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Functional Data Analysis




Introduction

- Problem of statistical analysis of function data (FDA) is important in a wide variety of

applications

- Easily encounter a problem where the observations are real-valued functions on an
interval, and the goal is to perform their statistical analysis

- By statistical analysis we mean to compare, align, average, and model a collection of
random observations
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Introduction

- Questions then arise on how can we model the functions

- Can we use the functions to classify diseases?
- Can we use them as predictors in a regression model?
- It is the same goal (question) of any area of statistical study

- One problem occurs when performing these type of analyses is that functional data can
contain variability in time (x-direction) and amplitude (y-direction)

- How do we account for and handle this variability in the models that are constructed
from functional data?



Types of Functional Data

Real-valued functions, with interval domain: f: [a,b] = R
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Types of Functional Data

- R"-valued functions with interval domain, Or Parameterized Curves: f: [a,b] — R"
f:St 5 R"




Types of Functional Data

- R3-R3-valued functions on a spherical domain, Or Parameterized Surfaces: f: 5?2 — R®
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Types of Functional Data

- R"-valued functions with square or cube domains, Or Images: f: [0,1]2 — R"




FDA vs Multivariate Statistics




Why FDA? Why Not Multivariate Statistics

- In any computer implementation, one has to discretize functions anyway
- Does this mean FDA is essentially the same as multivariate statistics?

- A closer look...



FDA Versus Multivariate Statistics
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- Not all observations will have the same time indices
- Even if they do, we want the ability to change time indices 10



FDA Versus Multivariate Statistics
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FDA Versus Multivariate Statistics
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FDA Versus Multivariate Statistics

- In FDA, one develops the theory on function spaces and not finite vectors, and
discretizes the functions only at the final step - computer implementation

- ULf Grenander: “Discretize as late as possible” (1924-2016)

- Even after discretization, we retain the ability to interpolate resample as needed!



Mathematical Framework




Common Metric Structure for FDA

- Let f be a real-valued function with the domain [0, 1], can be extended to any domain
- Only functions that are absolutely continuous on [0, 1] will be considered

- The L2 inner-product:

(Fiufo) = / fOF(t) dt

- L2 distance between functions:

IIfi = fell = \//O (fi(t) — fa(t))2 dt

- From these we will build summary statistics, but how good are they?

14



Summary Statistics under L2

- Assume that we have a collection of functions, fi(t), i =1,...,N and we wish to calculate
statistics on this set

- Mean Function
N

ft) = arjgegin (; If = fill )

o = 3 >

- Variance Function

- How good is this choice in FDA?



Common Metric Structure for FDA

- Here, the focus is on measuring/modeling the vertical variability in the data

2

-2
0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00

- Measures the norm of the difference (fi(t) — fa(t))

Ifi - lel\// (i) - Folt))? dt
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Horizontal Variability

- Horizontal variability: Compares points at same heights but across times
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Horizontal Variability

- Horizontal variability: Compares points at same heights but across times

1.0 S 1.0
0.5 0.5
0.0 0.0
0.5 -0.5
1.0 ~ -1.0
0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00

- Is this vertical or horizontal variability?



Horizontal Variability

- Horizontal variability: Compares points at same heights but across times

1.0 S 1.0
0.5 0.5
0.0 0.0
0.5 -0.5
1.0 ~ -1.0
0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00

- Is this vertical or horizontal variability?

- In some cases it may be more natural to treat it as horizontal variability



Both Vertical and Horizontal Variability

- In general, functional data has both types of variability,

- How to decompose it into vertical and horizontal components

2 2
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Separate Vertical and Horizontal

Time warp functions to align their peaks and valleys
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Flastic FDA: Ability to separate and analyze these components, and to draw inferences using
both these components of functional data
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Classical FDA: Loss of Structure

Cross-sectional statistics ignores horizontal component, often destroys structures

Original Functions Cross Sectional Mean
without Registration
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Classical FDA: Loss of Structure

Amplitude Phase Cross Sectional Mean
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Classical FDA: Inflated Variance

Phase variability artificially inflates variance

Original Data Warping Functions Aligned Data
1.0 1.00 1.0
0.5 0.75 0.5
0.0 0.50 0.0
-0.5 0.25 -0.5
-1.0 0.00 -1.0
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

High horizontal variance and low vertical variance after alignment
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Functional Data Alignment




Functional Data Alignment Improves
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Two Types of Problems

Problem 1: Alignment of given functional data

Goal: Choose some objective function and optimize alignment. Provide the best alignment
algorithm in the community. Decrease amplitude variability as much as possible.

Problem 2: Joint alighment and statistical analysis, i.e. Elastic FDA

Goal: Align the data in the context of a statistical inference problem. For example: Perform
joint PCA and alignment — Elastic FPCA

Our framework provides solutions in both contexts...

We start with the first problem..
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Formulating Registration Problem

f,:[0,1 » R f,:[0,1] » R y(t)
4 4 1.00
3 3 0.75
2 2 0.50
1 ! 0.25
0
U 0.00 025 050 075 1.00 000
0.00 025 0.50 075 1.00 0.00 025 0.50 075 1.00
t ¥(t) "

The point f;(t) gets matched with the point fa(y(t))

Define a set of registration functions

T ={y:[0,1] ~ [0,1]}7(0) = 0,v(1) = 1, diffeo}
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L2-based Objective Function

- Given fi, f2, we have to search for an optimal v
- What is a good choice of objective function for registration? L2 norm.

argmin(|fy —f2 0 7|*)
v

- This can result in "pinching effect”
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Obejctive Function

- Given fi, fo, we have to search for an optimal v

- What is a good choice of objective function for registration? L2 norm.

argmin(|f; —f2 o 7|)
gl

- This can result in "pinching effect”

- Common solution: Regularize

1
argmin([[f —f> 0 71|* + AR(+)), R(v):/ y dt
K 0

- Problems: solution is not inverse consistent, lack of invariance

27



Requirements for Elastic FDA

f;, £,:[0,1] > R y(t) frey, frey
4 1.00 4
g 0.75 3
2

0.50 2
.

0.25 1
0
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0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

The two functions have the same correspondences before and after warping — objective
function should not change!!

However, the 1.2 norm changes. Thus, it is not a good metric for Elastic FDA
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One Solution: SRVF Representations

f:[0,1] - R!

- Define Square Root Velocity Function SRVF

q:[0,1] = R, q(t) = sgn(f(t))\/ [f(t)]

29



One Solution: SRVF Representations

f:[0,1] - R!

- Define Square Root Velocity Function SRVF

q:[0,1] = R', q(t) = sgn(f(t))/ [f(t)]

- if fis absolutely continuous, then g is square-integrable

29



One Solution: SRVF Representations

f:[0,1] - R!

- Define Square Root Velocity Function SRVF

q:[0,1] = R', q(t) = sgn(f(t))/ [f(t)]

- if fis absolutely continuous, then g is square-integrable
- If a function fis warped to fo~ then its SRVF changes form g to (g, v)(t) = (qo~)(t)4/~(t)

29



One Solution: SRVF Representations

f:[0,1] - R!

- Define Square Root Velocity Function SRVF

q:[0,1] = R', q(t) = sgn(f(t))/ [f(t)]

- if fis absolutely continuous, then g is square-integrable
- If a function fis warped to fo~ then its SRVF changes form g to (g, ~)(t) = (go~)(t)\/A(t)
- One can go back from SRVF to f; up to an additive constant

flt) = / a(s)la(s)|ds

29



One Solution: SRVF Representations

f:[0,1] - R!

- Define Square Root Velocity Function SRVF

q:[0,1] = R', q(t) = sgn(f(t))/ [f(t)]

- if fis absolutely continuous, then g is square-integrable
- If a function fis warped to fo~ then its SRVF changes form g to (g, ~)(t) = (go~)(t)\/A(t)
- One can go back from SRVF to f; up to an additive constant

flt) = / a(s)la(s)|ds

- The space of all SRVFs is L%(]0, 1], R)
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Elastic (Fisher-Rao) Metric

oo 1 1
(o, v2)) 5 = / (1)) 2l (101, 103) = / (B walt)dt

- The elastic metric has the right invariant properties (stated later)
- However, it is complicated to use
- The mapping f+ g that simplifies this metric into the standard L2 metric 0



Different Versions of Fisher-Rao Riemannian Metric

1. Function or CDF Space

1
(avally = [ OO o
1,V2//f 0 1 f()
2. PDF Space (Non parametric Fisher-Rao)

(U1, Ua))g = / ul(t)ug(t)ﬁ dt

3. PDF Space (Parametric Fisher-Rao)

/01 (3590 (5790)) o7 %

<W17 W2> = /1 Wl(t)Wz(t) dt
0

4. SRVF Space

31



SRVF Representation Space

f:[0,1] - R!
- Why Square Root Velocity Function SRVF? q(t) = sgn(f(t)) |f(t)|
- Invariance: for any g1, g2, and

111 — @21l = [1(q1,7) — (g2, V)|l

- In particular, [|q|| = |1(g,~)|| and hence pinching is not possible
- Resulting registration problem: Given f; and fs, find their SRVFs, and solve

igf\lql —(q2,7)||

- Solve using Dynamic Programming

- Inverse consistency

if y12 € arginf, ||g1 — (q2,7)[| then 1 € arginf, [|q2 — (q1,7)l| 2



Multiple Registration

- Using the distance function we can compute the Karcher Mean

n
o =argmin >~ (3t 0 @01
i=1 "

qelL?

without a metric, we cannot define the mean

- Algorithm for computing the Karcher mean:
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Example: Simulated Data

Ensemble Alignment using Karcher Mean

Original Data
7.5
5.0
2.5

0.0
0.00 0.25 0.50 0.75 1.00

Aligned Data
7.5
5.0
2.5

0.0
0.00 0.25 0.50 0.75 1.00

Warping Functions

0.00 0.25 0.50 0.75 1.00
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Example: Cross-Sectional Statistics

Cross-sectional mean and standard deviation improves after registration

Original Data Aligned Data
4 8
6
2
4
0 2
0
0.00 0.25 0,50 0.75 1.00 0.00 0.25 050 0.75 1.00

85



Example: Simulated Data

Ensemble Alignment using Karcher Mean

Original Data Aligned Data Warping Functions
1.25 1.25 1.00
1.00 1.00 0.75
0.75 0.75 0y
0.50 0.50 0-25
0.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
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Example: Sonar Data

Sonar data from Naval Surface Warfare Center: Aspect versus Frequency

Original Data
3e-04

2e-04
1e-04

0e+00
0.00 0.25 0.50 0.75 1.00

Aligned Data
3e-04

2e-04
1e-04

0e+00
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Sonar Data: Cross-Sectional Statistics

Cross-sectional mean and standard deviation improves after registration
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Elastic Functional PCA




Functional Principal Component Analysis

- The motivation for functional principal component analysis (fPCA) is that the directions
of high variance will contain more information than direction of low variance

- The optimization problem for fPCA

min £]f — f]|?
Wi

- where f: i+ ST, Biwi(t) is the fPCA approximation of f

- We then use the sample covariance function cov(ty,t2) to form a sample covariance
matrix K

- Taking the SVD, K = UXV" we can calculate the directions of principle variability in the
given functions using the first p < n columns of U

39



Modeling using Phase & Amplitude Separation

0.0 ~ | | | 1 1
00 02 04 06 08 1.0
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Modeling using Phase & Amplitude Separation

0.0 ~ | | | 1 1
00 02 04 06 08 1.0
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Modeling using Phase & Amplitude Separation

Joint Model

| | | | 1
00 02 04 06 08 1.0
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Analysis of Warping Functions (Phase)

- Horizontal fPCA: Analysis of Warping Functions

- Use SRVF of warping functions, ¢ = /%

- Karcher Mean: y = 37, dp(,7i)?

- Tangent Space:Ty (Seo) = {v € L?| [ v t)w(t ydt =0}

- Sample Covariance Function: (t1,tz) — =25 >, vi(t)vi(tz)

+ Take SVD of Ky, = Uy X4V, provides the estimated principal components

{7} e PD1

1.0 - 1.0 1.0 1.0 -
0.8 - 0.8 - 0.8 - 0.8 -
0.6 - 0.6 = 0.6 - 0.6 -
0.4 - 0.4 - 0.4 - 0.4 -
0.2 - 0.2 - 0.2 0.2 -

1 1 1 1 i 00 1 1 1 1 i 00 1 1 i 0.0 1 1 1
0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0
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Why SRVF of ~;

- I'is a nonlinear manifold and it is infinite dimensional
- Represent an element v € T" by the square-root of its derivative ¢ = /%

- Important advantage of this transformation is that set of all such s is a Hilbert sphere
Soo
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Analysis of Aligned Functions (Amplitude)

- Vertical fPCA: Analysis of Aligned Functions

- Given the observed SRVF have been aligned

- They can be analyzed in a standard way (L?) in SRVF space, since we have a proper distance
- Need variability associated with the initial values ({fi(0)})

- Analyze the aligned pair h = [g; f;(0)] such that mapping from the function space Fto L2 x Ris a
bijection
n
Ky = niil ; E[(hi — n) (hi — pn)"] € ROFDXTHD

- Taking the SVD, K, = UpX,V], we can calculate the directions of principle variability

2 PD2 D!
1.4 - 1.4 - 1.2 -

12 - 12 - o
1.0 1.0 -
0.8 -
0.8 - 0.8 -
0.6 - 0.6 - 0.6 -
0.4 - 0.4 - nad
02— v 1 0 02— v 1 0 (I T B

1 1
-3-2-10 1 2 3
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Combined Elastic fPCA

- Recently [Lee 2017] extended the horizontal and vertical fPCA approach
- Uses a combined function

g°(t)

Cv(t-1), telL,2]

{ g*(t),  telo,1)

- where Cis again used to adjust for the scaling imbalance between g* and v
- Taking the SVD, K§ = US%§(V5)T, accounts for correlation between amplitude and phase
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Elastic Functional Bayesian
Model Calibration




Elastic Model Calibration

model runs
3000 4 —— experiment . .
- We wish to calibrate a computer model
2500 B .
_ with parameters 6 to a experiment
£ 20007 simulation
2 1500+ - The data is functional in nature and has
o 5 5 ono
2 ol phase and amplitude variability
- Utilize elastic metrics in a Bayesian Model
%07 Calibration Framework
o- T T T T T T
2900 2920 2940 2960 2980 3000

Time (ns)
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Elastic Model Calibration

- Decompose observation into aligned functions and warping functions
yi(t) = i (t) oy (1)
- and decompose the simulations
v x) = y1(E, %) 0 M(E x;)

To facilitate modeling, we transform the warping functions into shooting vector space

with
vE= exp;1 (ﬁ)
100 = expyt (V300

46



Elastic Model Calibration

- Calibrate the aligned data and shooting vectors using the following model
() = Y, 0) + 8y (1) + (1), e (t*) ~ N (0, 071)
vVE=VM"(0) + 6, + e, e ~ N(0,02))

- Note: The shooting vector will be identity if the data is aligned to the observation
(experiment)

- There if 6 is calibrated correctly the shooting vectors will be identity
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Calibration of Tantalum

- Calibration of stress-strain model of Tantalum

model runs 0.8 model runs
3000 | —— experiment —— experiment
0.6
2500
9 0.4
'€ 2000
=
z 0.2
5 1500
K]
2 0.0
1000 +
500 4 —0.2
0- ~0.4
T T T T T T T T T T T T
2900 2920 2940 2960 2980 3000 2900 2920 2940 2960 2980 3000
Time (ns) Time (ns)
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Velocity (km/s)

Tantalum

Original Data Prediction

model runs
3000 H calibrated predictions
—— experiment
2500
2000 +
1500 4
1000+
500
04
T T T T T T
2900 2920 2940 2960 2980 3000

Time (ns)
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43
42
41

4.0

«Q
39
38
37

49



- FDA is a very rapidly growing area in statistics with the increase in sensors and
dimensionality of data

- Can perform statistics using functions, but have to be aware of different set of
issues/nuances

- Functional data often comes with phase variability that cannot be handled using
standard L2 framework

- Elastic FDA provides more flexibility than classical FDA

- Provides excellent alignment results
- Provides joint solutions for inferences along with alignment

- Theory and methods work for functions, curves, surfaces, and images
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Questions?

jdtuck@sandia.gov
http://research.tetonedge.net
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