SRSF from the training set which has the smallest distance using ‖qi − qtrain‖2. 2) Determine the

γi to be used for prediction as the corresponding γi for the closest training sample. 3) Find the

predictive value, yi, using Eqn. 5.1.12 with the corresponding chosen γi.

5.1.3 Experimental Results

To illustrate the developed elastic functional linear regression method we evaluated Algo-

rithm 5.2 on a simulated data constructed using

fi(t) = ai
1√
2πσ2

exp

(
−(t− µj)

2

2σ2

)
,

where ai ∼ N (dj , 0.05) and dj ∈ {4, 3.7, 4}. The mean was chosen according to µj ∈ {0.35, 0.5, 0.65}

and 20 functions were generated for each µj and σ = 0.075. The generated functions are shown

in Fig. 5.2a with corresponding SRSFs in Fig. 5.2b. The functions were then randomly warped to

generate the warped data, {fi} and {qi}, presented in Figs 5.2c and d, respectively. The response

variable yi was generated with α = 0, β(t) = 0.5 sin(2πt) + 0.9 cos(2πt), and the original SRSFs.

The resulting estimated β(t) from Algorithm 5.2 is presented in Fig. 5.3. We compared the

results to the estimated β(t) using standard function linear regression (FLR) found in the literature

[52] on the the original and warped data. In the figure, the blue curve corresponds to running

standard FLR on the original data which is the true β(t), the orange curve is performing standard

FLR on the warped data, and the red curve is the estimated β(t) using the elastic method. Both
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Figure 5.2: Original Simulated data in (a) f space and (b) SRSF space with corresponding warped
data in (c) f space and (d) SRSF space.

the red and orange curves differ from the truth, however, the β(t) found using the elastic method

is closer to the the true shape of the original β(t). Fig. 5.4 presents the resulting aligned functions,

aligned SRSFs, and corresponding estimated warping functions from Algorithm 5.2 in Panels a,

b, and c, respectively. The functions are aligned and clustered into three distinct groups which

is similar to how the original data was constructed. Fig. 5.5 presents the evolution of the sum of

squared errors (SSE) for the algorithm which converged in 3 iterations and the final value being

nearly zero at 2.83e-10. The SSE for standard FLR on the original data is a little higher at 0.01 and

the SSE for standard FLR on the warped data was 13.94. With the additional degree of freedom

of γi we are able to drive the SSE nearly to zero.

In order to more accurately test the performance of Algorithm 5.2 we performed a 5-fold cross-

validation experiment to evaluate the prediction error of the elastic method versus the standard
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Figure 5.3: Estimated β(t) using standard FLR on the aligned and un-aligned data and using
Elastic FLR on the un-aligned data.

FLR. Prediction was performed as was described in Section 5.1.2 and since we have the true β(t)

and α we can calculate the true y for comparison. Table 5.1 presents the mean prediction error

across the folds with the corresponding standard error in parentheses. In this table, we compare

the elastic FLR with four methods: 1) standard FLR on the original data, 2) standard FLR on the

warped data, 3) pre-align FLR, which pre-aligns the training data using Algorithm 2.1 and per-

forms standard FLR. Prediction is performed by taking the warped sample and aligning it to the

mean function found using the alignment; and calculating the predicted value using the identified

model. Lastly, 4) cluster FLR, which clusters the training response data, {yi}, using k-means, and

then aligns the training data inside each cluster using the same alignment algorithm as the third

method. Prediction is performed by taking the warped sample and finding the cluster it is closest

to in the training data. Then align it to the mean function of the corresponding cluster, and then

calculate the predicted value. Methods 3) and 4) are generalizations of most suggested techniques

when the data is not aligned prior to performing regression, where the described methods suggest

a “pre-alignment”.

Comparing with the standard FLR on the original data, which is the truth in this case, we see

that the elastic method obtains a lower MSE compared to running the standard methods on the

warped data. Specifically, the pre- alignment method obtains the highest MSE, which is attributed

to the pre-alignment destroying the structure of the underlying model. The clustering method is

comparable to performing just standard FLR on the un-aligned data. However, it demonstrates a
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Figure 5.5: Evolution of sum of squared errors (SSE) for Algorithm 5.2.

larger standard deviation. The higher standard deviation results from some of the functions being

assigned to a incorrect cluster. The difficulty of the problem is increased if the number of clusters

is not known a-priori. Therefore, the elastic method is able to remove most of the variability of γ

and obtain the lowest prediction error over current methods.

5.2 Elastic Functional Logistic Regression

It is common in some situations to have functional data where the response variable is binary,

yi ∈ {−1, 1}, for i = 1, . . . , n. In this case one would want to classify the samples to a specific class
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Table 5.1: Mean prediction error using 5-fold cross-validation and standard deviation in parentheses
for simulated data using functional regression.

MSE (SE)

FLR Original Data 0.00416 (0.00057)
FLR Warped Data 1.327 (0.636)
Pre-Align FLR 39.540 (4.454)
Cluster FLR 1.465 (1.798)
Elastic FLR 0.436 (0.126)

given the functional predictor. We define the probability of the function fi being in class 1 (yi = 1)

as

P (yi = 1|fi) =
1

1 + exp
(
−
[
α+

∫ 1
0 fi(t)β(t) dt

]) .
This is nothing but the logistic link function φ(t) = 1/(1 + exp(−t)) applied to the conditional

mean in a linear regression model: α +
∫ 1
0 fi(t)β(t)dt [23]. Using this relation, and the fact that

P (y = −1|fi) = 1− P (y = 1|fi), we can express the data likelihood as:

π({yi}|{fi}, α, β) =
n∏
i=1

1

1 + exp
(
−yi

[
α+

∫ 1
0 fi(t)β(t) dt

]) .
Assuming we observe a sequence of i.i.d. pairs {fi(t), yi}, i = 1, · · · , n, the model is identified

by maximizing the log-likelihood according to,

{α∗, β∗} = argmax
α,β(t)

(log π({yi}|{fi}, α, β)) .

This optimization has been the main focus of the current literature, see e.g., [10, 21, 52].

As with functional linear regression, this model assumes that the functions, fi, are aligned and

have no phase-variability. If we incorporate time warping into the model using the SRSF framework

as motivated earlier we get the following probability of qi (the SRSF of fi) being in class 1 as

P (y = 1|qi) =
1

1 + exp
(
−
[
α+

∫ 1
0 (qi, γi)(t)β(t) dt

]) .
For a set of given observation (fi(t), yi), i = 1, · · · , n, the maximum likelihood problem is given by:

{α∗, β∗(t), {γ∗i }} = argmax
α,β(t),{γi}

n∑
i=1

log

(
φ

(
yi

[
α+

∫ 1

0
(qi, γi)(t)β(t) dt

]))

= argmax
α,β(t)

n∑
i=1

(
argmax

γi
log

(
φ

(
yi

[
α+

∫ 1

0
(qi, γi)(t)β(t) dt

])))
.(5.2.1)

83



5.2.1 Maximum-Likelihood Estimation Procedure

In the elastic model, we need to estimate α∗, β∗, and {γ∗i } using Eqn. 5.2.1. Note that the

optimization is of significant challenge because α and β(t) are parameters in the regression and γi

is the time warping in each observation. Again, we propose an iterative procedure to update them

alternatively.

Optimization over warping functions. First, we will assume that α and β are fixed and

our goal is to find the set of optimal warping functions, {γ∗i }. As indicated in the second part of

Eqn. 5.2.1, we can estimate each γi separately by solving

γ∗i = argmax
γi

log

(
φ

(
yi

[
α+

∫ 1

0
(qi, γi)(t)β(t) dt

]))
= argmax

γi

(
yi

[∫ 1

0
(qi, γi)(t)β(t) dt

])
.

Note that since ‖(qi, γi)‖ = ‖qi‖, we can find the optimal γi using

γ∗i = argmax
γi

∫ 1

0
(qi, γi)(t)yiβ(t) dt = argmin

γi
‖(qi, γi)− yiβ‖2. (5.2.2)

That is, γ∗i is the optimal warping of the function qi(t) to match the function yiβ(t). The solution

can be effectively computed using a dynamic programming algorithm on a finite grid [3].

Optimization over α and β. In this step we assume that the {γi} are fixed, and adopt

a conventional basis-based approach for estimating α∗ and β∗ as in the linear case. Let, β(t) =∑p
i=1 biθi, where θi is the ith basis function and bi is the corresponding coefficient. We can combine

all the parameters – intercept α and coefficients bis – in a vector form b = [α, b1, . . . , bp]
T. Let

zi = [1,
∫ 1
0 (qi, γi)(t)θ1(t) dt, . . . ,

∫ 1
0 (qi, γi)(t)θp(t) dt]

T. Based on Eqn. 5.2.1, the optimal parameter

vector is given as follows:

b∗ = argmax
b∈Rp+1

n∑
i=1

log
(
φ
(
yib

Tzi

))
, (5.2.3)

There is no analytical solution to this optimization problem. Since the objective function is concave,

we can use a numerical method such as Conjugate Gradient or the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) algorithm [46]. To use these algorithms, we need the gradient of the log-likelihood,

L, which is given by:

∇L(b) =
n∑
i=1

−yizi(φ(yibTzi)− 1).
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In this work we will use the Limited Memory BFGS (L-BFGS) algorithm due to its low-memory

usage for large number of predictors [7]. Similar to ideas discussed in [17], one can also seek a sparse

representation of β by including a L1 or L2 penalty on b in Eqn 5.2.3. For example, if we choose to

include an L2 penalty in Eqn 5.2.3 would be expressed as b∗ = argmaxb
∑n

i=1 log
(
φ
(
yib

Tzi
))

−

λ‖b‖2. The gradient of the log- likelihood would then be ∇L(b) =
∑n

i=1−yizi(φ(yibTzi)−1)−λb.

To perform the overall minimization, we alternate between finding the optimal warping functions

{γi} and finding the optimal b. The algorithm for computing optimal α, β, and {γi} is given in

Algorithm 5.3. As mentioned previously, we have an extra degree of freedom in selecting β as

our objective function is invariant to random warpings and we choose the β that corresponds the

element of the set where the mean of the warping functions is identity.

Algorithm 5.3 Elastic Functional Logistic Regression

1: Initialization Step: set {γi} = γid, calculate SRSFs {qi}, set l = 1.

2: while ‖L(l+1) − L(l)‖2 < ε do

3: Find α(l) and β(l)(t) using chosen basis and L-BFGS

4: Find {γi}(l) using Dynamic Programming for Eqn. 5.2.2 for each i = 1, . . . , n

5: l = l + 1

6: end while

7: Find the mean (γµ) of {γ∗i } using Algorithm 3.1

8: Update γ∗i 7→ γ∗i ◦ γ−1
µ

9: Update β∗ = (β∗ ◦ γ−1
µ )

√
˙γ−1
µ

10: Compute the aligned SRSFs using q̃i 7→ (qi ◦ γ∗i )
√
γ̇∗i and aligned functions f̃i(t) = fi ◦ γ∗i

This procedure results in four items: α∗, β∗, {γ∗i }, and {f̃i}.

5.2.2 Prediction

Once the model parameters have been estimated, the model can then be used to predict response

variables for new prediction functions. In case there is no phase variation in the predictor function,

the class probability can be predicted using P (yi = 1|qi) = φ(α+
∫ 1
0 qi(t)β(t) dt). This probability

is then thresholded to determine the class (i.e., yi = 1 if P (yi = 1|qi) ≥ 0.5, and yi = −1 otherwise).

In case there is phase variation, the probability is predicted using

P (yi = 1|qi, γi) = φ(α+

∫ 1

0
(qi, γi)(t)β(t) dt), (5.2.4)
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but the question remains on what γi should be. We propose the following procedure to address

this problem: 1) Take the observed SRSF qi and find the SRSF from the training set which has the

smallest L2 distance ‖qi−qtrain‖2. 2) Determine the γi to be used for prediction as the corresponding

time warping for qtrain in the training sample. 3) Find the probability, using Eqn. 5.2.4 with the

corresponding chosen γi. 4) Then, threshold the probability to determine the class label.

5.2.3 Experimental Results

In this section, we present some results using both simulated and several real data sets in the

context of functional logistic regression.

Simulated Data. To illustrate the developed elastic functional regression method we execute

Algorithm 5.3 on a simulated two-class data constructed using

hij(t) = aij
1√
2πσ2

exp

(
−(t− µj)

2

2σ2

)
, i = 1, . . . , 30, j = 1, 2,

where the two means are µ1 = 0.3 and µ2 = 0.35. The variance σ = 0.1 is same for both classes,

and the coefficients aij ∼ N (4, 0.1). These functions {hi1} and {hi2} play the role of predictor

functions in our model and the union of the sets is denoted {fi}. Specifically, we generate two

sets of Gaussian curves with one set having a class label 1 and the other having a class label -1.

The generated functions are shown in Fig. 5.6a with corresponding SRSFs in Fig. 5.6b. The blue

curves correspond to class 1 and the orange curves correspond to class -1. The functions were then

randomly warped to generate the warped {fi}, and also SRSFs {qi}, and are presented in Figs 5.6c

and d, respectively.

For the estimation of the model, we use a B-spline basis with 20 elements and estimate the pa-

rameters using Algorithm 5.3. Fig. 5.7 presents the resulting aligned functions, aligned SRSFs, and

corresponding estimated warping functions from Algorithm 5.3 in Panels a, b, and c, respectively.

The functions are aligned and clustered into two distinct groups which is similar to how the original

data was constructed. Moreover, by examination of Eqn. 5.2.2 we see that the method aligns the

samples of class 1 to β(t) and those of class -1 to −β(t), effectively separating the samples.

To evaluate the performance of the algorithm we performed a 5-fold cross-validation experiment

to compare the classification of the elastic method versus the standard functional logistic regression

(FLoR) in [17, 23]. Prediction was performed as was described in Section 5.2.2 and since we have
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Figure 5.6: Original Simulated data for logistic regression in (a) F space and (b) SRSF space with
corresponding warped data in (c) F space and (d) SRSF space.

the labels for the simulated data we can calculate the classification performance. Table 5.2 presents

the mean probability of classification across the folds with the corresponding standard deviation in

parentheses.

In this table, we compare the elastic FLoR with four methods: 1) standard FLoR on the original

data, 2) standard FLoR on the warped data, 3) pre-alignment FLor, and 4) cluster-based alignment

FLoR. The alignment-based methods are the same as described in Section 5.1.3, we just substituted

standard FLoR for the standard FLR.

For the standard FLoR on the original data, which is the truth in this case, we get the per-

fect classification performance (100%). For warped data, we see that the elastic method obtains

the highest probability of classification compared to the other three methods. Specifically, the

pre-alignment method obtains the lowest probability of classification, which is attributed to the
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Figure 5.7: Aligned Simulated data in (a) f space and (b) SRSF space with corresponding (c)
warping functions resulting from Elastic Functional Logistic Regression.
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Figure 5.8: Log-Likelihood evolution for Algorithm 5.3 using the simulated data.

pre-alignment destroying the two-class structure of the data. Moreover, it has a higher standard

deviation depending on which class the training data was aligned to. The clustering method ob-

tains a higher performance then performing standard FLoR on the un-aligned data. However it

demonstrates a larger standard deviation. The higher standard deviation results from some of the

functions being assigned to an incorrect cluster. Therefore, the elastic method is able to remove

most of the variability of γ and obtain the highest classification performance over current methods.

Real Data. Next, we evaluated the elastic functional logistic regression technique on four

sets of real data. The data consists of physiological data specifically, gait and electrocardiogram
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Table 5.2: Mean probability of classification using 5-fold cross-validation and standard deviation
in parentheses for simulated data using functional logistic regression.

Mean (STD)

FLoR Original Data 1.000 (0.000)
FLoR Warped Data 0.613 (0.108)
Pre-Align FLoR 0.425 (0.047)
Cluster FLoR 0.575 (0.047)
Elastic FLoR 0.950 (0.085)

(ECG) measurements from various patients. Phase-variability is naturally found in the data, as

during collection the signals always start and stop at the different time for each measurement. For

example, when measuring a heart beat, one cannot assure that the measurement starts on the same

part of the heartbeat for each patient measured. For each of the data sets, we use a B-spline basis

with 20 elements for the estimation of the model.

The first data set, Gait, is a collection of gait measurements for patients having Parkinson’s

disease and those not having Parkinson’s disease. It is from the gaitpdb data set on Physionet [20].

This database contains measures of gait from 93 patients with idiopathic Parkison’s disease and 73

healthy patients. The gait was measured using vertical ground reaction force records of subjects as

they walked at their usual, self-selected pace for approximately 2 minutes on level ground.

The second data set, ECG200, is a collection of ECG measurements of heartbeats for those

demonstrating an arrhythmia and those which do not. The data set is from the MIT-BIH Arrhyth-

mia Database available from Physionet. The database contains ECG recordings where each electro-

cardiogram was recorded from a single patient for a duration of approximately thirty minutes. From

the recordings heartbeats were extracted with the most prevalent abnormality-supraventricular pre-

mature beat. Additionally, heartbeats were extracted from the recordings that were representative

of normal heartbeats. The task is then to distinguish between the abnormality using the heartbeat.

Naturally, the heartbeats are not aligned and no alignment was made to the data.

The third data set, TwoLeadECG, is a collection of ECG measurements from the MIT-BIH

Long-Term ECG Database available as well from Physionet, which contains long term ECG mea-

surements with beat annotations. Heartbeats were extracted that were annotated normal and

abnormal for the two classes.
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The fourth data set, ECGFiveDays, is a collection of ECG measurements from a 67 year old

male. There are two classes which are simply the data of the ECG measurements which are 5 days

apart. The task is then to distinguish between the two days as the wandering baseline was not

removed and the heartbeats are not aligned. The dataset is the ECGFiveDays from the UCR Time

Series Classification Database [33]. Subsequently, the previous two datasets can also be obtained

from the UCR database under the names ECG200 and TwoLeadECG, respectively.

Fig. 5.9 presents the 30 original functions from the Gait, ECG200, TwoLeadECG, and ECG-

FiveDays data sets, respectively in the left hand column. The blue curves are the functions from

class 1 and the orange curves are the functions from class -1. Using Algorithm 5.3 and the B-spline

basis described earlier, the elastic functional logistic regression model was identified. The corre-

sponding warped functions (f ◦ γ) are in the second column with the warping functions (γ) in the

third column. For each of the four data sets, the original functions show phase-variability, especially

the gait data. After performing the elastic algorithm, the functions are separated, aligned nicely,

and show two distinct groups. Indeed, the warping functions also show a distinct grouping for each

class.

As was performed previously, we conducted a 5-fold cross-validation experiment to evaluate the

probability of classification of the elastic method versus the standard FLoR. Table 5.3 presents the

mean probability of classification across the folds with the corresponding standard deviation; in

parentheses for standard FLoR on the original data, two alignment-based methods, and our elastic

method. The alignment-based methods are the same as those studied on the simulated dataset.

For all four data sets the elastic method outperforms the other three FLoRs. Subsequently,

it has a lower standard deviation across the folds indicating that the model generalized well. For

the ECGFiveDays it is interesting that the alignment-based methods fail to achieve the same

performance as performing the standard FLoR, indicating that a pre-alignment destroys subtle

structure in the data. In contrast, the elastic method is able to find that subtle structure to obtain

nearly perfect classification rates. In the other three data sets, the classification rates are improved

with pre-alignment, however due the two-step nature and the possible destruction of the underlying

class structure they never achieve the performance of the elastic method.
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Figure 5.9: Original functions for the Gait, ECG200, TwoLeadECG and ECGFiveDays data sets
in the first column (in corresponding descending order) with the corresponding aligned functions
and warping functions in the second and third columns, respectively.
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Table 5.3: Mean probability of classification using 5-fold cross-validation and standard deviation
in parentheses for the medical data using functional logistic regression.

Data Method Mean (STD)

Gait

FLoR Warped Data 0.590 (0.023)

Pre-Align FLoR 0.689 (0.022)

Cluster FLoR 0.547 (0.095)

Elastic FLoR 0.732 (0.009)

ECG200

FLoR Warped Data 0.665 (0.075)

Pre-Align FLoR 0.670 (0.075)

Cluster FLoR 0.670 (0.081)

Elastic FLoR 0.835 (0.046)

TwoLeadECG

FLoR Warped Data 0.602 (0.021)

Pre-Align FLoR 0.752 (0.015)

Cluster FLoR 0.732 (0.040)

Elastic FLoR 0.998 (0.003)

ECGFiveDays

FLoR Warped Data 0.770 (0.093)

Pre-Align FLoR 0.653 (0.024)

Cluster FLoR 0.754 (0.098)

Elastic FLoR 0.996 (0.002)

5.3 Elastic Functional Multinomial Logistic Regression

We can extend the elastic functional logistic regression to the case of multinomial response,

i.e., yi has more than two classes. In this case, we have observations {(fi(t), yi)} and the response

variable can take on m categories, yi ∈ {1, . . . ,m}, for i = 1, . . . , n. For simplification, we abuse the

notation by coding the response variable y as am-dimensional vector with a 1 in the kth component

when y = k and zero, otherwise. Next, lets define the probability of the function f being in class

k as

P (y(k) = 1|{α(j)}, {β(j)(t)}, f) =
exp

(
α(k) +

∫ 1
0 f(t)β

(k)(t) dt
)

1 +
∑m−1

j=1 exp
(
α(j) +

∫ 1
0 f(t)β

(j)(t) dt
)

we only need m − 1 αs and β(t)s as we can assume α(m) = 0 and β(m)(t) = 0 without loss of

generality.
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Using the above probability and the multinomial definition of the problem, we can express the

log-likelihood of observations {(fi(t), yi)} as

Lm({α(j)}, {β(t)(j)}) =

n∑
i=1

m−1∑
j=1

y
(j)
i

[
α(j) +

∫ 1

0
fi(t)β

(j)(t) dt

]

− log

1 +

m−1∑
j=1

exp

(
α(j) +

∫ 1

0
fi(t)β

(j)(t) dt

) .
As with logistic regression case, this model assumes that the functions, fi, are aligned and have

no phase-variability. If we incorporate time warping into the model using the SRSF framework as

motivated earlier we get the following probability of q (the SRSF of f) being in class k as

P (y(k) = 1|{α(i)}, {β(t)(i)}, q, γ) =
exp

(
α(k) +

∫ 1
0 (q, γ)(t)β

(k)(t) dt
)

1 +
∑m−1

j=1 exp
(
α(j) +

∫ 1
0 (q, γ)(t)β

(j)(t) dt
) .

Given observations {(fi(t), yi)} and the associated SRSFs {qi(t)}, we can maximize the following

log-likelihood to identify the model parameters {α∗(j)}, {β∗(j)(t)} , and {γ∗i },

L =

n∑
i=1

m−1∑
j=1

y
(j)
i

[
α(j) +

∫ 1

0
(qi, γi)(t)β

(j)(t) dt

]
(5.3.1)

− log

1 +
m−1∑
j=1

exp

(
α(j) +

∫ 1

0
(qi, γi)(t)β

(j)(t) dt

) .
5.3.1 Maximum-Likelihood Estimation Procedure

In this multinomial model, we need to estimate {α∗(j)}, {β∗(j)(t)}, and {γ∗i } using Eqn. 5.3.1.

Similar to the binomial case in Section 5.2, we propose an iterative procedure to update {α∗(j)}, {β∗(j)(t)}

and {γ∗i } alternatively.

Optimization over γi. First, we will assume that the set of {α∗(j)} and {β∗(j)(t)} are fixed

and our goal is to find the set of optimal warping functions, {γ∗i }. Similar to optimization over γi

for the elastic functional logistic regression, we can estimate each γi individually for each i, since

the outer summation in Eqn. 5.3.1 is over i. This optimization can be expressed as

γ∗i = argmax
γi

m−1∑
j=1

y
(j)
i

[
α(j) +

∫ 1

0
(qi, γi)(t)β

(j)(t) dt

]

− log

1 +
m−1∑
j=1

exp

(
α(j) +

∫ 1

0
(qi, γi)(t)β

(j)(t) dt

) .
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We will use the standard gradient ascent method to solve this optimization problem. We will

represent an element γ ∈ Γ by the square-root of its derivative ψ =
√
γ̇. We use this representation

as it simplifies the complicated geometry of Γ to a unit sphere as shown in Chapter 3.1.

By taking this transformation the maximization in Eqn. 5.3.2 over ψi can be written as

H(ψi) = max
ψi

m−1∑
j=1

y
(j)
i

[
α(j) +A(j)(ψi)

]
− log

1 +
m−1∑
j=1

exp
(
α(j) +A(j)(ψi)

) , (5.3.2)

where A(k)(ψi) =
∫ 1
0 qi(

∫ t
0 ψ

2
i (s) ds)ψ(t)β

(k)(t) dt.

The gradient of Eqn. 5.3.2 is

h =
∂H(ψi)

∂ψi
=

m−1∑
i=1

y
(j)
i

∂A(j)(ψi)

∂ψi
− 1

1 +
∑m−1

j=1 exp
(
α(j) +A(j)(ψi)

)
m−1∑
j=1

[
exp

(
α(j) +A(j)(ψi)

) ∂A(j)(ψi)

∂ψi

]
,

where

∂A(k)(ψi)

∂ψi
= 2ψi(t)

∫ 1

t
q

(∫ x

0
ψ2
i (s) ds

)
ψi(x)β

(k)(x) dx+ q

(∫ t

0
ψ2
i (s) ds

)
β(k)(t)

We then find the optimal ψ∗
i and therefore γ∗i using gradient ascent as described in Algorithm 5.4.

Algorithm 5.4 Optimization over γi for Elastic Functional Multinomial Logistic Regression

1: Set ψ
(0)
i = ψid and set l = 1

2: while ‖H(ψ
(l+1)
i )−H(ψ

(l)
i )‖2 < ε do

3: Calculate the gradient h

4: Find the tangent vector in the direction of h at ψ
(l)
i using h−

〈
h, ψ

(l)
i

〉
ψ
(l)
i

5: Update ψi component according to ψ
(l+1)
i = cos(δ‖h‖)ψ(l)

i + sin(δ‖h‖) h
‖h‖ for a step size

δ > 0. This update is simply the exponential map on that sphere at the point ψ
(l)
i applied to

the tangent vector

6: l = l + 1

7: end while

8: Calculate γ∗i =
∫ t
0 ψ

l
i(s)

2 ds
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Optimization over α(j) and β(j)(t). Now, assuming that the {γi} are fixed, we will focus

on the solution of finding the optimal {α∗(j)} and {β∗(j)(t)}. As with the elastic functional logistic

regression problem we will use a basis-based approach. Let, β(k)(t) =
∑p

i=1 b
(k)
i θi, where θi is

the ith basis function and b
(k)
i is the corresponding coefficient. Therefore, we can re-express the

maximization problem in Eqn. 5.3.1 as

b∗ = argmax
b

n∑
i=1

m−1∑
j=1

y
(j)
i b(j)Tzi − log

1 +
m−1∑
j=1

exp
(
b(j)Tzi

) , (5.3.3)

where b = [b(1), . . . ,b(m−1)]T, b(k) = [α(k), b
(k)
1 , . . . , b

(k)
p ]T, and

zi = [1,
∫
(qi, γi)(t)θ1(t) dt, . . . ,

∫
(qi, γi)(t)θp(t) dt]

T. There is no direct solution to solving this

optimization and has to be performed numerically. Since, the function is concave we will use the

L-BFGS algorithm to find the solution numerically. To use this algorithm we need the gradient of

the log-likelihood. We need to find the partial derivative of the log-likelihood for each b(k),

∂Lm(b)

∂b(k)
=

n∑
i=1

[
y
(k)
i zi −

1

1 +
∑m−1

j=1 exp
(
b(j)Tzi

) exp(b(k)Tzi

)
zi

]
.

To perform the overall minimization, we alternate from finding the optimal warping functions,

{γi}, and the optimal {α∗(j)} and {β∗(j)(t)}. The algorithm for computing the optimal {α∗(j)},

{β∗(j)(t)}, and {γi} is given in Algorithm 5.5. As mentioned previously, we have an extra degree

of freedom in selecting each of the β(j)s as our objective function is invariant to random warpings

and we choose each β(j) that corresponds the element of the set where the mean of the warping

functions is identity.

This procedure results in four items: {α∗(j)}, {β∗(j)(t)}, {γ∗i }, and {f̃i}.

5.3.2 Prediction

After the model has been identified, one can use it to predict classes of future functional obser-

vations. Again, the answer is simple if the test data has not been observed with phase variation as

the class probabilities would be computed using

P (yi = k|qi) = φ(α(k) +

∫ 1

0
qi(t)β

(k)(t) dt), k = 1, . . . ,m, (5.3.4)

and the class with maximum probability determines the class (i.e., k∗ = argmaxk P (yi = k|qi)).

However, a problem arises when the input has been observed with phase variation. The probability
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Algorithm 5.5 Elastic Functional Multinomial Logistic Regression

1: Initialization Step: set {γi} = γid, calculate SRSFs {qi}, set l = 1.

2: while ‖L(l+1)
m − L

(l)
m ‖2 < ε do

3: Find {α∗(j)} and {β∗(j)(t)} using chosen basis and L-BFGS

4: Find {γi}(l) using Algorithm 5.4 for each i = 1, . . . , n

5: l = l + 1

6: end while

7: Find the mean (γµ) of {γ∗i } using Algorithm 3.1

8: Update γ∗i 7→ γ∗i ◦ γ−1
µ

9: Update each β∗(j) = (β∗(j) ◦ γ−1
µ )

√
˙γ−1
µ

10: Compute the aligned SRSFs using q̃i 7→ (qi ◦ γ∗i )
√
γ̇∗i and aligned functions using f̃i = fi ◦ γ∗i .

would be computed using

P (yi = k|qi, γi) = φ(α(k) +

∫ 1

0
(qi, γi)(t)β

(k)(t) dt), k = 1, . . . ,m, (5.3.5)

but the question remains on what γi should be.

The process is similar to that of elastic functional logistic regression. We propose the following:

1) Take the observed SRSF qi and find the SRSF from the training set which has the smallest L2

distance ‖qi − qtrain‖2. 2) Determine the γi to be used for prediction as the corresponding time

warping for qtrain in the training sample. 3) Find the probability for each class, using Eqn. 5.3.5

with the corresponding chosen γi. 4) Determine the class membership using k∗ = argmaxk P (yi =

k|qi, γi).

5.3.3 Experimental Results

In this section, we present results on a simulated data set and two real data sets in performing

elastic functional multinomial logistic regression.

Simulated Data. To illustrate the developed elastic functional regression method we exe-

cuted Algorithm 5.5 on a simulated three-class data constructed using

hij(t) = aij
1√
2πσ2

exp

(
−(t− µj)

2

2σ2

)
, i = 1, . . . , 30, j = 1, 2, 3,

where the three means µ1 = 0.3, µ2 = 0.5, and µ3 = 0.65, and the variance σ = 0.075 is same for

the three classes. The coefficients aij ∼ N (cj , 0.1) with c1 = 4, c2 = 3.7, and c3 = 4. To make the
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Figure 5.10: Original Simulated data for multinomial logistic regression in (a) f space and (b) SRSF
space with corresponding warped data in (c) f space and (d) SRSF space.

notation consistent, we use {fi} to denote all observations which is the union of {hi1}, {hi2}, and

{hi3}. Specifically, we generated three sets of Gaussian curves with each one having the label 1,

2, or 3. The generated functions are shown in Fig. 5.10a with corresponding SRSFs in Fig. 5.10b.

The blue curves are the functions from class 1, the orange curves from class 2, and the red curves

from class 3. The functions were the randomly warped to generate the warped {fi} and {qi} and

are presented in Figs 5.10c and d, respectively.

Fig. 5.11 presents the resulting aligned functions, aligned SRSFs, and corresponding estimated

warping functions from Algorithm 5.5 in Panels a, b, and c, respectively. A B-spline basis with 20

elements was used for the model identification. The functions are aligned and clustered into three

distinct groups which are similar to how the original data was constructed. This is similar to the

effect of the elastic functional logistic estimation of γ, just extended to the multi-class case.
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Figure 5.11: Warped Simulated data in (a) f space and (b) SRSF space with corresponding (c)
warping functions resulting from Elastic FMLoR.

Fig. 5.12a and b presents the evolution of the log-likelihood for Algorithms 5.4 and 5.5, respec-

tively. The evolution of the log- likelihood for the gradient ascent algorithm for an individual γi

(Algorithm 5.4) converged in 800 iterations for a step size of 0.01. The evolution for the entire

elastic functional multinomial logistic regression algorithm converged in 20 iterations.
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Figure 5.12: Evolution of the likelihood for a) optimization over γi (Algorithm 5.4) and b) elastic
functional multinomial logistic regression (Algorithm 5.5).

As done previously, we performed a 5-fold cross-validation experiment to evaluate the prob-

ability of classification of the elastic method versus the standard functional multinomial logistic
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regression (FMLoR). Table 5.4 presents the mean probability of classification across the folds with

the corresponding standard deviation in parentheses. The alignment-based methods are the same

as described in Section 5.1.3, just substituting standard FMLoR for the standard FLoR.

For the standard FMLoR on the original data, we still get the perfect classification performance

(100%). For warped data, we find both pre-alignment methods perform higher versus operating on

the given warped data, which shows that some alignment can benefit the classification. Overall, we

still see that the elastic method obtains the highest probability of classification compared to the

other three methods.

Table 5.4: Mean probability of classification using 5-fold cross-validation and standard deviation
in parentheses for simulated data using functional mulinomial logistic regression.

Mean (STD)

FMLoR Original Data 1.000 (0.000)
FMLoR Warped Data 0.705 (0.129)
Pre-Align FMLoR 0.814 (0.078)
Cluster FMLoR 0.723 (0.102)
Elastic FMLoR 0.963 (0.023)

Real Data. Finally, we evaluated the elastic functional multinomial logistic regression tech-

nique on two sets of real data. The data consists of physiologic data similar to those used to test

the logistic regression method. As before, for each of the data sets we used a B-spline basis with

20 elements for the estimation of the model.

The first data set is a collection of gait measurements for patients having Parkinson’s disease,

Amyotrophic lateral sclerosis, Huntington’s disease, and healthy controls. The data is from the

gaitndd data set on Physionet [20]. This database contains measures of gait from 15, 20, 13, and

16 patients for the respective diseases. The gait was measured using vertical ground reaction force

records of subjects as they walked at their usual pace.

The second data set is a collection of ECG measurements from multiple torso-surface sites.

There are measurements from 4 different people which are the 4 different classes. The data set is

from the 2007 Physionet CinC challenge and is also found as the CinC dataset from the UCR Time

Series Classification Database [33].
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Figure 5.13: Original functions for the Gaitndd and CinC data sets in the first column (in corre-
sponding descending order) with the corresponding aligned functions and warping functions in the
second and third columns, respectively.

Fig. 5.13 presents the 48 original functions from the Gaitndd and CinC data sets, respectively

in the left hand column. The blue curves are the functions from class 1, the orange curves are

the functions from class 2, the red curves are the functions from class 3, and the green curves

are the functions from class 4. Using Algorithm 5.5 and the B-spline basis described earlier, the

elastic functional multinomial logistic regression model was identified. The corresponding warped

functions (f ◦ γ) are in the second column with the warping functions (γ) in the third column. For

both of the data sets the original functions show phase-variability, especially the gait data as was

seen in the previously studied gait data in Section 5.2.3. After performing the elastic algorithm the

the functions there is a little alignment of the gait data due the complicated structure. The CinC

data is aligned into four groups and the warping functions exhibit four different clusters.

As before we conducted a 5-fold cross-validation experiment to evaluate the probability of

classification of the elastic method versus, the standard functional multinomial logistic regres-

sion (FMLoR). Table 5.5 presents the mean probability of classification across the folds with the
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corresponding standard deviation in parentheses for standard FMLoR, the two alignment-based

methods, and our elastic method.

Table 5.5: Mean probability of classification using 5-fold cross-validation and standard deviation
in parentheses for the medical data using functional multinomial logistic regression.

Data Method Mean (STD)

Gaitndd

FMLoR Warped Data 0.395 (0.055)

Pre-Align FMLoR 0.432 (0.065)

Cluster FMLoR 0.417 (0.033)

Elastic FMLoR 0.478 (0.073)

CinC

FMLoR Warped Data 0.446 (0.050)

Pre-Align FMLoR 0.469 (0.069)

Cluster FMLoR 0.442 (0.058)

Elastic FMLoR 0.947 (0.036)

For both data sets, the elastic method outperforms the standard FMLoR and the alignment

based FMLoR. In particular, the classification accuracy is nearly doubled in the CinC data. More-

over, this improvement has a lower standard deviation across the folds indicating that the model

generalized well for the data. Overall, the classification rates are improved when the model accounts

for the phase-variability in the model.
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CHAPTER 6

ELASTIC REGRESSION WITH OPEN CURVES

In this chapter we briefly review a Riemannian framework for elastic shape analysis and modeling of

open planar curves. This framework results in metrics, statistics, and models that are invariant to

arbitrary rotation, scaling, translation, and re-parametrization (compositional noise) of individual

curves. For a more complete review, we refer the reader to [62]. This is an extension of the functional

work in Chapter 2 from R1 to R2 and provides the same advantage of simultaneous registration

and comparisons of the shapes of curves with respect to the elastic metric as the functional data.

This has the effect of stretching/compressing and bending parts of curves to match each other in

an optimal fashion and is the same as the stretching/compressing of peaks in the functional data

for alignment. After the review, we develop elastic regression models using curves as predictors.

We then extend the functional linear, logistic and multinomial logistic regression models presented

in Chapter 5 to the case when curves are used as predictors instead of functions and demonstrate

classification results using shape data.

6.1 Elastic Shape Analysis of Open Curves

Consider an absolutely continuous, parametrized curve ξ : [0, 1] → R2. Define the set of all

re-parameterizations as the set of diffeomorphisms

Γ = {γ : [0, 1] → [0, 1]|γ(0) = 0, γ(1) = 1, γ increasing}. (6.1.1)

By definition, γ and γ−1 are absolutely continuous. Define a re-parameterization of the curve ξ as

the composition ξ ◦γ, where γ ∈ Γ. A major problem that arises under this framework is if we want

to take the distance between two curves ξ1 and ξ2 using standard metrics. Most papers use the

standard L2 metric ‖ξ1− ξ2‖ to find the distance, however, the standard L2 metric is not isometric

with respect to the group action of Γ. That is, for γ ∈ Γ, ‖ξ1 − ξ2‖ 6= ‖ξ1 ◦ γ − ξ2 ◦ γ‖. Since,

we desire to be invariant to re-parameterization and the L2 metric is not isometric with respect to

the group action, it is not possible to compute distances that are invariant to re-parametrization.
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In order to achieve this property, Srivastava et. al [62] introduced a novel representation of curves.

They represent a shape by its square-root velocity function (SRVF)

q(t) =
ξ̇(t)√
|ξ̇(t)|

. (6.1.2)

This is similar to the SRSF defined in Chapter 2.2.2 extended to Rn with a similar group action given

as (q, γ) ≡ (q◦γ)
√
γ̇. It is easy to show that for two SRVF’s q1 and q2, ‖q1−q2‖ = ‖(q1, γ)−(q2, γ)‖.

Therefore the action of the group Γ is isometric on the space of SRVFs.

Another important motivation for the SRVF representation is that that elastic Riemannian

metric (a metric that measures a combination of stretching and bending to optimally deform on

curve into another) is equal to the standard L2 metric and therefore much simpler and easier to

compute. Since |q(t)|2 = |ξ̇(t)|, the square of the L2-norm of any SRVF is equal to the length of the

corresponding curve ξ. That is, ‖q‖2 =
∫ 1
0 |q(t)|2 dt =

∫ 1
0 |ξ̇(t)| dt = Lξ. Therefore, the L2 norm of

SRVF’s of unit-length curves is one, and the space of such curves is a Hilbert Sphere (unit sphere

in infinite dimensional function space)

S∞ = {q ∈ L2([0, 1],R2)|‖q‖ = 1}. (6.1.3)

The space S∞ represents the SRVF’s of all unit-length open curves, and once endowed with the L2

Riemannian metric, becomes a Riemannian manifold.

A geodesic on a Riemannian manifold is defined as shortest length path with respect to the

chosen metric between two points on the manifold. Geodesic distance is the length of the path and

we use this as the distance between shapes. Since we know the geometric structure of our manifold,

S∞, we can easily express geodesic analytically. With respect to the L2 metric, the geodesic between

two points on the unit sphere is defined as the arch segment of the great circle that passes through

those two points. Therefore, the geodesic distance is the arc length of this path and mathematically

the geodesic path ν : [0, 1] → S∞ with ν(0) = q1 and ν(1) = q2 is given by

ν(τ) =
1

sin(θ)
[sin((1− τ)θ)q1 + sin(τθ)q2] (6.1.4)

where θ = cos−1(〈q1, q2〉) is the arc length between q1 and q2 and 〈·, ·〉 is the L2 inner product.

Therefore, we define the geodesic distance as dS∞ = θ. Figure 6.1 shows a diagram of a geodesic

path and distance between two points on S∞.
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Figure 6.1: A geodesic between two points on S∞.

The space S∞ is called the pre-shape space of elastic curves as the invariants of translation

and scaling have been removed. However, the rotation and re-parameterization has yet to be

removed. The rotation group SO(2) acts by isometries with respect to the L2 metric, therefore the

quotient space SOs = S∞/(SO(2)×Γ) is the similarity- invariant, elastic shape space of open curves.

Elements of the quotient space are equivalence classes [q] = closure{O(q, γ)|O ∈ SO(2), γ ∈ Γ},

where q ∈ S∞. Therefore the distance between orbits [q1] and [q2] in the shape space is

dSOs ([q1], [q2]) = inf
O∈SO(2),γ∈Γ

dS∞(q1, O(q2, γ)) (6.1.5)

and dS∞ is the geodesic distance. The optimization in Eqn. 6.1.5 is performed via Procrustes rigid

body alignment for SO(2) and via dynamic programing in the case of Γ. Both of these methods

are described in [62] and we refer the reader to that paper for more details of this framework.

6.2 Elastic Linear Regression using Open Curves

Similar to the functional case, assume one now has a set of observations (ξi(t), yi), for i =

1, . . . , n. In this set ξi(t) is a parameterized curve predictor and yi is a scalar real valued response.

We can define a linear regression model for this set of observations as

yi = α+

∫
〈ξi(t), β(t)〉 dt+ εi, i = 1, . . . , n. (6.2.1)

This is similar to the functional linear model defined in Chapter 5.1 where α is the bias and β(t) is

regression coefficient curve, one main difference is now it utilizes the L2 inner product for curves.

To identify the model parameters we minimize the SSE

{α∗, β∗(t)} = argmin
α,β(t)

n∑
i=1

|yi − α−
∫

〈ξi(t), β(t)〉 dt|2. (6.2.2)
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We again are presented with the problem, that for a finite n, it is possible to perfectly interpolate

the responses if no restrictions are placed on β(t) since β(t) is infinite dimensional. Another problem

with this model is that the variability due to scaling, rotation, and re-parametrization of the curves

is not taken into account. Using approaches similar to the functional case we propose a framework

that includes these variabilities into the regression model.

Using the SRVF representation of curves and the L2 metric, which is the Riemannaian metric we

can incorporate scaling, rotation, and re-parameterization into the regression model in Eqn. 6.2.1.

The motivation for this representation is due to the isometric property of the metric as was demon-

strated in Section 6.1. This gives us a predictive variable that is defined as

y0i = α+

∫ 〈
q0i , β

〉
dt

yi = y0i + εi, i = 1, . . . , n. (6.2.3)

The predictive curves are now observed as

qi = Oi(q
0
i , γi) (6.2.4)

and we identify this model by minimizing the SSE

{α∗, β∗(t), {O∗
i }, {γ∗i }} = argmin

α,β(t),{Oi},{γi}

n∑
i=1

|yi − α−
∫

〈Oi(qi, γi), β〉 dt|2. (6.2.5)

6.2.1 Maximum-Likelihood Estimation Procedure

In the elastic model, we need to estimate α∗, β∗(t), {O∗
i }, and {γ∗i } using Eqn. 6.2.5. Note that

the optimization is of significant challenge because α and β(t) are parameters in the regression and

Oi and γi is the rotation and re-parameterization in each observation, respectively. As with the

elastic functional regression model we propose an iterative procedure to update them alternatively.

Optimization over rotations and warping functions. First, we will assume that α and

β(t) are given and our goal is to solve for the set of optimal rotations and warping functions, {O∗
i }

and {γ∗i }, respectively. Since the summation in Eqn. 6.2.5 is over i, we can estimate the elements

of the sets {O∗
i } and {γi} individually for each i by solving

{O∗
i , γ

∗
i } = argmin

Oi,γi

|yi − α−
∫

〈Oi(qi, γi), β〉 dt|2. (6.2.6)
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To first the solve the minimization in Eqn. 6.2.6, we can easily get

{Om, γm} = argmin
Oi,γi

∫
〈Oi(qi, γi), β〉 dt

{OM , γM} = argmax
Oi,γi

∫
〈Oi(qi, γi),−β〉 dt.

As stated previously, the solution to these two optimization problems comes from Procrustes rigid

alignment [62] for rotation and the dynamic programming algorithm [3] for the warping functions.

Next, let ym =
∫
〈Om(qi, γm), β〉 dt and yM =

∫
〈OM (qi, γM ), β〉 dt, we can find the optimal O∗

i

and γ∗i using the following algorithm:

Algorithm 6.1 Optimization over Oi and γi for Elastic Linear Regression for Open Curves

1: if yi > α+ yM then

2: γ∗i = γM , O∗
i = OM

3: end if

4: if yi < α+ ym then

5: γ∗i = γm, O
∗
i = Om

6: end if

7: if α+ ym < yi < α+ yM then

8: Look for the optimal warping function in the following form:

γ = sγM + (1− s)γm, s ∈ [0, 1]

9: Find the optimal rotation Oi of (qi, γi) to β using Procrustes rigid alignment

10: Let f(γ) = yi − α−
∫
〈Oi(qi, γi), β〉 dt and g(s) = f(sγM + (1− s)γm)

11: Then g(0) = f(γm) > 0, and g(1) = f(γM ) < 0 and based on the intermediate value

theorem, we can use a secant-type method for finding the optimal s∗, such that g(s∗) = 0

12: end if

Optimization over α and β. Now, assuming that {Oi} and {γi} are fixed, we will focus on

the solution of finding the optimal α∗ and β∗(t). We will use use the same basis-based approach as

the functional case and we assume that we have a set of basis functions, θi, i = 1, . . . , p, such as

the Fourier basis or a B-spline basis. Let, β(t) =
∑p

i=1 biθi, where θi is the ith basis function and

bi is the corresponding coefficient. With this we can re-express Eqn. 6.2.3 as

yi = α+ΘTb+ εi, (6.2.7)
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where the (i,j)th entry in Θ is
∫
〈(qi, γi), θj〉 dt and b = [b1, . . . , bp]

T. We then can estimate α and

b using ordinary least squares. Define Z = [1 Θ], where 1 is a vector of ones and y = [y1, . . . , yn]
T,

then the solution for α∗ and b∗ is

[α∗,b∗]T = (ZTZ)−1ZTy (6.2.8)

and the optimal β∗(t) =
∑p

i=1 b
∗
i θi.

6.2.2 Prediction

After the model has been identified, the next question that arises is how is prediction performed.

The answer is simple if the test curve has not been observed with rotation and parameterization

variability as prediction would be computed using

yi = α+

∫ 1

0
〈qi, β〉 dt. (6.2.9)

However, a problem arises when the input has been observed with rotation and parametrization

variation. The prediction would be performed using

yi = α+

∫ 1

0
〈Oi(qi, γi), β〉 dt, (6.2.10)

but the question remains on what γi and Oi should be.

To solve this problem, we propose the following: 1) Take the observed SRVF, qi and find the

SRVF from the training set which has the smallest distance using ‖qi − qtrain‖2. 2) Determine the

γi and Oi to be used for prediction as the corresponding γi and Oi for the closest training sample.

3) Find the predictive value, yi, using Eqn. 6.2.10 with the corresponding chosen γi and Oi.

6.3 Elastic Logistic Regression using Open Curves

Now that we have the linear model defined, we would like to develop a model where the re-

sponse variable is binary, yi ∈ {−1, 1}, for i = 1, . . . , n. In this case, we want to classify the

curves to a specific class given their curve predictor. Following the same line of formulation as

the Elastic Functional Logistic Regression model in Chapter 5.2, we will develop the model. As

was motivated in the previous section we will use the SRVF representation to include rotation and
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re-parameterization. Therefore, we can define the probability of qi (the SRVF of ξi) being in class

1 as

P (y = 1|qi, Oi, γi) =
1

1 + exp
(
−
[
α+

∫ 1
0 〈Oi(qi, γi), β〉 dt

]) .
This is nothing but the logistic link function φ(t) = 1/(1 + exp(−t)) applied to the conditional

mean in a linear regression model: α +
∫ 1
0 〈Oi(qi, γi), β〉 dt. Using this relation, and the fact that

P (y = −1|fi) = 1− P (y = 1|fi), we can express the data likelihood as:

π({yi}|{qi}, α, β, {Oi}, {γi}) =
n∏
i=1

1

1 + exp
(
−yi

[
α+

∫ 1
0 〈Oi(qi, γi), β〉 dt

]) .
Assuming we observe a sequence of i.i.d. pairs {qi, yi}, i = 1, · · · , n, the model is identified by

maximizing the log-likelihood according to,

{α∗, β∗(t), {γ∗i }, {O∗
i }} = argmax

α,β(t)

n∑
i=1

(
argmax
Oi,γi

log

(
φ

(
yi

[
α+

∫ 1

0
〈Oi(qi, γi), β〉 dt

])))
.

(6.3.1)

6.3.1 Maximum-Likelihood Estimation Procedure

In the elastic model, we need to estimate α∗, β∗, {γ∗i }, and {O∗
i } using Eqn. 6.3.1. Note that

the optimization is of significant challenge because α and β(t) are parameters in the regression and

γi and Oi are the re-parameterization and rotation in each observation, respectively. Again, we

propose an iterative procedure to update them alternatively.

Optimization over warping functions and rotations. First, we will assume that α and

β are fixed and our goal is to find the set of optimal warping functions and rotations, {γ∗i } and

{O∗
i }. We can estimate each γi and Oi separately by solving

{O∗
i , γ

∗
i } = argmax

Oi,γi

(
yi

[∫ 1

0
〈Oi(qi, γi), β〉 dt

])
.

Note that since ‖Oi(qi, γi)‖ = ‖qi‖ (‖ · ‖ denotes the L2 norm), we can find the optimal Oi and γi

using

{O∗
i , γ

∗
i } = argmin

Oi,γi

‖Oi(qi, γi)− yiβ‖2. (6.3.2)

That is, Oi and γ
∗
i are the optimal re-parameterization and rotation of the SRVF qi to match the

curve yiβ. The solution can be effectively computed using a dynamic programming algorithm on a

finite grid [3] for γi and Procrustes rigid alignment for Oi.
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Optimization over α and β. In this step we assume that the {γi} and {Oi} are fixed, and

adopt a conventional basis-based approach for estimating α∗ and β∗ as in the previous cases. Let,

β(t) =
∑p

i=1 biθi, where θi is the ith basis function and bi is the corresponding coefficient. Finding

the optimal parameter vector is similar to the functional case in Chapter 5.2 and is given as follows:

b∗ = argmax
b∈Rp+1

n∑
i=1

log
(
φ
(
yib

Tzi

))
, (6.3.3)

where b = [α, b1, . . . , bp]
T and zi = [1,

∫ 1
0 〈Oi(qi, γi), θ1〉 dt, . . . ,

∫ 1
0 〈Oi(qi, γi), θp〉 dt]T. Again, there

is no analytical solution to this optimization problem and since it is concave we use the L-BFGS

algorithm to solve.

To perform the overall minimization we alternate between finding the optimal warping functions

and rotations {γi} and {Oi} and finding the optimal b. The algorithm for computing optimal α,

β, {γi}, and {Oi} is given in Algorithm 6.2.

Algorithm 6.2 Elastic Curve Logistic Regression

1: Initialization Step: set {γi} = γid, calculate SRVFs {qi}, set l = 1.

2: while ‖L(l+1)
o − L

(l)
o ‖2 < ε, where Lo is the log-likelihood do

3: Find α(l) and β(l)(t) using chosen basis and L-BFGS

4: Find {γi}(l) and {Oi}(l) using Dynamic Programming and Procrustes rigid alignment for

Eqn. 6.3.2 for each i = 1, . . . , n

5: l = l + 1

6: end while

7: Compute the aligned SRVFs using q̃i 7→ O∗
i (qi ◦ γ∗i )

√
γ̇∗i and aligned curves ξ̃i(t) = O∗

i (ξi ◦ γ∗i )

This procedure results in five items: α∗, β∗, {γ∗i }, {O∗
i }, and {ξ̃i}.

6.3.2 Prediction

Once the model parameters have been estimated, the model can then be used to predict response

variables for new prediction curves. In case there is no parameterization and rotation variation in the

predictor function, the class probability can be predicted using P (yi = 1|qi) = φ(α+
∫ 1
0 〈qi, β〉 dt).

This probability is then thresholded to determine the class (i.e., yi = 1 if P (yi = 1|qi) ≥ 0.5, and

yi = −1 otherwise). In case there is rotation and parameterization variability, the probability is

predicted using

P (yi = 1|qi, γi, Oi) = φ(α+

∫ 1

0
〈Oi(qi, γi), β〉 dt), (6.3.4)
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but the question remains on what γi and Oi should be. We follow the same pattern as in the

previous elastic models where we find the training SRVF nearest the observed SRVF qi and use the

corresponding γi and Oi. We then find the probability using Eqn. 6.3.4 using the chosen γi and Oi

and threshold to determine the class label.

6.3.3 Experimental Results

In this section, we classify real world curve data taken from the MPEG-7 database [26]. The

full database has 1300 shape samples, 20 shapes for each class, and 65 shape classes. For each

experiment we chose two shape classes from the database to test our logistic regression model.

An example of some of the shapes from the MPEG-7 bases is presented in Figure 6.2. Note the

differences in rotations and scales of each of the shapes which complicates the analysis.

Figure 6.2: Example shapes from the MPEG-7 shape database.

To increase the complexity of the database, we rotated and re-parameterized each of the shape

samples randomly. First, we tested the model on distinguishing between a bottle and watch. This

is somewhat of a difficult problem considering how similar the two shapes can be. Fig. 6.3a presents

the original curves which demonstrate the differences in scale and rotation between the two shapes.

For the estimation of the model, we used a B-spline basis with 60 elements and estimated the

parameters of the model using Algorithm 6.2. Fig. 6.3b presents the aligned curves in which we

notice the curves have been aligned into two distinct groups, which are separated by a rotation.

Fig. 6.3c presents the corresponding warping functions and exhibit that the method registers the

samples into two classes. Specifically, the method, as in the functional case, registers the samples

110



of class 1 (bottles) to β and those of class -1 (watches) to −β, effectively separating the samples.

Moreover, the curves are scaled to length 1 in the SRVF transformation which removes the effects

of scale in the analysis.

(a) {ξi} (b) {ξ̃i}

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(c) {γi}

Figure 6.3: Bottle and wrist-watch curves from the MPEG-7 database, (a) un-registered curves,
(b) registered curves, and (c) warping functions resulting from Elastic Curve Logistic Regression.

We conducted a similar test on the bottle and pocket-watch curves from the database. The

original curves, registered curves, and warping functions are presented in Panels a, b, and c of

Fig. 6.4, respectively. As with the previous set of curves, the aligned curves are aligned and rotated

into two distinct groups.

To evaluate the performance of the algorithm, we performed a 5-fold cross- validation experi-

ment to compare the classification of the elastic method versus the standard curve logistic regression

(CLoR). By standard we mean calculating the class probability using φ(α+
∫
〈ξi, β〉 dt) and iden-

tifying the model parameters α and β by solving argmaxα,β
∑n

i=1 log(φ(yi[α+
∫
〈ξi, β〉 dt])) using

L-BFGS and a basis representation. Prediction was performed as was described above and since

we have the labels for the curves can calculate the classification performance. Table 6.1 presents

the mean probability of classification across the folds with the corresponding standard deviation in

parentheses for both pairs of shapes studied in Fig. 6.3 and Fig. 6.4 in Panels a and b, respectively.

In this table, we compare the elastic CLoR with three regression methods: 1) standard CLoR

on the original data, 2) pre-align CLoR, which pre-aligns the training curves using the method

described in [62] and performs standard CLoR. Prediction is performed by taking the warped
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Figure 6.4: Bone and pocket-watch curves from the MPEG-7 database, (a) un-registered curves,
(b) registered curves, and (c) warping functions resulting from Elastic Curve Logistic Regression.

sample and aligning it to the mean function found using the alignment and calculating the class

using the identified model. Lastly, 4) cluster CLoR, which clusters the training response data, {yi},

using k-means, and then aligns the training curves inside each cluster using the same alignment

algorithm as the second method. Prediction is performed by taking the sample curve and finding the

cluster it is closest to in the training data, then aligning it to the mean curve of the corresponding

cluster, and then calculate the class.

We also compared the methods against two metric-based nearest-neighbor classifier (1-NN).

The first metric is the elastic distance between two SRVFs from [62] which handles rotation, re-

parameterization, translation, and scaling. The second metric is Kendall’s shape distance from [32]

which is based on landmarks and handles rotation, translation, and scale. Both of these methods

require more computation than the regression-based methods as for each test sample the distance

must be computed between each curve in the training set. The Elastic distance outperforms the

Elastic CLoR in all cases, this is to be expected the regression models are linear and limited in

performance. However, our regression model is computationally faster than the elastic metric and

our performance can be improved by constructing a non-linear model. Additionally, we outperform

Kendall’s metric which does not handle the re-parameterization variability and is worse than even

the standard regression models.
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Table 6.1: Mean probability of classification using 5-fold cross-validation and standard deviation
in parentheses for MPEG-7 data using curve logistic regression.

Mean (STD)

CLoR Warped Data 0.800 (0.150)
Pre-Align CLoR 0.450 (0.322)
Cluster CLoR 0.600 (0.146)
Elastic CLoR 0.875 (0.079)
Elastic 1-NN 1.000 (0.000)
Kendall 1-NN 0.700 (0.0612)

(a) Bottle versus Watch

Mean (STD)

CLoR Warped Data 0.875 (0.112)
Pre-Align CLoR 0.725 (0.184)
Cluster CLoR 0.775 (0.122)
Elastic CLoR 1.000 (0.000)
Elastic 1-NN 1.000 (0.000)
Kendall 1-NN 0.540 (0.0612)

(b) Bone versus Pocket-Watch

For both pairs of data, the standard CLoR on the original data performs well. The alignment-

based methods perform worse than the standard method on the original data. Specifically the

pre-alignment method obtains the lowest probability of classification, which is attributed to the

pre-alignment destroying the two-class structure of the data. Moreover, it has a higher standard

deviation depending which class the training data was aligned to. The clustering method obtains a

higher performance than performing standard CLoR on the un-aligned data, its variability results

from some of the curves being assigned to an incorrect cluster. The elastic method is able to remove

most of the variability of γ and O and obtain the highest classification performance over current

methods.

6.4 Elastic Multinomial Logistic Regression using Open Curves

We can extend the elastic curve logistic regression to the case where the response takes on more

than two classes, i.e., multinomial. In this case, we have observations {(ξi(t), yi)} and the response

variable can take on m categories, yi ∈ {1, . . . ,m}, for i = 1, . . . , n. As in the functional case, we

code the response variable into a m-dimensional vector for simplification where the vector contains

a 1 in the kth position if yi = k and 0 otherwise. Using the SRVF formulation we can extend the
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logistic regression model and define the probability of qi (the SRVF of ξi) being in class 1 as

P (y(k) = 1|{α(i)}, {β(t)(i)}, q, O, γ) =
exp

(
α(k) +

∫ 1
0

〈
O(q, γ), β(k)

〉
dt
)

1 +
∑m−1

j=1 exp
(
α(j) +

∫ 1
0

〈
O(q, γ), β(j)

〉
dt
) .

We only need m − 1 αs and β(t)s as we can assume α(m) = 0 and β(m)(t) = 0 without loss of

generality. Given observations {(ξi, yi)} and the associated SRVFs {qi}, we can maximize the

following log-likelihood to identify the model parameters {α∗(j)}, {β∗(j)(t)}, {O∗
i }, and {γ∗i },

Lom =
n∑
i=1

m−1∑
j=1

y
(j)
i

[
α(j) +

∫ 1

0

〈
Oi(qi, γi), β

(j)
〉
dt

]
(6.4.1)

− log

1 +
m−1∑
j=1

exp

(
α(j) +

∫ 1

0

〈
Oi(qi, γi), β

(j)
〉
dt

) .
6.4.1 Maximum-Likelihood Estimation Procedure

In this multinomial model, we need to estimate {α∗(j)}, {β∗(j)(t)}, {Oi} and {γ∗i } using Eqn.

6.4.1. Similar to the binomial case in Section 5.2, we propose an iterative procedure to update

{α∗(j)}, {β∗(j)(t)}, {O∗
i }, and {γ∗i } alternatively.

Optimization over γi and Oi. First, we will assume that the set of {α∗(j)} and {β∗(j)(t)}

are fixed and our goal is to find the set of optimal warping functions, {γ∗i } and rotations, {O∗
i }.

Similar to optimization over γi and Oi for the elastic curve logistic regression, we can estimate

each γi and Oi individually for each i, since the outer summation in Eqn. 6.4.1 is over i. This

optimization can be expressed as

{O∗
i , γ

∗
i } = argmax

Oi,γi

m−1∑
j=1

y
(j)
i

[
α(j) +

∫ 1

0

〈
Oi(qi, γi), β

(j)
〉
dt

]

− log

1 +
m−1∑
j=1

exp

(
α(j) +

∫ 1

0

〈
Oi(qi, γi), β

(j)
〉
dt

) .

We will use the standard gradient ascent method to solve this optimization problem. Again, we

will represent an element γ ∈ Γ by the square-root of its derivative ψ =
√
γ̇, since it simplifies the

complicated geometry of Γ to a sphere. This motivation behind this representation is explained in

more detail in Chapter 3.1. As a reminder, the set of all ψi, with identity element ψid = 1, is a

Hilbert Sphere, S∞.
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By taking this transformation the maximization in Eqn. 6.4.2 over ψi and Oi can be written as

H(Oi, ψi) = max
Oi,ψi

m−1∑
j=1

y
(j)
i

[
α(j) +A(j)(Oi, ψi)

]
− log

1 +
m−1∑
j=1

exp
(
α(j) +A(j)(Oi, ψi)

) , (6.4.2)

where A(k)(Oi, ψi) =
∫ 1
0

〈
Oi(qi(

∫ t
0 ψ

2
i (s) ds)ψ), β

(k)
〉
dt.

We need to find the partial derivatives of Eqn. 6.4.2 with respect to Oi and ψi. For Oi the

rotation matrix is defined to be

Oi =

[
cos θi − sin θi
sin θi cos θi

]
and the derivative of Oi with respect to θi is

∂Oi
∂θi

=

[
− sin θi − cos θi
cos θi − sin θi

]
.

Therefore, the partial derivatives of Eqn. 6.4.2 with respect to θi and ψi are

∂H(Oi, ψi)

∂θi
=

m−1∑
i=1

y
(j)
i

∂A(j)(Oi, ψi)

∂θi
− 1

1 +
∑m−1

j=1 exp
(
α(j) +A(j)(Oi, ψi)

)
m−1∑
j=1

[
exp

(
α(j) +A(j)(Oi, ψi)

) ∂A(j)(Oi, ψi)

∂θi

]
(6.4.3)

∂H(Oi, ψi)

∂ψi
=

m−1∑
i=1

y
(j)
i

∂A(j)(Oi, ψi)

∂ψi
− 1

1 +
∑m−1

j=1 exp
(
α(j) +A(j)(Oi, ψi)

)
m−1∑
j=1

[
exp

(
α(j) +A(j)(Oi, ψi)

) ∂A(j)(Oi, ψi)

∂ψi

]
, (6.4.4)

where
∂A(k)(Oi, ψi)

∂θi
=

∫ 1

0

〈
∂Oi
∂θi

(
qi

(∫ t

0
ψ2
i (s) ds

)
ψ

)
, β(k)

〉
dt.

To find ∂A(k)(Oi,ψi)
∂ψi

we use the process described in [62]. First, consider the sequence of maps

ψ

∫ t
0 ψ

2ds
7→ γ

φ7→ r, where r ≡ φ(γ) = (q ◦γ)
√
γ̇. For the constant function 1 ∈ Ψ and a tangent vector

u ∈ T1(S∞) the differential of the first mapping at 1 is 2ū(t) = 2
∫ t
0 u(s)ds. For a tangent vector w ∈

Tγid(Γ), the differential of the second mapping at γid = t is ∂q̃∂tw+ 1
2 q̃ẇ, where q̃ = O(q(

∫ t
0 ψ(s)

2ds)ψ.

If we concatenate these two linear maps we obtain the directional partial derivative of A(k)(Oi, ψi)

in a direction u ∈ T1(S∞) as

∇ψA
(k)(u) =

∫ 1

0

〈
2
∂q̃i
∂t
ū(t) + q̃iu(t), β

(k)(t)

〉
dt.
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Since T1(S∞) is an infinite-dimensional space, we can approximate the directional partial derivative

by considering a finite-dimensional subspace of T1(S∞). Lets form a subspace of T1(S∞) using

{( 1√
π
sin(2πnt), 1√

π
cos(2πnt))|n = 1, 2, . . . , p/2}. We then can approximate the derivative using

c =

p∑
i=1

∇ψA
(j)(ci)ci,

where ci’s are the basis elements of the subspace. Using c in Eqn 6.4.4 for ∂A(k)(Oi,ψi)
∂ψi

we can then

compute the full derivative.

We then find the optimal θ∗i and ψ∗
i and therefore γ∗i and O∗

i using gradient ascent as described

in Algorithm 6.3.

Algorithm 6.3 Optimization over Oi and γi for Elastic Curve Multinomial Logistic Regression

1: Set ψ
(0)
i = ψid, θi = 0 and set l = 1

2: while ‖H(O
(l+1)
i , ψ

(l+1)
i )−H(O

(l)
i ψ

(l)
i )‖2 < ε do

3: Calculate ∂H(Oi,ψi)
∂θi

and ∂H(Oi,ψi)
∂ψi

using Eqn. 6.4.3 and Eqn. 6.4.4, respectively

4: Update θi according to θ
(l+1)
i = θ

(l)
i + δO

∂H(Oi,ψi)
∂θi

for a step size δO > 0 and in turn form

O
(l+1)
i

5: Update ψi component according to ψ
(l+1)
i = cos(δg‖h‖)1 + sin(δg‖h‖) h

‖h‖ for a step size

δg > 0 and h = ∂H(Oi,ψi)
∂ψi

. This update is simply the exponential map on that sphere at the

point 1 applied to the tangent vector

6: l = l + 1

7: end while

8: Calculate γ∗i =
∫ t
0 ψ

l
i(s)

2 ds and O∗
i = O

(l)
i

Optimization over α(j) and β(j)(t). Now, assuming that the {γi} and {Oi} are fixed, we will

focus on the solution of finding the optimal {α∗(j)} and {β∗(j)(t)}. As with the elastic curve logistic

regression problem, we will use a basis-based approach where we represent each β(j) =
∑p

i=1 b
j
iθi.

Finding the optimal parameter vector is similar to the functional case and is given as follows:

b∗ = argmax
b

n∑
i=1

m−1∑
j=1

y
(j)
i b(j)Tzi − log

1 +

m−1∑
j=1

exp
(
b(j)Tzi

) , (6.4.5)

where b = [b(1), . . . ,b(m−1)]T, b(k) = [α(k), b
(k)
1 , . . . , b

(k)
p ]T, and

zi = [1,
∫
〈Oi(qi, γi), θ1〉 dt, . . . ,

∫
〈Oi(qi, γi), θp〉 dt]T. Again, there is no analytical solution to this
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optimization problem and since it is concave, we use the L-BFGS algorithm to solve. To use this

method we need the partial derivative of the log-likelihood for each b(k) which are,

∂Lm(b)

∂b(k)
=

n∑
i=1

[
y
(k)
i zi −

1

1 +
∑m−1

j=1 exp
(
b(j)Tzi

) exp(b(k)Tzi

)
zi

]
.

To perform the overall minimization we alternate between finding the optimal warping functions

and rotations {γi} and {Oi} , and the optimal {α∗(j)} and {β∗(j)(t)}. The algorithm for computing

the optimal {α∗(j)}, {β∗(j)(t)}, {O∗
i }, and {γi} is given in Algorithm 6.4.

Algorithm 6.4 Elastic Curve Multinomial Logistic Regression

1: Initialization Step: set {γi} = γid, {O∗
i } = I, and calculate SRVFs {qi}, set l = 1.

2: while ‖L(l+1)
om − L

(l)
om‖2 < ε do, where Lom is the log-likelihood

3: Find {α∗(j)} and {β∗(j)(t)} using chosen basis and L-BFGS

4: Find {γi}(l) and {Oi}(l) using Algorithm 6.3 for each i = 1, . . . , n

5: l = l + 1

6: end while

7: Compute the aligned SRVS using q̃i 7→ O∗
i (qi◦γ∗i )

√
γ̇∗i and aligned curves using ξ̃i = O∗

i (ξi◦γ∗i ).

This procedure results in five items: {α∗(j)}, {β∗(j)(t)}, {O∗
i }, {γ∗i }, and {ξ̃i}.

6.4.2 Prediction

After the model has been identified, one can use it to predict classes of future observation

curves. Again, the answer is simple if the test data has not been observed with rotation and

parameterization variability as the class probabilities would be computed using

P (yi = k|qi) = φ(α(k) +

∫ 1

0

〈
qi, β

(k)
〉
dt), k = 1, . . . ,m, (6.4.6)

and the class with maximum probability determines the class (i.e., k∗ = argmaxk P (yi = k|qi)).

However, a problem arises when the input has been observed with rotation and parameterization

variability. The probability would be computed using

P (yi = k|qi, γi, Oi) = φ(α(k) +

∫ 1

0

〈
Oi(qi, γi), β

(k)
〉
dt), k = 1, . . . ,m, (6.4.7)

but the question remains on what Oi and γi should be.

The process is similar to that of elastic curve logistic regression. We propose the following: 1)

Take the observed SRVF qi and find the SRVF from the training set which has the smallest L2
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distance ‖qi − qtrain‖2. 2) Determine the Oi and γi to be used for prediction as the correspond-

ing time warping for qtrain in the training sample. 3) Find the probability for each class, using

Eqn. 6.4.7 with the corresponding chosen Oi and γi. 4) Determine the class membership using

k∗ = argmaxk P (yi = k|qi, γi, Oi).

6.4.3 Experimental Results

In this section, we classify the curve data from the MPEG-7 database presented in Section 6.3.3.

First we tested the model on distinguishing between the first three shapes (bone, half circle, and

comma). Fig. 6.5a presents the original curves which demonstrate the differences in scale and

rotation between the three shapes. For the estimation of the model we used a B-spline basis with

60 elements and estimated the parameters of the model using Algorithm 6.4. Fig. 6.5b presents the

aligned curves in which we notice the curves have been aligned into three distinct groups. Fig. 6.5c

presents the corresponding warping functions which also exhibit that the method registers the

samples into three classes.

(a) {ξi} (b) {ξ̃i}

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(c) {γi}

Figure 6.5: First three shapes from the MPEG-7 database, (a) un-registered curves, (b) registered
curves, and (c) warping functions resulting from Elastic Curve Multinomial Logistic Regression.

To evaluate the performance of the algorithm, we performed a 5-fold cross-validation experiment

to compare the classification of the elastic method versus the standard curve multinomial logistic

regression (CMLoR). By standard we mean calculating the probability for each class using P (yi =
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k|ξi) = φ(α(k) +
∫ 〈

ξi, β
(k)
〉
dt) and identifying the model parameters {α(k)} and {β(k)} by solving

argmax
{α(k)},{β(k)}

n∑
i=1

m−1∑
j=1

y
(j)
i [α(j) +

∫ 〈
ξi, β

(j)
〉
dt]− log(1 +

m−1∑
j=1

exp(α(j) +

∫ 〈
ξi, β

(j)
〉
dt))


using L-BFGS and a basis representation. Prediction was performed for the elastic method as

described above and since we have the labels for the curves, we can calculate the classification

performance. Table 6.2 presents the mean probability of classification across the folds with the

corresponding standard deviation in parentheses for the first three shapes in Panel a, the first five

shapes (bone, half circle, comma, heart, and misk) in Panel b, and all 65 shape classes in Panel c.

Table 6.2: Mean probability of classification using 5-fold cross-validation and standard deviation
in parentheses for MPEG-7 data using curve logistic regression.

Mean (STD)

CMLoR Warped Data 0.725 (0.102)
Pre-Align CMLoR 0.473 (0.194)
Cluster CMLoR 0.580 (0.045)
Elastic CMLoR 0.933 (0.082)

Elastic 1-NN 1.000 (0.000)
Kendall 1-NN 0.300 (0.0612)

(a) First three shapes

Mean (STD)

CMLoR Warped Data 0.603 (0.053)
Pre-Align CMLoR 0.434 (0.066)
Cluster CMLoR 0.443 (0.119)
Elastic CMLoR 0.880 (0.051)

Elastic 1-NN 1.000 (0.000)
Kendall 1-NN 0.190 (0.041)

(b) First five shapes

Mean (STD)

CMLoR Warped Data 0.042 (0.014)
Pre-Align CMLoR 0.431 (0.146)
Cluster CMLoR 0.296 (0.121)
Elastic CMLoR 0.626 (0.029)

Elastic 1-NN 0.850 (0.015)
Kendall 1-NN 0.028 (0.008)

(c) Entire data set

We also compare against two alignment-based CMLoR methods, which are the same alignment-

based methods as described in Section 6.3.3, except we replace CMLoR for CLoR. For all three data

sets the elastic method outperforms the standard CMLoR and the two alignment-based CMLoR.

In particular, the classification accuracy is around 90% for first two cases and 60% for the entire
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data set. Moreover, this improvement has a lower standard deviation across the folds indicating

that the model generalized well for the data. We also compared the methods against the same two

metric-based 1-NN classifiers described in the Section 6.3.3. Again, the elastic distance outperforms

the Elastic CLMoR in all cases, this is to be expected as our model is linear. However, we greatly

outperform Kendall’s distance in all studied cases. Overall, the classification rates are improved

when the model accounts for the rotation and parameterization variability in the model.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

Statistical analysis of function data is important in a wide variety of applications, arising in nearly

every branch of science from speech processing, and geology to biology and chemistry. In this work,

we have presented a comprehensive approach that solves the problem of registering and modeling

functions in a joint, metric-based framework.

7.1 Discussion

We proposed three approaches to the phase-variability problem for component analysis and

regression. Our first main idea is to use an elastic distance to separate the given functional data

into phase and amplitude components, and to develop individual models for these components.

The specific models use fPCA and imposition of either multivariate Gaussian or nonparametric

models on the coefficients. We illustrated the strengths of these models in two ways: random

sampling and model-based classification of functional data. In the case of classification, we consider

applications involving handwritten signatures, motion data collected using iPhones, and SONAR

signals. We illustrate the improvements in classification performance when the proposed models

involving separate phase and amplitude components are used.

Using the elastic metric, we then proposed a joint alignment and component analysis of func-

tional data. Specifically, we incorporated the phase-variability into the objective function of the

component analysis which in turn alters how the the optimization is performed. We then are able

to extract the corresponding components and warping functions that align the functions. The solu-

tion is a more natural approach to the analysis as the alignment is not a “pre-processing” step, but

rather part of the complete solution using one metric. We developed a joint alignment and fPCA

as well as a joint alignment and fPLS and considered applications for activity recognition data.

Finally, we have proposed a new functional linear regression approach that addresses the prob-

lem of registering and modeling functions in one elastic-framework. We then extended the linear

model to the case of functional logistic and functional multinomial logistic regression for the clas-
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sification of functions. The strengths of these model are illustrated in two ways: the alignment

of the functions and the classification of functional data. In the case of classification, we consider

applications in physiological signals. We illustrate the improvements in classification performance

when the proposed models involving phase-variability are used. We also provide an extension to R2

from R for the case of using curves as predictors and extend the linear, logistic, and multinomial

logistic model to R2 and show results using shape data.

7.2 Future Work

As the main contribution of this work is functional data analysis using an elastic framework, we

focus on that direction for future work. We provide a short list of open problems that still remain

to be addressed:

1. The next natural step from elastic fPLS is to elastic functional canonical correlation analysis

(fCCA). The difference between the two methods is the denominator in the cost function. In

the fPLS method the denominator is just the norm of the weight functions, which guarantees

the weight functions are unit norm. In fCCA the goal is to maximize the correlation instead of

the covariance, so the denominator is the square-root of the variance of rf,i =
〈
(qf,i, γi), wqf

〉
multiplied by the square root of the variance of rg,i =

〈
(qg,i, γi), wqg

〉
. This adds complication

to the objective function, as now the optimization over {γi} is in the denominator as well.

As CCA is a popular method in multivariate statistics, and functional methods have been

developed [42]; an extension to the inclusion of warping is the next logical step.

2. We have defined the estimation methods for the functional linear regression, as well as the

logistic and multinomial logistic cases. The next step, is to study the consistency of the

estimation algorithms and the rate of convergence. Moreover, an analysis of the estimated

coefficient function, β(t) and how to interpret it is needed.

3. The estimation methods for the elastic regression models are based on gradient-based ap-

proaches. Recently, Cheng [12] developed a Bayesian alignment method using the SRSF

and a similar approach should be developed for the identification of the regression model

parameters.

4. We have only extended the regression models for open curves in R2. These models need to

be extended to handle open and closed curves in Rn.

5. The developed methods have been only for 1-dimensional functional data, with an extension

of the regression models for 2-dimensional curves. In the area of statistical analysis of curves,
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there is desire for generative models and performing various component analysis. Extension

of elastic fPCA and fPLS to open and closed curves in Rn opens up many possibilities for

research and applications.
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