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Abstract: We consider the problem of alignment and classification of pro-
teomics data, that is described in Koch et al. [4], using the Extended Fisher-
Rao (EFR) framework introduced in [6]. We demonstrate this framework
by separating amplitude and phase components of functional data from pa-
tients having therapeutic treatments for Acute Myeloid Leukemia (AML).
Then, using individual functional principal component analysis, for both
the phase and amplitude components [8], we obtain bases for principal
subspaces and model the data by imposing probability models on principal
coefficients. Lastly, using the distances calculated from individual compo-
nents, we demonstrate a successful discrimination between responders and
non-responders to treatment for AML.
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1. Introduction

As described by Koch et al. [4], protein profiling can be used to study changes
in protein expression in reference to therapeutic treatments for diseases. In
this paper we analyze the protein profiles of five patients with Acute Myeloid
Leukemia (AML) referred to in Koch et al. [4]. Specifically, we will develop
tools for: (1) phase-amplitude separation from the given data, and (2) demon-
strating metrics that can potentially assist in decision making and classification
to study what different proteins are related to the disease process. The first
step is performed by aligning the original functional data using nonlinear warp-
ing functions under an extended Fisher-Rao framework [6]. This results in the
aligned functions (describing amplitude variability) and the warping functions
(describing phase variability). Following the alignment, we utilize two metrics
for data classification – one of them measures the amplitude variation and is
independent of the phase components, and the other measures the phase differ-
ence while being independent of the amplitude components. With these metrics,
one can also estimate the sample means and covariance on the phase and ampli-
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tude components, respectively, in their appropriate spaces. While the amplitude
space is a vector space and allows standard functional data analysis, the phase
components need to be transformed using a square-root transformation to en-
able use of L2 norm (and cross-sectional computations) for generating summary
statistics. These estimated statistics can be further used to perform functional
principal component analysis (fPCA) and imposing probability models on the
phase and amplitude components, respectively [8].

The rest of this paper is as follows. We briefly describe the separation, mod-
eling, and comparison of the phase and amplitude components of any functional
data in Section 2. This is followed by presentation of results on the proteomic
data in Section 3, and the paper ends with the short conclusion in Section 4.

2. Approach: Extended Fisher-Rao framework

Our general framework for phase-amplitude separation and analysis of curves
is adapted from ideas in shape analysis of curves [3, 7] and is described more
comprehensively in [5, 6, 8]. For a broader introduction to this theory, including
asymptotic results and identifiability results, we refer the reader to these papers.

Here we present a very brief review of the method used in our analysis. Let f
be a real-valued function with the domain [0, 1]; any other domain can easily be
transformed to this interval. For concreteness, only functions that are absolutely
continuous on [0, 1] will be considered; let F denote the set of all such functions.
Also, let H be the set of boundary-preserving diffeomorphisms of the unit in-
terval [0, 1]: H = {h : [0, 1] → [0, 1]| h(0) = 0, h(1) = 1, h is a diffeomorphism}.
The elements of H play the role of warping functions. For any f ∈ F and h ∈ H,
the composition f ◦h denotes the time-warping of f by h. With the composition
operation, the set H is a group with the identity element hid(t) = t.

In our framework we represent a function using the square-root slope func-

tion (SRSF) and is defined as: q(t) = sign(ḟ(t))

√

|ḟ(t)|. For pairwise registra-

tion of functions we solve the optimization problem: da(f1, f2) = infh∈H ‖q1 −

(q2◦h)
√

ḣ)‖ using the dynamic programming algorithm. In the process, we eval-
uate da which measures their amplitude differences and is independent of their
phases or time warpings. For aligning multiple functions, and for separating their
phase-amplitude components, we first compute a Karcher mean of the given
functions (denoted by µf in F and µq is in SRSF space), under the metric da.

(In F space) : µf = argmin
f∈F

n
∑

i=1

da(f, fi)
2 (2.1)

(In SRSF space) : µq = argmin
q∈L2

n
∑

i=1

(

inf
hi∈H

‖q − (qi, hi)‖
2

)

. (2.2)

(This Karcher mean has also been called by other names such as the Frechet
mean, intrinsic mean or the centroid and is generalization of a Euclidean mean
to metric spaces.) As described in [6], the algorithm for computing the Karcher
mean also results in: (1) aligned functions f̃i = {fi ◦hi}, representing the ampli-
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tude variability, and (2) the warping functions {hi} used in aligning the original
data, representing the phase variability. For more details on this method the
reader is referred to [5, 6, 8] or the companion paper [9].

To quantify phase differences between given functions, we apply the same

square-root transform to h and recognize that the set of all ψ(t) =

√

ḣ(t) is an

orthant of the unit Hilbert sphere S∞ ⊂ L
2. Then, the distance between any

two warping functions is exactly the arc-length between their representatives on
the sphere S∞. We can define a distance between a warping function and the

identity function ψid(t) = 1 as dp(f1, f2) = cos−1(
∫ 1

0 ψ(t)dt). If h is the warping
needed to align any two functions, then dp measures the amount of warping
needed to align them, and serves as a distance between their phases. One can
then use these distances – da and dp – for classification and further analysis.
We also describe how to perform fPCA on the aligned functions (amplitude)
and on the warping functions (phase) to study their variability, we will call this
horizontal fPCA and veritcal fPCA, respectively. While fPCA on the aligned
functions is straightforward (in the L

2 space with its natural metric), the case
of warping functions is not straightforward.

Horizontal PCA: As described in [8], we use the SRSF ψ to represent a
warping function h, and since the unit Hilbert sphere is a non-linear manifold
we choose a vector space tangent to the sphere for analysis; we call this the
horizontal fPCA. The tangent space at any point ψ ∈ S∞ is given by: Tψ(S∞) =

{v ∈ L
2|
∫ 1

0
v(t)ψ(t)dt = 0}. In this tangent space we can define a sample

covariance function: (t1, t2) 7→
1

n−1

∑n

i=1 vi(t1)vi(t2). In practice, this covariance
is computed using a finite number of points, say T , on these functions and one
obtains a T ×T sample covariance matrix instead, denoted by Kψ. The singular
value decomposition (SVD) of Kψ = UψΣψV

T

ψ provides the estimated principal
components of observed {ψi}: the principal directions Uψ,j and the observed
principal coefficients 〈vi, Uψ,j〉. These components can be mapped back to H

using the mapping ψ 7→ h(t) =
∫ t

0
ψ(s)2ds.

Vertical PCA: To perform vertical fPCA on the aligned SRSFs we first add
the initial value to form a larger vector: gi = [qi fi(0)]. This way, the map-
ping from the function space F to L

2 × R is a bijection. We can define a
sample covariance operator for the aligned combined vector g̃ = [q̃1 fi(0)]
as Kg = 1

n−1

∑n

i=1E[(g̃i − µg)(g̃i − µg)
T] ∈ R

(T+1)×(T+1). Taking the SVD,

Kg = UgΣgV
T

g we can calculate the directions of principal variability in the
given SRSFs using the first p ≤ n columns of Ug and can be converted back
to the function space F , via integration. This processes is called vertical fPCA
and for more information on the two methods the reader is referred to [8].

3. Results on proteomics data

First, we will apply the extended Fisher-Rao framework to separate amplitude
and phase components of the proteomics data. This requires the SRSF of the
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Fig 1. Alignment of proteomics data using the square-root slope framework with original data
in Panel a) and aligned functions in Panel b). The aligned functions exhibit high level of
registration of marked peaks.

data. It should be noted that if the data is noisy some smoothing [1] can be
applied before computing the derivative and SRSF. Second, we will perform
fPCA on the separated amplitude and phase components, respectively. We will
then construct models on the corresponding components and the models will be
validated using random sampling. Lastly, we will perform classification between
responders and non-responders to chemotherapy using the amplitude and phase
distances, da and dp, calculated during the alignment process.

3.1. Alignment

The original data with markers corresponding to the key peaks in the data is
presented in Fig. 1(a). The peaks in the data are not well aligned as the corre-
sponding markers demonstrate. The results of applying our alignment method
are presented in Fig. 1(b). The aligned functions exhibit a high level of registra-
tion with almost all of the peaks are aligned. There are a few exceptions with
peaks 1 and 2 which have a very low amplitude and that makes their registration
difficult.

We can also quantify the alignment performance using the decrease in the
cumulative cross-sectional variance of the aligned functions. For any functional
dataset {gi(t), i = 1, 2, . . . , n, t ∈ [0, 1]}, let

Var({gi}) =
1

n− 1

∫ 1

0

n
∑

i=1

(

gi(t)−
1

n

n
∑

i=1

gi(t)

)2

dt,

denote the cumulative cross-sectional variance in the given data. For the pro-
teomics data, we found:

Original Variance = Var({fi}) = 4.05, Amplitude Variance = Var({f̃i}) = 1.13

Phase Variance = Var({µf ◦ hi}) = 3.04.
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Fig 2. The aligned proteomics data (left panel) with corresponding observed warping functions
(right panel).

where {fi} is the set of original functions, {f̃i} is the set of aligned functions,
and {µf ◦ hi} is the set of applying the warping functions {hi} to µf , which is
the mean function after alignment. From the decrease in the amplitude variance
and increase in the phase variance we can quantify the level of alignment. Fur-
thermore, the corresponding warping functions are presented in the right panel
of Fig. 2.

Fig. 3 presents a zoom in on a region of the data from 81.4 to 111 time
samples. The top panel is the original data where we see very poor alignment
of the peaks. The bottom panel is the corresponding aligned data using the
extended Fisher-Rao framework, where a nice alignment of the peaks and valleys
have occurred.

3.2. Modeling

In this section, we present the results of applying horizontal and vertical fPCA
on the warping and aligned functions, respectively. First, we perform horizontal
fPCA on the warping functions and the first two principal directions are pre-
sented in Fig. 4(a) and (b), respectively. It can be see that most of the variation
is contained in the first principal direction with minor perturbations contained
in the next principal direction.

Next, we analyzed the aligned SRSFs by performing vertical fPCA. The first
two vertical principal-geodesic paths are shown in Fig. 5 (a) and (b), respectively.
The first 5 singular values for the data are: 3.89, 1.94, 1.49, 1.10, and 0.95 with
the rest being negligibly small. Visually most of the variation lies in the first
principal direction, which can also be attributed to the largeness of the first
singular value relative to the other singular values

Once we have obtained the fPCA coefficients for the horizontal and vertical
components we can then impose a probability model on the coefficients and
induce a distribution on the function space F . Using the joint Gaussian model
described in [8] we randomly generate 35 domain-warping functions and 35
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Fig 3. Zoom in on original proteomics data (top panel) and aligned proteomics data (bottom
panel). The original data peaks are varying in time locations while the aligned data has tight
time alignment of all the peaks.
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(c) Random Samples

Fig 4. The first two principal directions of the observed warping functions (a) and (b). Most
of the variations is contained in the first principal direction. Corresponding random samples
of warping functions from the phase model (c).

amplitude functions. We then combine them using composition to generate a
set of 35 random functions. The corresponding results are shown in Fig. 4(c) and
Fig. 6. Which presents a set of random warping functions (Fig. 4(c)), with the
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Fig 5. The first two principal directions of the aligned functions, where most of the variation
is contained.
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Fig 6. Random samples from from the amplitude model (a) and combination of the random
samples with random samples from the phase model (Fig. 4(c)).

corresponding amplitude functions (Fig. 6(a)), and the set of random samples
(Fig. 6(b)). Comparing the random samples with the original data (Fig. 1(a))
we conclude that the samples are very similar to the original data and, at least
under a visual inspection, the proposed models are successful in capturing the
variability in the given data.

3.3. Classification

In this section, we present the results of using the amplitude distance, da, and
phase distance, dp, for classification between responders and non-responders to
chemotherapy.

We first compute the standard L
2 distance between each pair, i.e., dij

L2 =
‖fi − fj‖, i, j = 1, . . . , n. The matrix of pairwise L

2 distances is shown as a
gray scale image in left panel in Fig. 7. This image of the pairwise distances
looks unstructured, highlighting the difficulty of classification under this met-
ric. Based on this distance matrix, we perform classification by using nearest
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Fig 7. The pairwise distances using the L
2, da, and dp distances, in the left, middle, and

right panels, respectively.

neighbor classifier. We then measure the error rate of this classifier using leave-
one-out (LOO) cross-validation and found that the accuracy is 0.27 (4/15).
Then, we computed distances da and dp between all pairs of functions and these
distance matrices are shown as gray scale images in the middle and right panels
in Fig. 7, respectively. In the image of da (middle panel Fig. 7), we find that the
pairwise distances are more structured than the L

2 distances. We also perform
classification using the LOO cross-validated nearest-neighbor based on the da
distances. The accuracy turns out to be 0.87 (13/15), a significant improvement
over the standard L

2 result (0.27). We find that the dp distances do not have
strong classification performance, which can be noted by the lack of structure
in the right panel of Fig. 7. The classification accuracy using dp turns out to
be 0.33 (5/15), which is only slightly higher than the standard L

2 norm in the
function space. The clear best performance of da is very consistent with the
expectation that relative amounts of peptides should drive these differences, as
stated in [4].

Since da and dp each only partially describe the variability in the data, which
corresponds to the phase and amplitude differences between the functions, there
is a possibility of improvement if da and dp are used jointly. One simple idea is to
linearly combine these two distances and use the weighted distance to perform
classification on the data. Define dτ as the weighted average dτ = τdp+(1−τ)da,
of da and dp. We found an optimal of τ = 0.1 provides a LOO accuracy of 0.93
(14/15), which is higher than the accuracy of the L

2, da, and dp distances. This
indicates that there is some information carried in the phase than previously
thought, however a larger number of samples would be required to justify this
claim. Moreover, if there is more contribution from the phase it would suggest a
batch effect or other nonrandom bias in the data that would have to be studied
further.

For comparison, we computed a “naive” distance, dNaive, which corresponds
to the quantity minh ‖f1 − f2 ◦ h‖ that has often been used in the literature for
function alignment. We also perform the cross-validated nearest-neighbor using
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Fig 8. CMC Comparison of L2, DNaive, Dx, Dy and the weighted Dτ (τ = 0.1) distances.

the dNaive and find that the accuracy is 0.80 (12/15). This is better than the
accuracy by dp, but worse than that of da.

Next we generated a cumulative match characteristic (CMC) curve [2] for
the distances L2, dNaive, da, dp, and dτ . A CMC curve plots the probability of
classification against the returned candidate list size (number of nearest neigh-
bors) and is presented in Fig. 8. Both da and dτ outperform all the other dis-
tances and very rapidly approach perfect classification for a small returned list
size.

4. Conclusions

The statistical analysis and classification of functions is a challenging task, espe-
cially in the presence of phase variation. We have utilized a recent comprehensive
approach that solves the problem of function alignment and analysis by using
a cost function that is eventually a warping-invariant distance between the two
functions. We have achieved a high level of alignment of the proteomics data
using our alignment algorithm. We also studied data classification under differ-
ent metrics and demonstrated a LOO performance of almost 0.90, which easily
outperforms the standard L

2 distance (0.27), and a method that uses a naive
alignment (0.80).
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