

Elastic Functional Data Analysis

J. Derek Tucker

Nov 4, 2022

Department of Statistical Sciences Sandia National Laboratories

Sandia National Laboratories is a multimission Laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-000325. SAND NO. 2018-165 PE

Collaborators

- Anuj Srivastava, Dept of Statistics, FSU
- Sebastian Kurtek, Dept of Statistics, OSU
- Zhengwu Zhang, Dept of Statistics, URMC
- Bo Li, Dept of Statistics, UIUC
- Statistics Sciences, SNL

Outline

- Definition of Functional Data Analysis
- Mathematical Framework
 - FDA vs Multivariate Statistics
 - Common Metric
- Alignment of Functional Data
 - Elastic Method
- Elastic Methods
 - Elastic Functional Principal Component Analysis
 - Elastic Functional Bayesian Model Calibration

Functional Data Analysis

Introduction

- Problem of statistical analysis of function data (FDA) is important in a wide variety of applications
- Easily encounter a problem where the observations are real-valued functions on an interval, and the goal is to perform their statistical analysis
- By statistical analysis we mean to compare, align, average, and model a collection of random observations

- $\cdot\,$ Questions then arise on how can we model the functions
 - Can we use the functions to classify diseases?
 - Can we use them as predictors in a regression model?
 - \cdot It is the same goal (question) of any area of statistical study
- One problem occurs when performing these type of analyses is that functional data can contain variability in time (x-direction) and amplitude (y-direction)
- How do we account for and handle this variability in the models that are constructed from functional data?

• Real-valued functions, with interval domain: $f: [a, b] \rightarrow \mathbb{R}$

• \mathbb{R}^n -valued functions with interval domain, Or Parameterized Curves: $f: [a, b] \to \mathbb{R}^n$ $f: S^1 \to \mathbb{R}^n$

• \mathbb{R}^3 -R3-valued functions on a spherical domain, Or Parameterized Surfaces: $f: S^2 \to \mathbb{R}^3$

• \mathbb{R}^n -valued functions with square or cube domains, Or Images: $f:[0,1]^2 o \mathbb{R}^n$

FDA vs Multivariate Statistics

- · In any computer implementation, one has to discretize functions anyway
- Does this mean FDA is essentially the same as multivariate statistics?
- A closer look...

FDA Versus Multivariate Statistics

- Not all observations will have the same time indices
- Even if they do, we want the ability to change time indices

FDA Versus Multivariate Statistics

FDA Versus Multivariate Statistics

12

• In FDA, one develops the theory on function spaces and not finite vectors, and discretizes the functions only at the final step – computer implementation

- Ulf Grenander: "Discretize as late as possible" (1924-2016)
- Even after discretization, we retain the ability to interpolate resample as needed!

Mathematical Framework

Common Metric Structure for FDA

- Let f be a real-valued function with the domain [0, 1], can be extended to any domain
 - \cdot Only functions that are absolutely continuous on [0,1] will be considered
- The \mathbb{L}^2 inner-product:

$$\langle f_1, f_2 \rangle = \int_0^1 f_1(t) f_2(t) \, dt$$

• \mathbb{L}^2 distance between functions:

$$||f_1 - f_2|| = \sqrt{\int_0^1 (f_1(t) - f_2(t))^2 dt}$$

• From these we will build summary statistics, but how good are they?

Summary Statistics under \mathbb{L}^2

- Assume that we have a collection of functions, $f_i(t)$, i = 1, ..., N and we wish to calculate statistics on this set
- Mean Function

$$\bar{f}(t) = \operatorname*{arg\,min}_{f \in \mathbb{L}^2} \left(\sum_{i=1}^N ||f - f_i||^2 \right)$$
$$\bar{f}(t) = \frac{1}{N} \sum_{i=1}^n f_i(t)$$

Variance Function

$$\operatorname{var}(f(t)) = \frac{1}{N-1} \sum_{i=1}^{N} \left(f_i(t) - \bar{f}(t) \right)^2$$

• How good is this choice in FDA?

Common Metric Structure for FDA

• Here, the focus is on measuring/modeling the vertical variability in the data

• Measures the norm of the difference $(f_1(t) - f_2(t))$

$$||f_1 - f_2|| = \sqrt{\int_0^1 (f_1(t) - f_2(t))^2 dt}$$

Horizontal Variability

• Horizontal variability: Compares points at same heights but across times

Horizontal Variability

• Horizontal variability: Compares points at same heights but across times

• Is this vertical or horizontal variability?

Horizontal Variability

• Horizontal variability: Compares points at same heights but across times

- Is this vertical or horizontal variability?
- In some cases it may be more natural to treat it as horizontal variability

Both Vertical and Horizontal Variability

- In general, functional data has both types of variability,
- · How to decompose it into vertical and horizontal components

Separate Vertical and Horizontal

Elastic FDA: Ability to separate and analyze these components, and to draw inferences using both these components of functional data

Cross-sectional statistics ignores horizontal component, often destroys structures

Classical FDA: Loss of Structure

21

Phase variability artificially inflates variance

High horizontal variance and low vertical variance after alignment

Functional Data Alignment

Functional Data Alignment Improves Model Parsimony

Problem 1: Alignment of given functional data

Goal: Choose some objective function and optimize alignment. Provide the best alignment algorithm in the community. Decrease amplitude variability as much as possible.

Problem 2: Joint alignment and statistical analysis, i.e. Elastic FDA

Goal: Align the data in the context of a statistical inference problem. For example: Perform joint PCA and alignment $\rightarrow \text{Elastic FPCA}$

Our framework provides solutions in both contexts...

We start with the first problem..

Formulating Registration Problem

The point $f_1(t)$ gets matched with the point $f_2(\gamma(t))$

Define a set of registration functions

$$\Gamma = \{\gamma : [0,1] \mapsto [0,1] | \gamma(0) = 0, \gamma(1) = 1, \text{ diffeo} \}$$

\mathbb{L}^2 -based Objective Function

- + Given f_1, f_2 , we have to search for an optimal γ
- · What is a good choice of objective function for registration? \mathbb{L}^2 norm.

$$\operatorname*{arg\,min}_{\gamma}(\|f_1 - f_2 \circ \gamma\|^2)$$

• This can result in "pinching effect"

Obejctive Function

- \cdot Given f_1, f_2 , we have to search for an optimal γ
- What is a good choice of objective function for registration? \mathbb{L}^2 norm.

$$\underset{\gamma}{\arg\min}(\|f_1 - f_2 \circ \gamma\|^2)$$

- This can result in "pinching effect"
- Common solution: Regularize

$$\underset{\gamma}{\operatorname{arg\,min}}(\|f_1 - f_2 \circ \gamma\|^2 + \lambda R(\gamma)), \ R(\gamma) = \int_0^1 \ddot{\gamma} \, dt$$

• Problems: solution is not inverse consistent, lack of invariance

Requirements for Elastic FDA

The two functions have the same correspondences before and after warping \rightarrow objective function should not change!!

However, the \mathbb{L}^2 norm changes. Thus, it is not a good metric for Elastic FDA

$$f:[0,1]\to\mathbb{R}^1$$

$$q: [0,1] \to \mathbb{R}^1, \quad q(t) = \operatorname{sgn}(\dot{f}(t))\sqrt{|\dot{f}(t)|}$$

$$f:[0,1]\to\mathbb{R}^1$$

$$q: [0,1] \to \mathbb{R}^1, \quad q(t) = \operatorname{sgn}(\dot{f}(t))\sqrt{|\dot{f}(t)|}$$

• if f is absolutely continuous, then q is square-integrable

$$f:[0,1]\to \mathbb{R}^1$$

$$q: [0,1] \to \mathbb{R}^1, \quad q(t) = \operatorname{sgn}(\dot{f}(t))\sqrt{|\dot{f}(t)|}$$

- if f is absolutely continuous, then q is square-integrable
- If a function f is warped to $f \circ \gamma$ then its SRVF changes form q to $(q, \gamma)(t) = (q \circ \gamma)(t)\sqrt{\dot{\gamma}(t)}$

$$f:[0,1]\to \mathbb{R}^1$$

$$q: [0,1] \to \mathbb{R}^1, \quad q(t) = \operatorname{sgn}(\dot{f}(t))\sqrt{|\dot{f}(t)|}$$

- if f is absolutely continuous, then q is square-integrable
- If a function f is warped to $f \circ \gamma$ then its SRVF changes form q to $(q, \gamma)(t) = (q \circ \gamma)(t) \sqrt{\dot{\gamma}(t)}$
- One can go back from SRVF to f; up to an additive constant

$$f(t) = \int_0^t q(s) |q(s)| \, ds$$

$$f:[0,1]\to \mathbb{R}^1$$

$$q: [0,1] \rightarrow \mathbb{R}^1, \quad q(t) = \operatorname{sgn}(\dot{f}(t))\sqrt{|\dot{f}(t)|}$$

- if f is absolutely continuous, then q is square-integrable
- If a function f is warped to $f \circ \gamma$ then its SRVF changes form q to $(q, \gamma)(t) = (q \circ \gamma)(t) \sqrt{\dot{\gamma}(t)}$
- One can go back from SRVF to f; up to an additive constant

$$f(t) = \int_0^t q(s) |q(s)| \, ds$$

- The space of all SRVFs is $\mathbb{L}^2([0,1],\mathbb{R})$

Elastic (Fisher-Rao) Metric

- The elastic metric has the right invariant properties (stated later)
- However, it is complicated to use
- The mapping $f \mapsto q$ that simplifies this metric into the standard \mathbb{L}^2 metric

Different Versions of Fisher-Rao Riemannian Metric

1. Function or CDF Space

$$\langle \langle \mathsf{v}_1, \mathsf{v}_2 \rangle \rangle_f = \int_0^1 \dot{\mathsf{v}}_1(t) \dot{\mathsf{v}}_2(t) \frac{1}{\dot{f}(t)} dt$$

2. PDF Space (Non parametric Fisher-Rao)

$$\langle \langle u_1, u_2 \rangle \rangle_g = \int_0^1 u_1(t) u_2(t) \frac{1}{g(t)} dt$$

3. PDF Space (Parametric Fisher-Rao)

$$\int_0^1 \left(\frac{\partial}{\partial \theta_i} g(t|\theta)\right) \left(\frac{\partial}{\partial \theta_j} g(t|\theta)\right) \frac{1}{g(t|\theta)} dt$$

4. SRVF Space

$$\langle w_1, w_2 \rangle = \int_0^1 w_1(t) w_2(t) \, dt$$

SRVF Representation Space

 $f:[0,1]\to\mathbb{R}^1$

- Why Square Root Velocity Function SRVF? $q(t) = \operatorname{sgn}(\dot{f}(t))\sqrt{|\dot{f}(t)|}$

• Invariance: for any q_1 , q_2 , and γ

$$||q_1 - q_2|| = ||(q_1, \gamma) - (q_2, \gamma)||$$

- In particular, $||q|| = ||(q, \gamma)||$ and hence pinching is not possible
- Resulting registration problem: Given f_1 and f_2 , find their SRVFs, and solve

$$\inf_{\gamma} ||q_1 - (q_2, \gamma)||$$

- Solve using Dynamic Programming
- Inverse consistency

 $\text{if } \gamma_{12} \in \operatorname{arg\,inf}_{\gamma} ||q_1 - (q_2, \gamma)|| \text{ then } \gamma_{12}^{-1} \in \operatorname{arg\,inf}_{\gamma} ||q_2 - (q_1, \gamma)||$

Multiple Registration

• Using the distance function we can compute the Karcher Mean

$$\mu_q = \operatorname*{arg\,min}_{q \in \mathbb{L}^2} \sum_{i=1}^n \left(\inf_{\gamma_i \in \Gamma} \|q - (q_i, \gamma_i)\|^2 \right)$$

without a metric, we cannot define the mean

• Algorithm for computing the Karcher mean:

Ensemble Alignment using Karcher Mean

Warping Functions

Cross-sectional mean and standard deviation improves after registration

Ensemble Alignment using Karcher Mean

Sonar data from Naval Surface Warfare Center: Aspect versus Frequency

Cross-sectional mean and standard deviation improves after registration

Elastic Functional PCA

Functional Principal Component Analysis

- The motivation for functional principal component analysis (fPCA) is that the directions of high variance will contain more information than direction of low variance
- The optimization problem for fPCA

$$\min_{w_i} E ||f - \hat{f}||^2$$

- where $\hat{f} = \mu_f + \sum_{i=1}^n \beta_i w_i(t)$ is the fPCA approximation of f
- We then use the sample covariance function $\operatorname{cov}(t_1,t_2)$ to form a sample covariance matrix K
- Taking the SVD, $K = U\Sigma V^T$ we can calculate the directions of principle variability in the given functions using the first $p \le n$ columns of U

Modeling using Phase & Amplitude Separation

Modeling using Phase & Amplitude Separation

Modeling using Phase & Amplitude Separation

Analysis of Warping Functions (Phase)

- Horizontal fPCA: Analysis of Warping Functions
 - + Use SRVF of warping functions, $\psi=\sqrt{\dot{\gamma}}$
 - Karcher Mean: $\gamma \mapsto \sum_{i=1}^{n} d_{p}(\gamma, \gamma_{i})^{2}$
 - Tangent Space: $T_{\psi}(\mathbb{S}_{\infty}) = \{ v \in \mathbb{L}^2 | \int_0^1 v(t)\psi(t)dt = 0 \}$
 - Sample Covariance Function: $(t_1, t_2) \mapsto \frac{1}{n-1} \sum_{i=1}^n v_i(t_1) v_i(t_2)$
 - Take SVD of $K_{\psi} = U_{\psi} \Sigma_{\psi} V_{\psi}^{\mathsf{T}}$ provides the estimated principal components

Why SRVF of γ_i

- $\cdot \ \Gamma$ is a nonlinear manifold and it is infinite dimensional
- Represent an element $\gamma\in\Gamma$ by the square-root of its derivative $\psi=\sqrt{\dot\gamma}$
- Important advantage of this transformation is that set of all such ψs is a Hilbert sphere \mathbb{S}_∞

Analysis of Aligned Functions (Amplitude)

- Vertical fPCA: Analysis of Aligned Functions
 - Given the observed SRVF have been aligned
 - \cdot They can be analyzed in a standard way (\mathbb{L}^2) in SRVF space, since we have a proper distance
 - Need variability associated with the initial values $({f_i(0)})$
 - Analyze the aligned pair $\tilde{h} = [\tilde{q}_i \ f_i(0)]$ such that mapping from the function space \mathcal{F} to $\mathbb{L}^2 \times \mathbb{R}$ is a bijection

$$K_h = \frac{1}{n-1} \sum_{i=1}^n E[(\tilde{h}_i - \mu_h)(\tilde{h}_i - \mu_h)^{\mathsf{T}}] \in \mathbb{R}^{(T+1) \times (T+1)}$$

• Taking the SVD, $K_h = U_h \Sigma_h V_h^{\mathsf{T}}$ we can calculate the directions of principle variability

Combined Elastic fPCA

- Recently [Lee 2017] extended the horizontal and vertical fPCA approach
- Uses a combined function

$$g^{C}(t) = \begin{cases} q^{*}(t), & t \in [0, 1) \\ Cv(t-1), & t \in [1, 2] \end{cases}$$

 \cdot where C is again used to adjust for the scaling imbalance between q^* and v

• Taking the SVD, $K_g^C = U_g^C \Sigma_g^C (V_g^C)^T$, accounts for correlation between amplitude and phase

Elastic Functional Bayesian Model Calibration

Elastic Model Calibration

- We wish to calibrate a computer model with parameters θ to a experiment simulation
- The data is functional in nature and has phase and amplitude variability
- Utilize elastic metrics in a Bayesian Model Calibration Framework

Elastic Model Calibration

• Decompose observation into aligned functions and warping functions

 $y_i^E(t) = y_i^E(t^*) \circ \gamma_i^E(t)$

 \cdot and decompose the simulations

$$y^{\mathcal{M}}(t,x_j) = y^{\mathcal{M}}(t^*,x_j) \circ \gamma^{\mathcal{M}}(t,x_j)$$

To facilitate modeling, we transform the warping functions into shooting vector space with

$$v_i^E = \exp_{\psi}^{-1} \left(\sqrt{\dot{\gamma}_i^E} \right)$$
$$v^M(x) = \exp_{\psi}^{-1} \left(\sqrt{\dot{\gamma}^M(x)} \right)$$

• Calibrate the aligned data and shooting vectors using the following model

$$y^{E}(t^{*}) = y^{M}(t^{*}, \theta) + \delta_{y}(t^{*}) + \epsilon_{y}(t^{*}), \ \epsilon_{y}(t^{*}) \sim \mathcal{N}(0, \sigma_{y}^{2}l)$$
$$v^{E} = v^{M}(\theta) + \delta_{y} + \epsilon_{y}, \ \epsilon_{y} \sim \mathcal{N}(0, \sigma_{y}^{2}l)$$

- Note: The shooting vector will be identity if the data is aligned to the observation (experiment)
- There if θ is calibrated correctly the shooting vectors will be identity

Calibration of Tantalum

Calibration of Tantalum

- FDA is a very rapidly growing area in statistics with the increase in sensors and dimensionality of data
- Can perform statistics using functions, but have to be aware of different set of issues/nuances
- + Functional data often comes with phase variability that cannot be handled using standard \mathbb{L}^2 framework
- Elastic FDA provides more flexibility than classical FDA
 - Provides excellent alignment results
 - $\cdot\,$ Provides joint solutions for inferences along with alignment
- Theory and methods work for functions, curves, surfaces, and images

Questions?

jdtuck@sandia.gov http://research.tetonedge.net