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Problem Introduction

Problem Introduction

Given: A collection of observed acoustic
color functions functions
Goals: We would like to
@ study their variability (FPCA)
@ develop probability models to
capture their variability

@ perform classification 3 2 4 0 1 2 3

Requirement: Need a metric structure on the space of these

functions
Current Idea: Most of the statistical functional analysis is based on 1.2

geometry of function spaces
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Problem Introduction

What happens when we average functions: u(t) = Al erfz

h
h
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We can compute cross-sectional statistics:
@ Mean Function: Point-by-point average
@ Standard Deviation: Point-by-point std. dev
@ No matching or alignment performed
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Problem Introduction

An alternative strategy:
@ Align the two functions by time-warping (warping of x-axis)
@ Compute mean and standard dev. after alignment
@ Seems more natural — some amount of alignment preserves

structure
Filt) = Aly(1) u(t) = LEAE
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Problem Introduction

Components of Function Variability
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Aligned Functions: “y-variability” Warping Functions: “x-variability”
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Problem Challenge
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Aligned Functions: “y-variability” Warping Functions: “x-variability”

Need a principled approach to separate x and y variability of the data for
analysis
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Problem Introduction

Our Goals

@ Separation of X and Y variability: We would like a principled
approach to separate x and y variability of the data for analysis

© Analysis of Y variability: Functional principal component analysis
(FPCA) of the aligned functions

© Analysis of X variability: FPCA of the warping functions (on the
manifold of warping functions)

© Statistical Modeling: Develop statistical models for these two
components

© Validation: Validate models using random sampling
Q Applications: Datasets in application domains of interest
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Problem Introduction Motivation

Motivation: Berkeley Growth Data

Height versus age evolution of 54 females and 39 males

Male Growth Velocity Female Growth Velocity
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Data courtesy Jim Ramsay
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Problem Introduction Motivation

Motivation: Object Classification using SONAR

Acoustic Data: SONAR returns versus frequency for a fixed viewing angle,
for three classes of objects (Data courtesy NSWC PCD)
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Current Solutions, Limitations

Past Work

@ Kneip and Gasser, Statistical Tools to Analyze Data
Representing a Sample of Curves, Annals of Statistics, 1992.

© Ramsay and Li, Curve Registration, JRSS(B), 1998.

© Gervini and Gasser, Self-Modeling Warping Functions, JRSS(B),
2004.

© Liu and Mueller, Functional Convex Averaging and
Synchronization..., JASA, 2004.

© James, Curve Alignment by Moments, Annals of Applied
Statistics, 2007.

© Kneip and Ramsay, Combining Registration and Fitting of
Functional Models, JASA, 2008.

@ Tong and Mueller, Pairwise Curve Synchronization for Functional
Data, Biometrika, 2008

© Kaziska, Functional Analysis .. Elastic Functions, Comm of Stat,
to appear.
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Current Solutions, Limitations

Past Work

N

1.2- gy 2 o

e 0.6-
R Sw 04-anmemanzzace:
Registration Module ﬁ Analysis Module
Criterion 1 Criterion 2

@ Criterion 1: Feature matching, moments, pair-wise 1.2
optimization, entropy, mutual-information, area under curve

@ Criterion 2: 1.2 (FPCA, cross-section mean and covariance)

We think that both the criteria should be identical and based on a
proper distance
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Current Solutions, Limitations

Pairwise Alignment Problem

@ Let I" be the group of all warping functions:
I'={y:[0,1] — [0,1]] v(0) = 0,v(1) =1, v is a diffeomorphism}
@ It acts on the function space by composition:

(f,y) =fov

@ It is common to use the following objective function for alignment
(using IL? norm):
min [[f; oy — f2|
ver

@ Note: It is not a distance function since it is not symmetric.
Cannot be used to define mean, covariance, PCA
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Current Solutions, Limitations

Pairwise Alignment Problem

@ |t can be made symmetric by using double optimization:

mirér Ifi ov1 —f2 0 vall

Y1,Y2
min [|f; o y1 — foll + min [|f; — f2 o y2l|
Y1 Y2

@ Still not a distance function. The first can be made arbitrary small
for rather different functions. The main issue is lack of isometry:

i =Ll #lfioy—faovl

@ The issue can be resolved if there is a distance such that

d(f1,f2) =d(fiov,f207v)

Or, some function g(f) such that:

lg(f1) —q(f2)ll = llg(fi o v) —q(f2 o ¥l

@ Our Solution: Fisher Rao Distance!!
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Fisher-Rao Distance and SRVFs

Fisher-Rao Distance

@ Let F be the set of all absolutely continuous functions on [0, 1]
@ Fisher Rao Riemannian Metric: for any vy, v, € T¢(F)

1
(really = 1 || @002tz
@ ltis invariant to re-parameterization:
<<Ul, 02>> = <<(Ul OY)! (UZ OY)>>foy

@ This leads to Fisher-Rao distance function:

«:[0,1] = F,x(0)=f1,x(1)=f2

de(fi,f2) = inf (S5 (6), &) () /2 ) |

@ This distance satisfies: drr(fi,f2) =drr(fiov,f20v)
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Fisher-Rao Distance and SRVFs Square-Root Velocity Function

Square-Root Velocity Function

@ However, it is difficult to compute this distance

@ There is a simple transformation that makes this computation
rather simple: SRVF (modification of Bhattacharya, 1948)

@ Define SRVF

— if f is absolutely continuous, then g is square-integrable
@ The SRVF of the re-parameterized function is given by

(9,7) = (o) Vv
@ The space of SRVFs is IL([0, 1], R) or L2
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Fisher-Rao Distance and SRVFs Square-Root Velocity Function

Square-Root Velocity Function

The importance of using SRVF is that:
@ Fisher-Rao distance becomes the 1.2 distance

drr(f1.f2) = llg1 — g2l

© The action of the re-parameterization group is by isometries:

llg1 — g2l = 1l(g1,v) — (g2, V)l
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Fisher-Rao Distance and SRVFs Square-Root Velocity Function

Summary of SRVF Mapping

Item Function Space F SRVF Space 1.2
Representation f (g,f(0))
Transformation || f(t) = £(0) + [, q(s)lq(s)lds q(t) =f(t)/ \/ IF ()]

Metric Fisher-Rao Metric IL? Metric
Distance drr (f1,/2) llg1 — ol
Isometry drr(f1,f2) =drr(fiov,f20v) llg1 — g2l

= Il(g1,v) — (g2, V)l
Geodesic Numerical Solution Straight Line

Elastic do = infyerdrr(f1,f20v) do = infyer (llg1 — (g2 0v)

Distance VYIl)in8
Solved using
Dynamic Programming

Table: Bijective Relationship Between Function Space F and SRVF space 1.2
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Fisher-Rao Distance and SRVFs Square-Root Velocity Function

Quotient Space & Elastic Distance

@ Define an orbit of an SRVF: [g] ={(g,v)ly € T}
@ Let 8 be the set of closure of such orbits:

8 = {closure([g])|g € I}
@ Define a distance function on 8:

do(lq1], [92)) = inf llg1 — (92 0v) VI
ver

compare with (min cr [|fi —f2 o vll)
@ This is a proper distance function on 8§

@ Also solves the pair-wise alignment problem. (Still have not
addressed the ensemble alignment problem).
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Karcher Mean

Ensemble Alignment Problem

@ Using the distance function, we can compute the Karcher mean

w = arg min do([g], [:])*
gel?

Algorithm for Computing Karcher Mean
@ Initialize u (requires mean of warping functions to be identity)
@ Fori=1,2,---,n compute the optimal warping function

y; = argmin [ju— (g; 0 y) /7l
yer

@ Compute the aligned SRVFs §; = (g, 0 v}) /¥
@ Update the mean p+— 1 37 | 3
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Karcher Mean

Ensemble Alignment Problem

N g Y3

qs3
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Karcher Mean

Ensemble Alignment Problem

@ This algorithm results in three sets of things:

» Karcher mean: p
» Aligned SRVFs: {5;}
» Optimal Warping Functions: {y;}

@ Convert the aligned SRVFs to aligned functions

3 t
i s (D) = F(0 J (5)1Gi(s) ds

(Caution: SRVF of mean of aligned functions is different from )
@ Now we have the desired components:
> Y variability: {f;}
» X variability: {y}}
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Karcher Mean

Example Simulated Data
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Data from Ramsay JASA 2008
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Modeling X and Y Variability of Functions

Analysis of Y Variability

In the space of SRVFs {j;}, we can perform:
@ Functional principal component analysis
@ Study the scatter plots of observed principal coefficients
@ Impose probability models on the coefficients
@ Bring the results back to the function space using integration
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Modeling X and Y Variability of Functions

Analysis of X Variability

5 @ We have a collection of warping functions in the
0.6- / space I and we want to model their variability

0.4-
@ T is a nonlinear manifold and we cannot perform

73 21012 3 FPCA directly

I'={y:[0,1] — [0,1]] v(0) = 0,v(1) = 1,v is a diffeomorphism}

@ We choose to represent warping functions by their SRVFs:

Wit = V3O
@ The IL.2 norm of this SRVF is:
1 1
j w(tnzdtzj V() dt = y(1) —y(0) = 1
0 0

@ Hence, the space of such SRVFs is a unit Hilbert sphere in I.?;
call ity
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Modeling X and Y Variability of Functions

Analysis of X Variability

@ Use the standard metric on this space:

dy, (W1, ¥2) = cos (D1, P2))

We can compute means and
covariances on a sphere, e.g. Karcher
mean of warping functions:

Iy, = arg min Zdw(ll),lbi)Z

bev i
@ Then, we perform FPCA in the tangent
space:
@ Assume Gaussian models on the

principal coefficients and derive a
stochastic model on ¥

Geodesicin 3 0
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Modeling X and Y Variability of Functions

Extension to a Family of Distances

@ So far we have used a distance dy on the quotient space
§=12/T

@ This has a certain amount of elasticity built in but is not
controllable

@ We can control the elasticity by using the distance function on L2

: . (1/2)
ax(q1,42) = inf (llgs — (2 0v) VAP +A1 VT~ 1IP)

» First term is same as earlier
» Second term is a penalty on elasticity, depending on A

@ Everything else remains the same
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Examples

Example 1: Simulated Data

Ensemble Alignment Using Karcher Means:
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Example 1: Simulated Data

Analysis of Y variability: Vertical FPCA
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Examples

Example 1: Simulated Data

Analysis of X variability: Horizontal FPCA (TPCA in ¥ space of
SRVFs of warping functions)
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Example 1: Simulated Data

Simulate new functions from the respective X and Y models

Original Data

~ Gaussian Model on T’
~ Gaussian Model on I.2/T

- . <

—
_ F O e B B B
= o
f y 3 2 -1 0 1 2 3
Random Sampling on y-variability Random Sampling on x-variability Random Sampling from the Fitted Model
Z 1.0
1.2 = A\
1.0 Q ﬁ \ 08
. \ £ \ 0.6
0.8 \
0.6 0.4
0.4 \ 02
| | | | | | | | | | | | | | | | | | | | |
3 2 -1 0 1 2 3 3 2 -1 0 1 2 3 3 2 -1 0 1 2 3

Tucker Elastic Function Warping



Examples

Example 2: Simulated Data

Ensemble Alignment Using Karcher Means:
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Examples

Example 2: Simulated Data

Modeling of X and Y components:

v ~ Gaussian Model on T i
g ~ Gaussian Model on IL?/T .
q — f
fo= Fov O
" ; oo | MEEES 7
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Example 3: Berkeley Growth Data

Ensemble Alignment Using Karcher means: Female Data
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Warped Data,A = 50

Cross Section mean and standard deviations
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Example 3: Berkeley Growth Data

Ensemble Alignment Using Karcher means: Male Data

Original Data Warped Data,A = 0 Warped Data,A = 50
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Example 3: Berkeley Growth Data

Analysis of Y variability: Vertical PCA, female data
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Examples

Example 3: Berkeley Growth Data

Pairwise 1.2 distances:

Original Data Warped Data,A = 0
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Example 4: Sonar Data

Original Data
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Example 4: Sonar Data

Pairwise 1.2 distances:
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Examples

Summary

@ Presented a framework for statistical analysis and modeling of
elastic functions

@ This framework is baed on two key ideas: Fisher-Rao distance
and square-root velocity representation

@ Used this framework to separate X (warping functions) and Y
variability (aligned functions) of the given data

@ Developed statistical models for each of these components
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Questions??
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Publications

[4 A. Srivastava, W. Wu, S. Kurtek, E. Klassen, and J. S. Marron
Statistical analysis and modeling of elastic functions
Journal of American Statistical Association, in review, 2011.

[4 J.D. Tucker and A. Srivastava
Statistical analysis and classification of acoustic color functions
Proc. SPIE, in publication, 2011.

[« J.D. Tucker, A. Srivastava, and W. Wu
Statistical analysis and classification of elastically acoustic
functional data
IEEE Transactions on Signal Processing, submitted, 2011.
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