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More attention has been given to the computational cost associated with the fitting

of an emulator. Substantially less attention is given to the computational cost of using

that emulator for prediction. This is primarily because the cost of fitting an emulator

is usually far greater than that of obtaining a single prediction, and predictions can

often be obtained in parallel. In many settings, especially those requiring Markov

Chain Monte Carlo, predictions may arrive sequentially and parallelization is not pos-

sible. In this case, using an emulator procedure which can produce accurate predic-

tions efficiently can lead to substantial time savings in practice. In this paper, we

propose a global model approximate Gaussian process framework via extension of a

popular local approximate Gaussian process (laGP) framework. Our proposed emula-

tor can be viewed as a treed Gaussian process where the leaf nodes are laGP models,

and the tree structure is learned greedily as a function of the prediction stream. The

suggested method (called leapGP) has interpretable tuning parameters which control

the time-memory trade-off. One reasonable choice of settings leads to an emulator

with a OðN2Þ training cost and makes predictions rapidly with an asymptotic amor-

tized cost of Oð ffiffiffiffi
N

p Þ.
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1 | INTRODUCTION

Computer models are an integral feature of modern science, playing a central in role the field of uncertainty quantification. Black-box computer

models which simulate complex physical systems are often expensive to run or are otherwise proprietary. Instead of having unlimited access to a

computer model, it is common to provide a practitioner with a set of N model runs. Conditional on these model runs, an emulator (also called surro-

gate) is built as a cheap-to-evaluate approximation to the computer model output for all input values of interest, including those which were not

provided explicitly in the model runs.

The Gaussian process (GP; reviewed in Section 2.1) is the gold-standard of emulation but requires OðN3Þ time to train, rendering it infeasible

for computer models with high-dimensional inputs or a non-stationary and non-smooth output, which can require a large set of computer model

runs to effectively summarize the input–output relationship. In this setting, we are forced to consider one of the many alternatives such as

methods for approximate GP regression or non-GP emulation.

While much attention has been given to alleviating the cost of training an emulator, little attention is typically given to the time and resources

required for making efficient predictions. This is primarily because it is usually more expensive to fit an emulator than it is to make a single
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prediction, and predictions can commonly be made in parallel for a large number of input locations at once. There are however many important

applications in which the input locations for prediction arrive sequentially and parallelization is not possible. For instance, in Bayesian model cali-

bration (Higdon et al., 2004; Kennedy & O'Hagan, 2001) the posterior is explored using Markov Chain Monte Carlo (MCMC), in which the input

location needed for prediction at time t is not even generated until after processing the emulator prediction at time t�1. Although running multi-

ple MCMC chains simultaneously or using specialized MCMC algorithms such as Hamiltonian Monte Carlo (Hoffman et al., 2014) may allow for

some limited parallelization, the prediction scheme is fundamentally sequential. Work on sequential contour estimation (Ranjan et al., 2008) and

stochastic optimization with simulated annealing (Bertsimas & Tsitsiklis, 1993) or genetic algorithms (Holland, 1992) are additional distinct applica-

tions in which sequential emulation may be desirable. When parallelization of the emulator predictions is not possible and a large number of pre-

dictions are required, the need for emulators which can predict efficiently becomes increasingly important.

There are many options for emulation when a standard GP is infeasible. Some popular non-GP emulators include multivariate adaptive regres-

sion splines (MARS and BMARS Francom & Sans�o, 2020; Friedman, 1991), additive regression trees (random forests and BART Chipman et al.,

2010; Biau & Scornet, 2016) and projection pursuit regression (PPR and BPPR; Friedman and Stuetzle (1981); (Collins et al., 2022), each having

training algorithms which scale favourably with N. In most cases, however, these thrifty alternatives are outperformed by the GP in terms of pre-

dictive performance. Moreover, the computational efficiency of online predictions for these methods is less than desirable, especially in the

Bayesian implementations which have ensemble interpretations. Sparse GPs (Hensman et al., 2013; Snelson & Ghahramani, 2005; Titsias, 2009)

represent a notable class of approximate GPs. They address the issue by finding a set of M�N inducing points for which the resulting GP is a

good approximation of the full GP. The training cost of such an approach is often OðNM2Þ. Others have approached this problem by looking at

low-rank approximations to the GP covariance matrix (Moran & Wheeler, 2020; Solin & Särkkä, 2020). The sparse and low-rank approximations

are excellent choices for many problems, but they do have disadvantages such as implicit assumptions of stationarity and a tendency to smooth

over small-scale structures in the computer model. Highly relevant to the ideas proposed in this work is the class of local approximations which

include nearest neighbour kriging (Cressie, 1991) and the more sophisticated local approximate Gaussian process (laGP) framework of Gramacy

and Apley (2015). These local methods find “neighbours” of each new prediction location according to some criterion and predict using a small-

scale GP fitted from just these points. The advantages of this approach include (i) interpolative prediction at locations which are in the model run

set, (ii) ability to capture small-scale structure in the computer model and (iii) automatically handles non-stationarity of the response surface. In

the context of the present discussion, the primary downside of this approach is that, because there is formally no “training-step”, the local model

must find the optimal neighbourhood and fit a local model for each new prediction location. If the size of the neighbourhood is n¼OðNaÞ, then
the cost of each prediction is OðN3aÞ, which can be tedious and inefficient when a large number of sequential predictions are required. We briefly

note that a similar class of methods, based on Vecchia approximations (Vecchia, 1988), have recently become popular (Katzfuss et al., 2020;

Katzfuss & Guinness, 2021; Sauer et al., 2022). These methods generally aim to construct a sparse approximation to the Cholesky factor of the

covariance matrix in Oðnm3Þ time. Since the Cholesky factor is usually constructed separately for each new prediction location, these methods will

similarly suffer when a large number of sequential predictions are required. If a global Cholesky factor is constructed for all prediction locations,

then the Vecchia-based approximations will have similar drawbacks to the low-rank approximations.

In this paper, we propose a global model extension to the laGP framework of Gramacy and Apley (2015) (see Section 2.2 for review) referred

to as a localized ensemble of approximate GPs (leapGP). The leapGP algorithm can be viewed as a treed GP (Gramacy & Lee, 2008) in which the

leaves are laGP models and the tree structure is learned greedily and is dependent on the stream of predictions. Our proposed method allows us

to reuse previous work, trading time for memory, in order to obtain predictions rapidly. Although leapGP is meant to approximate the behaviour

of standard laGP, the method induces a form of local regularization which can lead to better emulation in certain settings. Our proposal has two

tuning parameters ðM0,ρÞ which influence both the accuracy and computational efficiency of leapGP, but we propose a default setting which

leads to a OðN2Þ training algorithm with an amortized cost of Oð ffiffiffiffi
N

p Þ per prediction (OðNÞ, if uncertainty is also requested). Code to reproduce all

of the examples in this paper can be found online (https://github.com/knrumsey/leapGP-analysis-comparison). Standard GP regression and laGP

regression are reviewed in Section 2, and the leapGP is described in Section 3. We demonstrate the effectiveness of the proposed method in

Section 4, comparing our approach to standard laGP and several other alternatives. Conclusions are given in Section 5.

2 | BACKGROUND

2.1 | GPs

In GP emulation, the goal is to learn the behaviour of an unknown function (computer model) f which is observed only at a finite set of input

locations

y ¼ fðxÞþϵ,ϵ1,…,ϵn �iidNð0,τÞ,
x ¼ ½x1,…,xN�,xi �X �ℝd:

ð1Þ
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In the typical case where f is deterministic, the variance term τ is called a nugget and is usually set to a very small fixed constant for improved

numerical stability. The GP specifies a prior distribution over the infinite dimensional function space as

fðxÞ�GP μðxÞ,Kðx,x0Þð Þ, ð2Þ

which is fully defined by the mean function μðxÞ and the covariance function Kðx,x0Þ, the latter of which depends on a set of parameters denoted

κ. Although there are many reasonable alternatives, we will restrict our attention to the isotropic Gaussian covariance function

Kðx,x0;κÞ¼ κ1 exp � x�x0ð Þ2=κ2
h i

:

We also note that taking μðxÞ¼0 for all x is a standard simplifying assumption in the computer model literature. For a new input location x ∗ , the

vector fðx ∗ ÞfðxÞ>� �>
has a multivariate normal distribution. Through Gaussian conditioning, the predictive distribution for f at x ∗ is normal with

mean μðx ∗ jx,y,μð�Þ,Kð�, �ÞÞ ¼ k> ðx ∗ ÞK�1y,

and variance νðx ∗ jx,y,μð�Þ,Kð�, �ÞÞ ¼ ψ

N
Kðx ∗ ,x ∗ Þ�k> ðx ∗ ÞK�1kðx ∗ Þ� �

,
ð3Þ

where K is an N�N matrix with ðijÞth entry Kðxi ,xjÞ, kðx ∗ Þ is an N-vector with ith entry equal to Kðx ∗ ,xiÞ and ψ ¼ y > K�1y. Estimation of the param-

eters κ and τ can be done using maximum likelihood or via empirical Bayes, and we refer the reader to Rasmussen (2003) and Gramacy (2020) for

a more detailed discussion.

GP emulation scales poorly because Equation (3) requires the inverse of the potentially large matrix K. Since K varies with the unknown

parameters κ, many cubic-time inversions may be needed. By fixing κ2 at an empirically reasonable value, substantial speedup can be obtained in

applications such as Bayesian model calibration(Rumsey & Huerta, 2021), but it remains a computational bottleneck and limits deployment of the

full scale GP to problems with only a moderate number of model runs.

2.2 | laGP

Since the primary computational drawback of the GP is related to inverting an N�N matrix, the laGP approach attacks this directly by requiring

just the inverse of an n�n matrix for n�N. Subset of data (SoD) approaches (reviewed in Liu et al., 2020) are a simple and intuitive approach to

approximate GP emulation, in which a subset of the full data is retained and used for the calculations in Equation (3). The laGP approach of

Gramacy and Apley (2015) takes a localized version of this idea, allowing for a unique subset of the data to be selected for each input location x.

The nearest neighbour sub-design, which consists of the points xnðxÞ� x which are nearest to x, has been used for decades and has been

extensively studied (Cressie, 1991). This design is known to be suboptimal (Vecchia, 1988) and is uniformly sub-optimal under certain conditions

(Stein et al., 2004). Finding truly optimal sub-designs remains out of reach, except for in trivial cases, as it involves complicated, high-dimensional,

non-convex optimization which varies explicitly with κ. Instead, the laGP approach relies on a greedy construction of the sub-design using active

learning (e.g. Cohn et al., 1996) which is demonstrably more effective than nearest neighbours and can be constructed quickly without increasing

the asymptotic complexity of the procedure.

To make a prediction (with uncertainty) at a new input location x ∗ , laGP proceeds as follows. First, a small nearest neighbour sub-design

(of size n0 < n) is obtained. For j¼ n0þ1,…n, the jth observation is added to the sub-design one at a time by evaluating a criterion and greedily

selecting the best point. At step j, if the criterion can be evaluated for a set of candidate points not currently in the design in Oðj2Þ time, then the

complexity of the entire procedure will remain Oðn3Þ. If ðxjðxÞ,yjðxÞÞ is the local sub-design at step j, then next point is selected according to the

rule

xjþ1 ¼ argmin
x =2 xjðxÞ

E fðxÞ�μjþ1ðx; κ̂jþ1Þ
� �2jxjðxÞ,yjðxÞ� �n o

: ð4Þ

In the work by Gramacy and Apley (2015), it is shown that this criterion can be viewed as an empirical Bayes mean square prediction error

and can be well-approximated in the allotted time. For additional details, we refer the reader to the original work and its implementation-focused

companion, Gramacy (2016). Many methods for approximating Equation (4) are proposed, special cases are discussed and mathematical details

are given (including the use of the partition inverse equations for fast updating). The extension that we propose is invariant to the particular

method used for evaluating equation (4). In all of our examples, we use the active learning Cohn approximation (the default in the laGP R package)

for both laGP and our proposed extensions. After the final sub-design of size n has been constructed, the parameters κ are estimated using MLE.
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3 | A LOCALIZED ENSEMBLE OF APPROXIMATE GPs

As discussed extensively above, the laGP algorithm is an approximation to the full GP with several desirable properties. Emulation with laGP is

treated inherently local, and the lack of a global model has both advantages and disadvantages. The primary disadvantage comes at the cost of

slower predictions, since a local sub-design at input location x ∗ must be fully reconstructed, even if it differs very little from the design that was

built for a previously seen input location x ∗ þϵ.

We propose a simple extension to this algorithm which builds a global model consisting of laGP prediction hubs. By trading memory for time,

we can approximate the behaviour of standard laGP while reusing our previous work as often as possible. We make decisions based on computa-

tional efficiency wherever possible and will demonstrate that the accuracy of these approximations is comparable and sometimes superior to the

standard laGP prediction. The proposed extension, which we refer to as a leapGP, is based on maintaining a data structure of previously trained

laGP models (called prediction hubs). Whenever possible, we predict the value of f at a new input location x ∗ using a nearby prediction hub. If no

prediction hub exists which is sufficiently reliable for prediction, then we construct a new hub at location x ∗ and add it to the data structure for

future use. In a sense, this process can also be viewed as a modification of the treed GP method of Gramacy and Lee (2008) where the leaves of

the tree correspond to laGP models and the tree structure is learned greedily and is determined by the stream of new prediction locations. We

note that a similar two-stage approach was proposed by (Nguyen-Tuong et al., 2008), but our method improves on this earlier work by incorporat-

ing the enhanced neighbourhood design of the laGP and saves additional time by building the local models sequentially and only as needed.

3.1 | The prediction hub

A prediction hub, corresponding to the laGP model built for a particular input x, is a mathematical tuple H containing the minimal information

needed to evaluate the GP Equation (3) for any new value x ∗ . We define

H¼fx,I , κ̂,L,α,ψg, ð5Þ

where x is the coordinates of the hub (the input location for which it was originally designed), I �f1,…,Ng is the set of indices corresponding to

the sub-design xnðxÞ, κ̂ is the estimated hyperparameters to the covariance function and L is the Cholesky factor of K�1 ¼ LL> . We also store the

vector α¼K�1y and the scalar value ψ ¼ y> α¼ðy > LÞðy> LÞ> to facilitate faster evaluation of Equation (3), and we pay a negligible memory cost

in doing so. We also note that, if only the mean of the emulator is required, the prediction hub does need to store L which markedly reduces the

memory cost.

3.2 | Training phase

It is often worthwhile to spend some time training an initial model in advance, in order to save time later. We can achieve this with an optional

training phase, in which M0 prediction hubs are built in advance at a series of locations across the input domain. By setting M0 ¼OðNaÞ and

n¼OðNbÞ, we can guarantee that the training algorithm will scale as OðNaþ3bÞ. We take a¼ b¼1=2 as a default, so that the training scales as

OðN2Þ which is a drastic improvement over the cubic scaling of a full GP, but smaller values can be chosen when N is exceptionally large. Indeed,

one can opt to skip this training phase altogether (M0 ¼0) although the computational advantages compared with standard laGP may be slight

unless a huge number of predictions are required. We also note that this training phase is trivially parallelizable and can usually be accomplished

with OðN3bÞ complexity in practice.

There are many reasonable schemes for choosing the location of these first M0 hubs, but we have found that the stochastic partitioning

around medoids (PAM) algorithm (Schubert & Rousseeuw, 2019) is a fast and reliable choice. The PAM algorithm is a clustering algorithm which

leads to good hub placement when there is structure in the data x and is generally space filling even when there is no such structure. Moreover,

the PAM algorithm is very fast, OðN2Þ with small overhead, and can easily be bounded above by running it on a random subset of the original

design, still leading to good results. Maximin Latin hypercube designs represent a simple yet reasonable alternative (Park, 1994).

3.3 | Prediction phase

After the optional training phase has completed, we assume that prediction locations x ∗
1 ,x

∗
2 ,… come as a stream, one after another, so that para-

llelization is not possible. At any given time, we must maintain a list of the current M predictions hubs H¼ðH1,…,HMÞ. We also maintain a bal-

anced k-d tree, as described by Procopiuc et al. (2003), which requires OðMÞ memory. After training, the initial k-d tree can be constructed in
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OðM0log
2M0Þ time, and when a new prediction hub is constructed during the prediction phase, we insert its coordinates into the k-d tree in

OðlogMÞ time. The advantage of the k-d tree is that, for any input location x, we can find the k-nearest hubs in (expected) OðklogMÞ time.

When predicting the value of fðx ∗ Þ, we must find a suitable Hm. Rather than using the hub which is nearest to x ∗ , we prefer to use the hub

which maximizes the correlation between x ∗ and the hub coordinate. For hub Hm (m¼1,…,MÞ, we compute the correlation (denoted rm) between

x ∗ and the coordinates of Hm using the correlation parameters of the corresponding hub. For the Gaussian covariance function, we calculate

rm ¼Kðx ∗ ,Hm:x;Hm:κ̂Þ
Hm: bκ1 , ð6Þ

where the notation H:z denotes the field z belonging to tuple H. The candidate hub is then given by Hm ?
where m ? ¼ argmaxm¼1,…,Mfrmg. The

ideal approach to finding m ? would require a non-trivial modification of the balanced k-d tree which is a potential area for future work. As a sensi-

ble alternative, we use the k-d tree to find the k nearest hubs (e.g. k¼5) and find the largest rm among this subset. For large M, using approximate

nearest neighbour search is another avenue for speedup (Hajebi et al., 2011).

Given a user defined parameter ρ� ½0,1�, we accept the candidate hub if rm ?
≥ ρ and we compute the mean and variance of fðx ∗ Þ efficiently

using Equation (3) and the values contained in Hm ?
. If we reject the candidate hub, then we emulate fðx ∗ Þ using standard laGP and we add this

newly constructed hub to our data structure and insert a new node into the k-d tree. We now have one additional hub at our disposal, with which

we can make new predictions in the future. The effect of ρ on the performance of the algorithm will be discussed further in the following

subsection.

It is worth noting that an alternative is to create an ensemble of predictions, perhaps using all hubs for which rm exceeds ρ. One must exercise

caution when choosing weights for the averaging scheme, and optimal weights can be costly to obtain. Moreover, we have found that this

approach, which is explored by Edwards and Gramacy (2021), does not usually lead to significantly better predictions despite the significant com-

putational burden.

3.4 | Complexity analysis

We first consider the memory cost associated with storing a single prediction hub, which is OðdþnÞ if only the emulator mean is required and

Oðdþn2Þ in general. If n≤
ffiffiffiffi
N

p
, then storing a hub is smaller than the OðdNÞ cost of keeping the full data. When N is very large, we can often

achieve accurate predictions with a much smaller n� ffiffiffiffi
N

p
. To provide an upper bound on the memory requirements, it is sensible to place a hard

cap on the allowable number of hubs which can be stored. It is easy to conceive of an adaptive approach in which the tree structure of hubs is

pruned and the locations optimized, but we leave this for future work.

The leapGP algorithm as described depends on just two parameters M0 and ρ (in addition to the laGP parameters, such as neighbourhood size

n). One special case which we have already discussed briefly is the case where M0 ¼0. In this case, no training is required and the resulting

method will closely resemble laGP for large ρ, except for that time; it will be saved through the reuse of work when future prediction locations are

sufficiently close to previous ones (as is common in MCMC applications). A second special case is the one where ρ¼0, in which prediction hubs

are always used for emulation. This approach leads to extremely fast predictions, but its accuracy depends on choosing an appropriate value for

M0 and can require a considerable amount of time budgeted for training. Finally, we note that the case where M0 ¼0 and ρ¼1 is equivalent to

using standard laGP for prediction. In summary, the parameter M0 dictates how much effort should be front-loaded into a training phase, so that

predictions can be made more efficiently later on. The parameter ρ controls the accuracy of the approximation, since values close to 1 should

force behaviour which is similar to the standard laGP. Smaller values of ρ lead to a greater probability of reusing work and thus faster predictions.

Setting n¼Na for some a� ð0,1Þ, the complexity of laGP is OðN3aÞ which is the cost of building a sub-design as well as the cost of computing

the necessary terms for evaluating the emulator (i.e. K�1). When using a pre-existing hub for prediction, leapGP requires just OðlogMþNaÞ time

to find the nearest hub and compute the mean of the emulator. If the variance of the emulator is also desired, the cost increases to

OðlogMþN2aÞ. The computational cost of the leapGP training phase is OðM0N
3aþM0log

2M0Þ, where the first term is due to construction of the

laGP models (which can be parallelized) and the second term is due to the construction of the k-d tree. Setting M0 ¼Nb for b� ð0,1Þ, we can write

the computational cost of leapGP as

O N3aþb

p
þb2Nblog2N

 !
for training and

O N3aωT þ logMT þNcað Þð1�ωT

� �
per prediction; whenmakingT predictions;

ð7Þ
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where p≤Nb is the number of processors used for parallel training and c¼2 if the variance of the emulator is desired and c¼1 otherwise.MT indi-

cates the number of prediction hubs after T predictions and ωT ¼ðMT �M0Þ=T is the proportion of the first T predictions which required a new

prediction hub. For a continuous computer model f over a compact domain, it is clear that a finite number of prediction hubs will suffice to effec-

tively cover the space when ρ<1. This implies that MT !M<∞ and ωT !0 as T!∞, and thus, the amortized cost of prediction for leapGP is

OðNcaÞ for sufficiently large T. The degree of separation between this ideal case and reality depends heavily on (i) the dimensionality of x and

(ii) the relative smoothness of the computer model output as a function of x. In general, surfaces which are harder to emulate will require more

predictions (larger T) before the computational advantages of leapGP will make themselves felt. Regardless, leapGP has a relatively small overhead

and will at worst be computational comparable with laGP. For the recommended default values, a¼ b¼1=2, leapGP guarantees OðN2þffiffiffiffi
N

p
log2NÞ training cost and an amortized Oð ffiffiffiffi

N
p Þ prediction cost (or OðNÞ with uncertainty) where the overhead depends on the regularity of f

and the dimension of the input space.

4 | EXAMPLES

4.1 | Illustrative example: Twin Galaxies function

We begin with the analysis of a simple bivariate function, studied by Rumsey et al. (2022) in the context of large-scale climate models. The Twin

Galaxies function is highly non-isotropic and will be difficult to emulate adequately with a stationary process. The function is given by fðxÞ¼
f1ðxÞþ f2ðxÞ over x� ½0,1�2 where

f1ðxÞ ¼11
40

18þ5x1�35x2þ5x1x2þ38x22�15x31�5x1x
2
2�11x42þx31x

2
2

� �
Lim et al:; 2002ð Þ

f2ðxÞ ¼5exp �ðð8x1�2Þ2þð8x2�2Þ2Þ
� �

ð8x1�2Þ Gramacy&Lee; 2008ð Þ
ð8Þ

and is shown in Figure 1a. We begin our analysis by generating a design of N¼1000 observations x from the unit square ð0,1Þ2 using a Latin

hypercube design. For each xi , we evaluate yi ¼ fðxiÞ and the pairs ðxi,yiÞ, i¼1,…N formulate the model runs (training data). We then generated a

F IGURE 1 The Twin Galaxies function. (a) The Twin Galaxies function is a synthetic computer model with smooth long range structure, with
regions of high activity (in the lower left corner). (b) An illustration of hub placement for leapGP. The dark grey points represent the data x. Dark
green x symbols represent the initial placement of 20 hubs during the training phase. The orange + symbols represent additional hub locations
that were added during the prediction phase. The radius of the circle is proportional

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k2 logρ

p
to for each hub. Note that more hubs are needed

to predict areas of high activity.
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second set of N¼1000 distinct observations for prediction, also using a Latin hypercube design, which we assume must be predicted sequentially.

Figure 1b shows the location of the prediction hubs for the leapGP algorithm with M0 ¼20 and ρ¼0:9. The green � symbols show the location

of the hubs placed during the training phase, which were chosen using the fast PAM algorithm, leading to good separation of the laGP models.

The orange + symbols show the location of the 74 prediction hubs which were added during the prediction phase, in locations which previous

hubs were deemed too far away to make an accurate prediction. The radii of the circles surrounding each hub are proportional to (but not equal

to, for illustrative purposes)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�κ2logðρÞ

p
. We note that these radii are larger in locations where the response surface is more flat and easier to pre-

dict. Conversely, more prediction hubs are needed (and radii of hubs are smaller) in regions of high local activity in the response surface.

Where the standard laGP algorithm (with n¼30) required 62.3 seconds to make 1000 predictions, the leapGP algorithm ðn¼30Þ with param-

eters M0 ¼20 and ρ¼0:9 required just 1.3 seconds for training and 2.9 seconds to make the predictions. Moreover, the root mean square predic-

tion error (RMSPE) for the laGP algorithm is 0.105, while the leapGP algorithm is substantially more accurate with a RMSPE of 0.032. The ability

of leapGP to outperform laGP in terms of prediction (while also being significantly faster) is not uncommon in our experiments. If laGP were able

to select sub-designs which were truly optimal, then this results could not occur, but this fact suggests that the greedy algorithm for sub-design

construction can lead to overfitting. The leapGP algorithm induces a local smoothing on the emulation surface, a form of local regularization,

where nearby locations share suboptimal sub-designs, which can sometimes lead to better predictive performance.

We also consider the extremely thrifty case where ρ¼0 (with M0 ¼20), so that only the original 20 prediction hubs will be used during pre-

diction. In this case, the prediction phase takes just 0.098 seconds with a reasonable RMSPE of 0.32. Although the RMSPE is three times larger

than that of laGP, it demonstrates that a reasonable emulator can be obtained for this problem using extremely limited resources.

To further demonstrate the effect of ρ, we fit a series of emulators for various values of ρ� ð0:5,0:999Þ with M0 ¼0, so that we skip the

optional training phase altogether. Figure 2a shows the time in seconds to make each prediction from 1 to 1000. For all values of ρ, the initial

behaviour of the leapGP algorithm is similar to that of laGP, but the amortized cost of each successive prediction is lowered as previous work is

reused. Figure 2b shows the RMSPE of each algorithm across the 1000 predictions. When ρ is small, we see that predictions are very fast to

obtain, although the resulting accuracy is worse than laGP, as expected. When ρ≈1 (e.g., ρ¼0:999), the behaviour of leapGP is nearly equivalent

to laGP (though there is a small amount of overhead in timing). For values of ρ between about 0.8 and 0.99, however, our proposed algorithm is

both markedly faster than laGP and considerably more accurate due to implicit regularization.

4.2 | Simulation study: The piston function

In this example, we compare the efficiency and accuracy of leapGP (at various parameter settings) to several other emulators for the piston simu-

lation function (Ben-Ari & Steinberg, 2007; Zacks, 1998). The piston simulation function models the cycle time, in minutes, of a piston with inputs

given in Table 1 and is defined as

F IGURE 2 Timing and root mean square prediction error (RMSPE) results for the Twin Galaxies function. (a) Time per prediction for laGP and
leapGP with M0 ¼0 and ρ� ð0:5,0:999Þ. Initially, leapGP takes just as long as laGP, but becomes faster as more hubs are placed. (b) Root mean
square prediction error for laGP and leapGP with M0 ¼0 and ρ� ð0:5,0:999Þ. For ρ≈1, behavior is nearly equivalent to laGP. In this particular
case, leapGP can outperform laGP for ρ≈0:9.
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We perform a simulation study using N computer model runs for N¼4000 and N¼40,000. In both cases, we ask the emulators to produce

T¼10,000 predictions across the input space. Latin hypercube designs were used to generate the input locations for both the training and

prediction data.

For each emulator, we record the time taken to train the emulator, the time taken to produce all predictions, the accuracy of the emulator

(measured by RMSPE) and the empirical coverage of all 95% predictive confidence/credible intervals. The emulators compared include

(i) Bayesian MARS using the default settings of the BASS package (Francom & Sans�o, 2020), (ii) Bayesian additive regression trees using the

default settings of the BART package (Sparapani et al., 2021), (iii) Bayesian PPR using the BayesPPR package (Collins, 2022), (iv) the fully indepen-

dent training conditional sparse GP using the gplite package with method = method_fitc(num_inducing = sqrt(N)) (Snelson &

Ghahramani, 2005), (v) a Vecchia approximation based GP using the GPvecchia package (Katzfuss et al., 2020), (vi) treed regression using the

default settings of the bcart function in the tgp package (Gramacy, 2007) and (vii) laGP using the laGP package (Gramacy, 2016).

Recall that our primary goal is to construct an emulator which is appropriate for use within an MCMC algorithm (or another sequential setting)

and thus all predictions are wrapped in a simple for loop in R, which disallows any benefits that arise from vectorization. We recognize that some

implementations, such as wbart in the BART package, are not designed for this case and have a large overhead for sequential prediction. Thus,

the results of this simulation study should not necessarily be taken as a direct critique of the methods but rather a shortcoming of the method/

implementation combination for the current setting of interest. We view this as further evidence that the problem of efficient online prediction is

often overlooked and is one of the key motivations for leapGP. From the tgp package, we attempted to use the treed GP approach of Gramacy

and Lee (2008), but training the model on the piston data using just the first thousand model runs took several hours and the cubic growth of the

fitting process rendered it impractical for inclusion in this comparison. We use the Bayesian CART algorithm from the tgp package as a fast tree-

based alternative. The optimization routine in GPvecchia was unable to converge under the default settings, so we increased the tuning parame-

ter (m=30 and m=40 for N¼4000 and N¼40,000, respectively) until convergence could be obtained. Both laGP and leapGP employ sub-designs

of size n¼60 and n¼120 for the N¼4000 and N¼40,000 cases, respectively. We train each leapGP model using M0 ¼60 and M0 ¼200 for the

respective cases and obtain the 10,000 predictions using values ρ¼0:0,0:8,0:9,0:95,0:97,0:99. The speed-accuracy trade-off is demonstrated in

Figure 3a,b for the N¼4000 case and in Figure 4a,b for the N¼40,000 case. The full results of this simulation study are tabulated in Table 2.

In the N¼4000 case, the BPPR and BASS emulators are the most accurate, followed closely by laGP and the leapGP emulators with ρ≈1.

BART, BPPR and GPvecchia, while producing accurate predictions are the slowest emulators by a large margin. FITC and BCART are fast but pro-

duce the largest RMSPE. The BASS emulator (Bayesian MARS) represents a nice trade-off between time and accuracy. The laGP approach also

manages to find a reasonable balance, although it is less accurate and slower than BASS for the task of sequential prediction. The leapGP models

strike a similar balance, though with a tendency to emphasize making fast predictions. For example, the leapGP cases with ρ¼0,0:8 and 0.9 are

orders of magnitude faster than their competitors (up to 628 times faster than laGP) and although they produce worse predictions than laGP,

BPPR, BASS and BART, the predictions are still quite good; the RMSPE for these models is between 2 and 2.5 times larger than the RMSPE for

laGP, but it is roughly 30% lower than the inducing point GP (FITC), 5.5 times smaller than Bayesian CART and about 12.2 times smaller than the

standard deviation of f across the input space. The leapGP models with ρ� ð0:95,0:99Þ approach laGP in their behaviour, taking more time for

prediction and becoming increasingly accurate. For instance, the case where ρ¼0:97 achieves a RMSPE of 0.34 (compared with 0.30 for laGP)

and is nearly twice as fast. We note that all leapGP models will (eventually) reach a point where new prediction hubs are seldom needed, and

TABLE 1 Description of input variables and their ranges for the piston simulation function.

Input Range Description

M ½30,60� Piston weight (kg)

S ½0:005,0:020� Piston surface area (m2)

V0 ½0:002,0:010� Initial gas volume (m3)

k ½1000,5000� Spring coefficient (N/m)

P0 ½90000,110000� Atmospheric pressure (N/m2)

Ta ½290,296� Ambient temperature (K)

T0 ½340,360� Filling gas temperature (K)
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F IGURE 3 Simulation study results for the piston function with N¼4000. (a) RMSPE results for the suite of emulators on the piston function
with N¼4000. BPPR and BASS have the lowest RMSPE followed by local approximate Gaussian process (laGP). The leapGP emulators are
comparable with laGP, especially when ρ is near 1.0. Blue shading is used for the laGP and leapGP models, with lighter shades used to denote
smaller values of ρ. The y-axis of the plot is truncated for better visualization. (b) Timing results for the suite of emulators on the piston function
with N¼4000. The time in seconds (plotted on a log-scale) needed to make T¼10,000 sequential predictions. The leapGP methods are the most
efficient by far when ρ is small. The timing results are comparable with laGP and far superior to some of the Bayesian methods when ρ is close to
1.0. Blue shading is used for the laGP and leapGP models, with lighter shades used to denote smaller values of ρ.

F IGURE 4 Simulation study results for the piston function with N¼40,000. (a) RMSPE results for the suite of emulators on the piston
function with N¼40,000. BPPR and BASS have the lowest RMSPE followed by local approximate Gaussian process (laGP). The leapGP emulators
are comparable to laGP, especially when ρ is near 1.0. Blue shading is used for the laGP and leapGP models, with lighter shades used to denote
smaller values of ρ. The y-axis of the plot is truncated for better visualization. (b) Timing results for the suite of emulators on the piston function
with N¼40,000. The time in seconds (plotted on a log-scale) needed to make T¼10,000 sequential predictions. The leapGP methods are the
most efficient by far when ρ is small. The timing results are comparable to laGP and far superior to some of the Bayesian methods when ρ is close
to 1.0. Blue shading is used for the laGP and leapGP models, with lighter shades used to denote smaller values of ρ.
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future predictions become fast, so that if this simulation was continued for another T¼10,000 predictions, we would expect the leapGP models

with ρ≈1 to gain computational efficiency compared to laGP.

When we increase the size of the training set to N¼40,000, the relative performance of leapGP improves even further. The laGP and leapGP

models with ρ¼0:98 and 0.99 are essentially tied for the lowest RMSPE. Despite some loss in predictive performance, BASS and BPPR perform

well again and are reasonably fast for prediction (although we note that training for BPPR took over 9.5 hours). The leapGP emulator with ρ

between 0.9 and 0.95 seems to offer an excellent and appealing trade-off between computation and accuracy. We note again that if a practitioner

is willing to take a small hit in terms of accuracy, leapGP is capable of remarkable prediction speeds for small values of ρ.

5 | CONCLUSIONS

Our primary goal with this work was to develop an extension of laGP which, by trading memory for time, is able to make online predictions rap-

idly, while requiring little to no training time. A major advantage of leapGP is that the overhead is usually quite small compared with laGP, and so

it offers a low risk alternative with possibilities for a high reward. Choosing a good value for ρ remains an important practical problem. One option

is to select ρ using cross-validation, optionally penalizing larger values of ρ in order to favour faster emulation. Setting ρ close to 1 will lead to very

comparable predictions, and the computational advantage is guaranteed if enough predictions are obtained. The fast predictive capabilities of

leapGP with small ρ makes leapGP highly desirable for testing and debugging purposes, and the ρ parameter can always be turned up for more

reliable predictions as needed.

Further analysis of the complexity and accuracy of laGP as a function of ρ is a useful avenue for future work. For instance, how many predic-

tion hubs will be needed in the limit as T!∞. An answer to this question, which depends on the regularity of the computer model f, could pro-

vide valuable information about the number of predictions necessary for leapGP to gain a significant computational advantage over laGP as well

as the values of ρ which lead to comparable predictions. Similarly, it may shed insight into the properties of f for which the naturally induced regu-

larization of leapGP can lead to superior emulation compared to laGP (see Section 4.1).

Viewing leapGP as a greedy tree-based GP approach opens some intriguing avenues for exploration. An adaptive algorithm in which predic-

tion hubs can be pruned or altered could immediately produce a modified algorithm which is both faster and more memory-frugal than the current

version. Ideas for modifying the sub-design selection process such as using a “hot-start” approach when building a new hub or early-stopping for

sub-design construction could benefit both leapGP and laGP and are completely in-line with the goals of this paper.

TABLE 2 Piston function simulation study results for N¼4000 and N¼40,000.

N¼4000 N¼40,000

Train (s) Pred (s) RMSPE Coverage Train (s) Pred (s) RMSPE Coverage

BASS 37.65 565.03 0.23 0.94 295.56 2,407.75 0.18 0.95

BART 29.51 15,910.46 0.39 0.95 412.31 48,153.98 0.16 0.99

BPPR 464.19 8,734.77 0.22 0.93 34,697.81 2,334.62 0.21 0.94

FITC 13.81 379.24 1.05 0.92 1,964.64 38,204.74 0.40 0.88

GPvecchia 136.99 64,873.31 0.46 0.89 11,114.48 549,556.40 0.25 0.94

BCART 1.69 190.05 3.87 0.82 18.91 1,217.31 4.55 0.83

laGP 0 1,325.16 0.30 0.98 0 5,461.87 0.13 1.00

leapGP(M0, 0) 24.91 2.11 0.65 0.88 144.10 4.25 0.31 0.86

leapGP(M0, 0.8) 24.91 4.90 0.75 0.89 144.10 12.50 0.36 0.85

leapGP(M0, 0.9) 24.91 35.45 0.65 0.87 144.10 343.23 0.29 0.85

leapGP(M0, 0.95) 24.91 401.12 0.42 0.88 144.10 2,121.23 0.16 0.89

leapGP(M0, 0.96) 24.91 548.59 0.37 0.90 144.10 2,813.10 0.14 0.91

leapGP(M0, 0.97) 24.91 759.20 0.34 0.91 144.10 3,668.03 0.13 0.93

leapGP(M0, 0.98) 24.91 1,045.43 0.31 0.94 144.10 4,660.80 0.13 0.96

leapGP(M0, 0.99) 24.91 1,360.95 0.30 0.97 144.10 5,670.14 0.13 0.98

Note: The leapGP parameters are given as leapGP(M0, ρ), where M0 ¼ 60 for N¼4000 and M0 ¼200 for N¼ 40,000. The “Predict” column gives the time

(in seconds) needed to make T¼10,000 predictions. The “Coverage” column gives the empirical coverage for the T predictive 95% confidence/credible

intervals. For computational reasons, BART, BPPR and GPvecchia results are extrapolated using just the first T¼1000 predictions.

Abbreviation: RMSPE, root mean square prediction error.
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