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Functional Data Analysis



Introduction

• Problem of statistical analysis of function data (FDA) is important in a wide variety of
applications

• Easily encounter a problem where the observations are real-valued functions on an
interval, and the goal is to perform their statistical analysis

• By statistical analysis we mean to compare, align, average, and model a collection of
random observations
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Introduction

• Questions then arise on how can we model the functions

• Can we use the functions to classify diseases?
• Can we use them as predictors in a regression model?
• It is the same goal (question) of any area of statistical study

• One problem occurs when performing these type of analyses is that functional data can
contain variability in time (x-direction) and amplitude (y-direction)

• How do we account for and handle this variability in the models that are constructed
from functional data?
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Types of Functional Data

• Real-valued functions, with interval domain: f : [a,b] → R
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Types of Functional Data

• Rn-valued functions with interval domain, Or Parameterized Curves: f : [a,b] → Rn

f : S1 → Rn
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Types of Functional Data

• R3-R3-valued functions on a spherical domain, Or Parameterized Surfaces: f : S2 → R3
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Types of Functional Data

• Rn-valued functions with square or cube domains, Or Images: f : [0, 1]2 → Rn
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FDA vs Multivariate Statistics



Why FDA? Why Not Multivariate Statistics

• In any computer implementation, one has to discretize functions anyway

• Does this mean FDA is essentially the same as multivariate statistics?

• A closer look…
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FDA Versus Multivariate Statistics
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• Not all observations will have the same time indices
• Even if they do, we want the ability to change time indices 10



FDA Versus Multivariate Statistics
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FDA Versus Multivariate Statistics

2

666664

(t1, y1)
(t2, y2)
(t3, y3)

...
(tn, yn)

3

777775
Functional data

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Resampling

12



FDA Versus Multivariate Statistics

• In FDA, one develops the theory on function spaces and not finite vectors, and
discretizes the functions only at the final step – computer implementation

• Ulf Grenander: “Discretize as late as possible” (1924-2016)

• Even after discretization, we retain the ability to interpolate resample as needed!
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Mathematical Framework



Common Metric Structure for FDA

• Let f be a real-valued function with the domain [0, 1], can be extended to any domain

• Only functions that are absolutely continuous on [0, 1] will be considered

• The L2 inner-product:

〈f1, f2〉 =
∫ 1

0

f1(t)f2(t)dt

• L2 distance between functions:

||f1 − f2|| =

√∫ 1

0

(f1(t)− f2(t))2 dt

• From these we will build summary statistics, but how good are they?
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Summary Statistics under L2

• Assume that we have a collection of functions, fi(t), i = 1, . . . ,N and we wish to calculate
statistics on this set

• Mean Function

f̄(t) = arg min
f∈L2

( N∑
i=1

||f− fi||2
)

f̄(t) = 1

N

n∑
i=1

fi(t)

• Variance Function

var(f(t)) = 1

N− 1

N∑
i=1

(
fi(t)− f̄(t)

)2
• How good is this choice in FDA?
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Common Metric Structure for FDA

• Here, the focus is on measuring/modeling the vertical variability in the data

• Measures the norm of the difference (f1(t)− f2(t))

||f1 − f2|| =

√∫ 1

0

(f1(t)− f2(t))2 dt
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Horizontal Variability

• Horizontal variability: Compares points at same heights but across times

• Is this vertical or horizontal variability?

• In some cases it may be more natural to treat it as horizontal variability
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Both Vertical and Horizontal Variability

• In general, functional data has both types of variability,

• How to decompose it into vertical and horizontal components
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Separate Vertical and Horizontal

Time warp functions to align their peaks and valleys

Elastic FDA: Ability to separate and analyze these components, and to draw inferences using
both these components of functional data

19



Classical FDA: Loss of Structure

Cross-sectional statistics ignores horizontal component, often destroys structures
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Classical FDA: Loss of Structure
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Classical FDA: Inflated Variance

Phase variability artificially inflates variance

High horizontal variance and low vertical variance after alignment
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Functional Data Alignment



Functional Data Alignment Improves Model Parsimony
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Two Types of Problems

Problem 1: Alignment of given functional data

Goal: Choose some objective function and optimize alignment. Provide the best alignment
algorithm in the community. Decrease amplitude variability as much as possible.

Problem 2: Joint alignment and statistical analysis, i.e. Elastic FDA

Goal: Align the data in the context of a statistical inference problem. For example: Perform
joint PCA and alignment → Elastic FPCA

Our framework provides solutions in both contexts…

We start with the first problem..
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Formulating Registration Problem

The point f1(t) gets matched with the point f2(γ(t))

Define a set of registration functions

Γ = {γ : [0, 1] 7→ [0, 1]|γ(0) = 0, γ(1) = 1, diffeo}
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L2-based Objective Function

• Given f1, f2, we have to search for an optimal γ

• What is a good choice of objective function for registration? L2 norm.

arg min
γ

(‖f1 − f2 ◦ γ‖2)

• This can result in ”pinching effect”

infγ ∥f1 − f2 ◦ γ∥ supγ ⟨f1, f2 ◦ γ⟩
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Obejctive Function

• Given f1, f2, we have to search for an optimal γ

• What is a good choice of objective function for registration? L2 norm.

arg min
γ

(‖f1 − f2 ◦ γ‖2)

• This can result in ”pinching effect”

• Common solution: Regularize

arg min
γ

(‖f1 − f2 ◦ γ‖2 + λR(γ)), R(γ) =
∫ 1

0

γ̈ dt

• Problems: solution is not inverse consistent, lack of invariance
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Requirements for Elastic FDA

The two functions have the same correspondences before and after warping → objective
function should not change!!

However, the L2 norm changes. Thus, it is not a good metric for Elastic FDA
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One Solution: SRVF Representations

f : [0, 1] → R1

• Define Square Root Velocity Function SRVF

q : [0, 1] → R1, q(t) = sgn(ḟ(t))
√
|ḟ(t)|

• if f is absolutely continuous, then q is square-integrable
• If a function f is warped to f ◦ γ then its SRVF changes form q to (q, γ)(t) = (q ◦ γ)(t)

√
γ̇(t)

• One can go back from SRVF to f; up to an additive constant

f(t) =
∫ t

0

q(s)|q(s)|ds

• The space of all SRVFs is L2([0, 1],R)
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Elastic (Fisher-Rao) Metric

f

hhv1, v2iif =

Z 1

0
v̇1(t)v̇2(t)

1

ḟ(t)
dt

v1

v2 w2

w1

q

hw1, w2i =
Z 1

0
w1(t)w2(t)dt

q(t) = sign(ḟ(t))
q
|ḟ(t)|

• The elastic metric has the right invariant properties (stated later)
• However, it is complicated to use
• The mapping f 7→ q that simplifies this metric into the standard L2 metric 30



Different Versions of Fisher-Rao Riemannian Metric

1. Function or CDF Space

〈〈v1, v2〉〉f =
∫ 1

0

v̇1(t)v̇2(t)
1

ḟ(t)
dt

2. PDF Space (Non parametric Fisher-Rao)

〈〈u1,u2〉〉g =

∫ 1

0

u1(t)u2(t)
1

g(t) dt

3. PDF Space (Parametric Fisher-Rao)∫ 1

0

(
∂

∂θi
g(t|θ)

)(
∂

∂θj
g(t|θ)

)
1

g(t|θ) dt

4. SRVF Space

〈w1,w2〉 =
∫ 1

0

w1(t)w2(t)dt
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SRVF Representation Space

f : [0, 1] → R1

- Why Square Root Velocity Function SRVF? q(t) = sgn(ḟ(t))
√
|ḟ(t)|

• Invariance: for any q1, q2, and γ

||q1 − q2|| = ||(q1, γ)− (q2, γ)||

• In particular, ||q|| = ||(q, γ)|| and hence pinching is not possible

• Resulting registration problem: Given f1 and f2, find their SRVFs, and solve

inf
γ
||q1 − (q2, γ)||

• Solve using Dynamic Programming

• Inverse consistency

if γ12 ∈ arg infγ ||q1 − (q2, γ)|| then γ−1
12 ∈ arg infγ ||q2 − (q1, γ)|| 32



Multiple Registration

• Using the distance function we can compute the Karcher Mean

µq = arg min
q∈L2

n∑
i=1

(
inf
γi∈Γ

‖q− (qi, γi)‖2
)

without a metric, we cannot define the mean

• Algorithm for computing the Karcher mean:

q1

q̃1

q2
q̃2

q3

q̃3

µ

µnew

γ1

γ2

γ3
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Example: Simulated Data

Ensemble Alignment using Karcher Mean
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Example: Cross-Sectional Statistics

Cross-sectional mean and standard deviation improves after registration
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Example: Simulated Data

Ensemble Alignment using Karcher Mean
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Example: Sonar Data

Sonar data from Naval Surface Warfare Center: Aspect versus Frequency
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Sonar Data: Cross-Sectional Statistics

Cross-sectional mean and standard deviation improves after registration
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Elastic Functional PCA



Functional Principal Component Analysis

• The motivation for functional principal component analysis (fPCA) is that the directions
of high variance will contain more information than direction of low variance

• The optimization problem for fPCA

min
wi

E‖f− f̂‖2

• where f̂ = µf +
∑n

i=1 βiwi(t) is the fPCA approximation of f

• We then use the sample covariance function cov(t1, t2) to form a sample covariance
matrix K

• Taking the SVD, K = UΣVT we can calculate the directions of principle variability in the
given functions using the first p ≤ n columns of U
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Modeling using Phase & Amplitude Separation
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Modeling using Phase & Amplitude Separation
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Modeling using Phase & Amplitude Separation
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Analysis of Warping Functions (Phase)

• Horizontal fPCA: Analysis of Warping Functions

• Use SRVF of warping functions, ψ =
√
γ̇

• Karcher Mean: γ 7→
∑n

i=1 dp(γ, γi)
2

• Tangent Space:Tψ(S∞) = {v ∈ L2|
∫ 1

0
v(t)ψ(t)dt = 0}

• Sample Covariance Function: (t1, t2) 7→ 1
n−1

∑n
i=1 vi(t1)vi(t2)

• Take SVD of Kψ = UψΣψVTψ provides the estimated principal components
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Why SRVF of γi
ψid

vi

ψi

• Γ is a nonlinear manifold and it is infinite dimensional

• Represent an element γ ∈ Γ by the square-root of its derivative ψ =
√
γ̇

• Important advantage of this transformation is that set of all such ψs is a Hilbert sphere
S∞
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Analysis of Aligned Functions (Amplitude)

• Vertical fPCA: Analysis of Aligned Functions
• Given the observed SRVF have been aligned
• They can be analyzed in a standard way (L2) in SRVF space, since we have a proper distance
• Need variability associated with the initial values ({fi(0)})

• Analyze the aligned pair h̃ = [q̃i fi(0)] such that mapping from the function space F to L2 × R is a
bijection

Kh =
1

n− 1

n∑
i=1

E[(h̃i − µh)(h̃i − µh)
T] ∈ R(T+1)×(T+1)

• Taking the SVD, Kh = UhΣhVTh we can calculate the directions of principle variability
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Combined Elastic fPCA

• Recently [Lee 2017] extended the horizontal and vertical fPCA approach
• Uses a combined function

gC(t) =
{

q∗(t), t ∈ [0, 1)

Cv(t− 1), t ∈ [1, 2]

• where C is again used to adjust for the scaling imbalance between q∗ and v
• Taking the SVD, KCg = UC

gΣ
C
g(VCg)T, accounts for correlation between amplitude and phase
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Elastic Functional Bayesian
Model Calibration



Elastic Model Calibration

• We wish to calibrate a computer model
with parameters θ to a experiment
simulation

• The data is functional in nature and has
phase and amplitude variability

• Utilize elastic metrics in a Bayesian Model
Calibration Framework
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Elastic Model Calibration

• Decompose observation into aligned functions and warping functions

yEi (t) = yEi (t∗) ◦ γEi (t)

• and decompose the simulations

yM(t, xj) = yM(t∗, xj) ◦ γM(t, xj)

To facilitate modeling, we transform the warping functions into shooting vector space
with

vEi = exp−1
ψ

(√
γ̇Ei

)
vM(x) = exp−1

ψ

(√
γ̇M(x)

)
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Elastic Model Calibration

• Calibrate the aligned data and shooting vectors using the following model

yE(t∗) = yM(t∗, θ) + δy(t∗) + ϵy(t∗), ϵy(t∗) ∼ N (0, σ2
y I)

vE = vM(θ) + δv + ϵv, ϵv ∼ N (0, σ2
v I)

• Note: The shooting vector will be identity if the data is aligned to the observation
(experiment)

• There if θ is calibrated correctly the shooting vectors will be identity
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Calibration of Tantalum

• Calibration of stress-strain model of Tantalum
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Calibration of Tantalum
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Summary

• FDA is a very rapidly growing area in statistics with the increase in sensors and
dimensionality of data

• Can perform statistics using functions, but have to be aware of different set of
issues/nuances

• Functional data often comes with phase variability that cannot be handled using
standard L2 framework

• Elastic FDA provides more flexibility than classical FDA

• Provides excellent alignment results
• Provides joint solutions for inferences along with alignment

• Theory and methods work for functions, curves, surfaces, and images
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Questions?

jdtuck@sandia.gov
http://research.tetonedge.net
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