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De:eclion and classification of
underwater objects in  sonar
imagery is a complicated problem due
to various factors, such as variations in
operating and environmental condi-
tions, presence of spatially varying clut-
ter and variations in target shapes, com-
positions and orientation. Moreover,
bottom features, such as coral reefs,
sand formations and vegetation, may
totally obscure a target.

Various methods have been explored
for target detection and classification in
sonar imagery. In some cases, a nonlin-
ear matched filter is utilized to identify
mine-sized regions in the sonar image
that match the target signature."* For
each detected region, several features
are extracted based on the size, shape
and strength of the target signature. A
stepwise feature selection process is
then used to determine the subset of
features that optimizes the probability
of detection and classification. A k-
nearest neighbor—a classifier using
minimum distance from a current
object feature vector to the training fea-
ture vector, and an optimal discrimina-
tion filter classifier are used to classify
each feature vector—and the decisions
of the two classifiers are fused for the
final decision. In another method, an
adaptive clutter filter is used, which

10 st / DECEMBER 2008

Normalization Image == :
x(m,n) ——» & —> Partitioning |~——— Each ROl —— >
Preprocessing into ROI's
1 1
Sonar ! !
Image [y
Estimation
Framewark
Classification A
Dominant
< A
K's CC
Detection -+~
Detection
Framework

Block diagram of the CCA-based detection
method.

exploits the difference in correlation
characteristics between clutter and tar-
gets.” After detection, features are
extracted and then orthogonalized prior
to classification using a optimal
Bayesian classifier.

The Canonical Coordinate Analysis
(CCA) method has shown great promise
in underwater target classification prob-
lems using sonar backscatter." CCA
allows one to quantify the changes
between the returns from the bottom
when target activities are present and,
at the same time, provide via canonical
correlations a set of features for target
classification without the need to per-
form separate detection and feature
extractions.

In this article, the coherent-based
detection and classification method has
been extended to high-resolution sonar
imagery.** Using CCA, an optimal
Neyman-Pearson detection scheme is
developed that utilizes the canonical

www.sea-technology.com

correlations and coordinates extracted
from regions of interest (ROIs) within
the sonar image. From the canonical
correlations, coherence can be mea-
sured and used to determine if a targel
is present in the processed ROI, while
at the same time provide coherent-
based features that can be used to clas-
sify the detected ROIs. The data set used
in this study was provided by the Naval
Surface Warfare Center (NSWC) in
Panama City, Florida. The data set con-
sists of high-resolution side-looking
sonar imagery that contains either no
targets, one target or multiple targets in
varying clutter densitics.

In the next section, a brief review of
the CCA method and its application as
a feature extraction (estimation frame-
work) or detection tool for implement-
ing the Neyman-Pearson detector is
provided.

CCA Decomposition Review
CCA is a method that determines lin-
car dependence (or coherence)



between two data channels by map-
ping the data to their canonical coordi-
nates where linear dependence is easi-
ly measured by the corresponding
canonical correlations.

To see this process, consider two data
channels: xeR™" and yeR™', where m
is less than n. It is assumed that x and y
are zero-mean random vectors with a
composite covariance matrix shown in
Equation 1 (shown on page 13), where
Rx, Ry and Ry=R",. are the auto-covari-
ance and cross-covariance matrices of
data channels x and y.* The singular
value decomposition (SVD) of the
coherence matrix C may then be writ-
ten as Equation 2, where R™"%aRuR =
and R"«R".=R«’ Note that for this
SVD, only the nonzero singular values
of C and their corresponding nonzero
vectors are considered.

The canonical coordinates of x and y
can now be defined as Equation 3,
where elements of the u and v vectors
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are the canonical coordinates of x and
y, respectively.®

Hence, x and y are mapped to their
respective canonical coordinates using
Equation 4, with W'=F'R"%. and
D"=G"R ™. The canonical coordinates
u and v share the composite covariance
matrix shown in Equation 5, where the
diagonal  cross-covariance  matrix
shown in Equation 6 is the canonical
correlation matrix of canonical correla-
tions k; i=1, 2, ... , m, where 1=ki=k:>

. 2k»>0.° Note that E[uwi]=kd(i)),

where 3(-) represents the Kronecker
delta function and 7 and j are indexes.
One of the most important properties
of canonical correlations is that they are
invariant under uncoupled nonsingular
transformations of x and y.* Canonical
correlations can also be used to deter-
mine useful properties regarding x and
y, such as linear dependence (coher-
-ence) and mutual information.’
Detection in CCA Framework. The
detection problem is stated as testing
between two hypotheses of Ha:y:CNa[0,
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(Above) Plot of canonical correlations for
targets and backgrounds,

(Left) ROC curves for BPNN classifier in
easy, medium and hard background cases.

Rw], (i.e., noise alone) versus Hiy:
CN-[0, Ry=Re+Rw] (i.e. signal plus
noise), where CN»[0,R.| denotes the n-
variate proper complex normal distrib-
ution with zero-mean vector and
covariance matrix Re. In the method
depicted in this article, the Neyman-
Pearson detector for testing Ho and H is
formulated in the CCA framework,
where the log-likelihood ratio is
expressed in terms of canonical coordi-
nates and correlations, as shown in
Equation 7.

This is the standard Gauss-Gauss log-
likelihood ratio, but in the canonical
coordinates v=G"R"2, y and I(y) is the
weighted sum of the magnitude-
squared of the canonical coordinates
weighted by canonical correlation-
dependent weights. If C is defined as
C=lgi, ..., gl, then {y) can be written
as is shown in Equation 8.

The Jeffrey-divergence (j-divergence),
or detectability measure, between H;
and Ho is found to be Equation 9, where
EHo and EH: are the expected values of
lly) under Ho and Hi, respectively. The
function (k—1/k)* is non-increasing in
the interval (0, 1]. Consequently, the
rank (r) detector that maximizes the
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divergence is the detector that uses the
r-dominant coordinates corresponding
o the rdominant canonical correla-
tions k (Le., Equation 10).

Thus, for building low-rank detectors,
the dominant canonical coordinates
need o be retained in order to find the
coherence between the two data chan-
nels x and y. Using the coherence, one
can find the information necessary to
detect the presence of a target in the
environment.

Estimation in CCA Framework. The
estimation problem is stated as estimat-
ing channel x (signal) from channel y
(observation). The minimum mean
square eror estimator of x from y can
be written as Equation 11, with mini-
mum error covariance as Equation 12.
The volume of the error concentration
ellipse divided by the volume of the
prior concentration ellipse is shown in
Equation 13.

In one method, it is shown that the
optimal rank (r) is less than or equal to
n estimator of x. (estimated value of x),
of x, from y, is the one that retains only
the dominant canonical coordinates
and maximizes the coherence between
x and y. In canonical coordinate
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domain, this rank (r) estimator can be
defined as Equation 14, where the esti-
mated value of u, u., equals Kv, and K-
holds the top r-dominant canonical cor-
relations. In this framework, classifica-
tion can then be made by using either
the dominant canonical correlations as
a feature vector or by using u—Kv,
which shows how well x can be esti-
mated from y where the target is more
coherent than the environment.

Method and Results

In order to prepare the data for CCA,
the high-resolution side scan sonar
images are first normalized using a ser-
pentine forward-backward filter. The
purpose of the normalization is to
reduce the variability of the local mean
throughout the image in order to use it
as a reference level so that the highlight
and shadow of the target can be mare
easily identified.

After the normalization process, the
first 120 pixels are ignored. This value
corresponds to the sonar’s altitude as it
traveled through the water column,
which is one-tenth of the maximum
range of the sonar. Next, the image is
partitioned into overlapping ROls of the
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size MxN. For this data set, the ROI size
of 12 by 34 pixels was experimentally
determined to be optimal, considering
the average size of the targets in the
data set. The overlap along the horizon-
tal and vertical directions was 50 per-
cent in order to ensure that a target
would be covered by more than one
ROI. Each ROl is then channelized in a
column-wise fashion for CCA. The x
and y channels consist of the first eight
pixels in one column, x, and the first
eight pixels in the adjacent column, y.
This process is continued, moving in
the horizontal direction across the ROI.
On the next pass through the ROI, the
channels were given a 50 percent over-
lap in the vertical direction to ensure
complete coverage of the target in the
ROL. The idea behind this channeliza-
tion is to look for common coherent
attributes that can be used to relate one
channel to the other according to the
framework discussed. Clearly, for back-
ground ROIs, a high level of coherence
among consecutive columns (channels)
does not exist. From the dominant
canonical correlations, namely k: and
kz, a scalar detection measure of kixk:
was formed for each processed ROL.
Based on this measure, a threshold is
experimentally determined to separate
the ROIs that contain targets from those
that do not. Following the detection, all
the canonical correlations extracted
from each ROI are used to classify tar-
get and nontarget ROIs using a back
propagation neural network (BPNN)
classifier.

CCA was applied to a data set of
high-resolution  side-looking sonar

images provided by the NSWC,
Panama City. The database contains
512 images with 293 images contain-
ing 310 targets with some of the images
containing more than one target. The
data set was broken up into easy, medi-
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um and hard cases, depending on the
difficulty of the background clutter and
bottom types. Easy cases are considered
to have low background variation and
an overall smooth bottom with targets
that are easily identifiable to a skilled
operator. The medium cases contain
background clutter and more difficult
bottom conditions. However, the tar-
gets are still somewhat discernible to a
skilled operator with some effort. Lastly,
the hard cases are those where it is dif-
ficult to detect and classify the targets
from a visual inspection due to a high
variability of background clutter and
very difficult bottom conditions.

To show the separability of the domi-
nant canonical correlations for ROIs
that contain targets and background
and those that contain only back-
ground, a test was conducted on the
entire set of target ROIs and a random
set of ROIs containing mainly back-

ground (for all three cases) of the same
number of target ROls.

There was good separation, especial-
ly for dominant canonical correlations,
between targets and background. Using
the dominant canonical correlations, ki
and k:, the scalar decision measure of
kixk: can be formed and analyzed for
the entire target set and a random set of
backgrounds. From this set of targets
and the limited number of back-
grounds, the optimal threshold value
was chosen to be 0.3.

Each image in the entire NSWC data-
base was then blocked into 12 by 34
ROIs. For each RO, the canonical cor-
relations were formed and the scalar
detection measure k»k: was compared
against the threshold. For the easy
cases, there were 186 images contain-
ing 201 targets. The detector detected
all but one of the targets, with an aver-
age of 116 false alarms per image. For
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the medium cases, there were 86
images containing 89 targets, and the
detector again detected all but one of
the with an average of 200 false alarms
per image. Lastly, for the hard cases,
there are 21 images containing 21 tar-
gets, and the proposed detector detect-
ed all but two of the targets with an
average of 213 false alarms per image.

Then, the detected ROIs were broken
up into a training and a testing set to
train and test a BPNN classifier. A net-
waork structure was determined experi-
mentally, and the structure that per-
formed the best was a two-layer net-
work with eight inputs, 20 neurons in
the first hidden layer and two output
neurons. The trained classifier was then
applied to all the detected ROls in the
easy, medium and hard data sets. The
receiver operator characteristic (ROC)
classifier performs extremely well on
the easy and medium sets with the knee
points (the point on the receiver opera-
tor characteristics curve) where
Pcc+Pfa=1 at Pcc=90 percent and
Pfa=10 percent for both cases (Pcc is
probability of correct classification and
Pfa is probability of false alarm). The
classifier did not perform as well on the
hard data set, with only an 84 percent
correct classification rate and a 16 per-
cent false alarm rate at the knee point of
the ROC. Nonetheless, considering the
difficulty of the bottom conditions and
background clutter, as well as the sim-
plicity of the overall detection and clas-
sification system, the classification rates
are indeed impressive.

Conclusions and Observations

This article presented a CCA-based
Neyman-Pearson detector for detection
of underwater targets in high-resolution
side-looking sonar imagery. The
method exploils coherence properties
in a ROI of a sonar image to detect the
presence of an object. The dominant
canonical correlations that carry this
coherence information are used for def-
inition, a simple measure for detection
of targets in different background con-
ditions. The extracted features’ canoni-
cal correlations are subsequently used
to classify the detected ROIs without
the need to perform a separate feature
extraction for classification. The experi-
ments on the side scan sonar data sefs
with varying density of background
clutter demonstrated good separability
of the dominant canonical correlations
extracted over ROIs containing targets
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from those extracted from background
only. Overall, CCA did well in detecting
all of the targets in all of the images,
missing only four of the possible 310
targets in the entire set, while keeping
the probability of false alarms low.
Classification using canonical corre-
lation features gave good results given
the limited size of the training set. The
results showed an average rate of cor-
rect classification of 88 percent with an
average false alarm rate of 12 percent.
These results attest to the great promise

of CCA-based underwater target detec-
tion and classification from sonar
imagery.
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